Electronic key-operable lock and key therefor.

Proprietor: YALE SECURITY PRODUCTS LIMITED
Wood street
Willenhall West Midlands, WV13 1LA (GB)

Inventor: Aston, Walter John
83 Longfellow Road The Straits
Sedgley Dudley West Midlands (GB)
Inventor: Garbett, Paul
12 Wistwood Hayes Moseley Parklands
Wolverhampton WV10 8UG (GB)

Representative: Prutton, Roger et al
MARKS & CLERK Alpha Tower Suffolk Street
Queensway
Birmingham B1 1TT (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to an electronic key-operable lock for use, inter alia, on a door, and a key therefor.

Conventional locks make use of keys which can readily be produced in quantity. A typical key has a grip portion and an elongated blade, the cross-section of which is shaped to match a complementary broached keyway in the barrel of a coacting lock. One edge of the blade has an edge profile which coacts with a conventional pin-tumbler arrangement in the barrel in well known manner.

Conventional keys of this type have been in use for many years and many systems of multilevel master keying have been developed which rely on the many possible variations of blade cross-section and edge profile. Extremely sophisticated master keying systems which operate entirely mechanically now exist.

There is, however, a demand for electronic access control systems and there is frequently a need to provide, in a conventional master-keyed system, a number of locks which are electronically operated and can record details of their usage. For example, it is often desirable to record the time and date of each access as well as an identification number of the key used. Each key is, of course, already identifiable by reference to its cross-sectional shape and edge profile, but the number of sensors which would be required in the electronic lock to sense all this information could not be fitted into a sensibly sized lock.

There have already been various proposals for reading coding marks (or the like) on a key by means of sensor devices built into the lock. These tend, however, to be bulky, and therefore the number of code tracks which can be read is limited. Hence the number of different codes which can be recognised is likewise limited.

For example GB-A-2055951 discloses a key which is notched to enable to operate a conventional lock and has a code pattern along an edge of the key for reading by a reading device, but each code element of the code pattern has but a single code portion.

It is therefore one object of the present invention to provide a key for an electronic lock which is capable of carrying a large amount of code data in a simple form.

In accordance with one aspect of the invention there is provided a key for operating an electronically operable lock, said key having a grip portion and a blade portion of a cross-section suitable for reception by the key slot of a conventional mechanical cylinder lock, said blade portion being notched along one edge for operation of a conventional cylinder lock, the opposite edge face of said blade being formed with a relief code pattern comprising a plurality of code elements spaced along the blade, characterised in that each code element comprises two mechanically readable code portions spaced apart across the width of said other edge of the blade and located relative to one another in one of three possible positional relationships, the code portions of some of the code elements being directly opposite one another, other code portions being longitudinally spaced along the blade in one direction relative to one another and other code portions being longitudinally spaced along the blade in the opposite direction relative to one another.

With such a key a simple key reading device can be incorporated in the lock which includes two mechanical/electrical transducers which read along two tracks spaced across the width of said other edge of the key and respectively sense the two code portions of each code element. As each code element consists of two code portions, there will always be a code portion on one track corresponding to each code portion on the other track and it is only necessary for the electronic circuitry associated with the transducers to determine whether the signals generated by the two code portions of each code element arrive substantially simultaneous or, if not, which signal occurs first.

In this way, it is a relatively simple matter to overcome problems associated with previously proposed key readers arising from variations in the speed of insertion of the key. One conventional arrangement for overcoming these problems has been to employ two reading devices which read a code track having regularly spaced readable formations and a code track having readable formations which are present only at selected ones of a plurality of positions. This prior construction produced a binary code, whereas the key defined above is actually arranged to produce a ternary code (since there are three possible "values" of each code element). Moreover no clock track is required.

Thus a very large number of difference codes can be detected for a given number of code elements. For a key with 12 code elements, for example, the prior construction could provide only 4096 different codes (i.e. 2^{12}), whereas, with the same number of reading devices, the construction according to the present invention can provide 3^{12} or 531,441 different codes, representing an improvement by a factor of more than 100.

The code elements may consist of grooves extending across the edge face of the blade, either perpendicularly to the length of the blade, or inclined to the perpendicular in one direction or the other.

Alternatively the code elements may each consist of a pair of notches cut in such edge face at
the positions where the grooves as mentioned above would end.

It is another object of the invention to provide an electronic lock for use with a key as defined above.

An electronic lock in accordance with the invention comprises a body, a cylinder rotatably mounted in a bore in the body, said cylinder being formed with a key slot for receiving the key, and an electro-mechanical means operable by a key recognition circuit on recognition of an acceptable key to permit opening of the lock by turning of the key, characterised by a pair of mechanically operable reading devices having probes projecting into the key slot so as to be actuable by the code elements on the key, said recognition circuit determining whether actuation of one of said reading devices by one code portion of each code element occurs before, simultaneously with or after actuation of the other reading device by the other code portion of the same code element.

The invention also resides in the combination of a lock and key both as defined above.

US-A-4303909 discloses a lock in which a mechanically operable reading device having a probe in the form of an electrically conductive finger projects into the key slot to read a code on the key.

The invention also resides in an electronic lock for operation by a key having a relief coding thereon, said lock having a key slot therein for receiving the key, and at least one mechanically operable reading device having a probe projecting into the key slot so as to be movable by the relief coding on the key, and electronic circuit means connected to said reading device so as to receive code signals therefrom, said electronic circuit means operating to control operation of the lock only when the code signals received from said reading device include a piezo electric transducer element operable by said probe.

In the accompanying drawings:
- Figure 1 is a section through one example of a lock in accordance with the invention;
- Figure 2 is a fragmentary section on line 2-2 in Figure 1;
- Figure 3 is a section on line 3-3 in Figure 1;
- Figure 4 is an elevation of an escutcheon forming a part of the lock;
- Figure 5 is an enlarged view of a reading device forming part of the lock;
- Figure 6 is an elevation of an example of a key in accordance with the invention;
- Figure 7 is a fragmentary plan view of the key of Figure 6, showing code elements on an edge face of the key blade;
- Figure 8 is another view like Figure 7, but showing a modified form of code element;
- Figure 9 is an enlarged section on line 9-9 in Figure 8;
- Figure 10 is the electrical circuit diagram showing a buffer circuit forming a part of the lock;
- Figure 11 is the electrical circuit diagram (partly schematic) of a key recognition and control circuit forming part of the lock; and
- Figure 12 is a fragmentary sectional view like Figure 2, but showing another embodiment of the lock.

Referring firstly to Figures 1 to 5, the lock shown includes a lock casing 20, in which a bolt 21 is slidably mounted (not shown in Figure 1). Attached to the casing is a cylinder body 22 in a bore in which a cylinder 23 is rotatably mounted. The cylinder 23 is formed with a key slot 24 having a complex cross-sectional shape as is well known in conventional mechanically operated cylinder locks. A cam 25 is secured to one end of the cylinder inside the casing 20 and coacts with the bolt 21 to release a spring-loaded catch device 26 mounted on the bolt and displace the bolt between projecting and withdrawn (shown) positions. The catch device 26 operates in well-known manner to retain the bolt in these two positions.

The cylinder 23 is retained in the position shown by a plunger 27 of a solenoid device 28. The body 22 has a hole through which the end of this plunger 27 extends into a recess 23* in the cylinder. On energisation of the solenoid, the cylinder can be turned by the key so that the bolt 21 is driven in or out (according to the direction of turning) by the cam 25. A front plate 28 fixed to the body 22 has a circular hole through which a reduced diameter end portion of the cylinder 23 extends. A notch 29 in the plate 28 is aligned with the key slot in the cylinder only when the latter is in the position shown. This is used to ensure that the key (to be described hereinafter) can only be withdrawn when the cylinder is in this position. Thus, on unlocking or unlocking the cylinder must be turned through 360°, i.e. back to the same position.

As can be seen from Figure 2, the key slot actually opens on to the surface of the cylinder and this permits access to a relief code on the key, by two reading devices mounted on the body 22. Each reading device comprises a spring metal strip 30 on which there is mounted a layer of piezo-electric plastics film 31. A suitable film is supplied by Penwalt Corporation (USA) under the brand name KYNAR. The film 31 is preferably of a thickness of 28μm and is coated on each face with an electrically conductive layer of layers, such as a 150Å thick layer of nickel covered by a 400Å thick layer of aluminium. The film 31 is bonded to the base.
strip 30 so as to provide an electrical connection between the base strip 30 and the adjacent conductive layer. The strip 30 is mounted on a flat on the body 22 by means of an insulating bush 32 inserted into a hole at one end of the strip and a screw 33 inserted through this bush and engaged in a tapped bore in the body. An electrical connection to the other conductive layer is made by means of a connector trapped between the bush 32 and the film 31.

Adjacent the opposite end of the strip 30, there is an elongated probe 34 attached to the strip, which extends through a bore in the body 22. As shown, the two probes 34 project into the key slot 24 at opposite sides of the width thereof, and are arranged in a V-formation.

The key shown in Figures 6 and 7 is generally speaking of conventional configuration having a grip portion 40 and an elongated blade 41 which has a cross-section complementary to that of the key slot so that it can be received snugly thereby. The blade has one edge formed with notches (shown diagrammatically by line 42) which enable it to be used to actuate conventional mechanical cylinder locks.

To enable it to be used with an electronic lock, however, the opposite edge of the blade, which is normally a narrow flat edge face, is formed with a relief coding which can be read by the reading devices mounted on the cylinder body. In the example shown in Figures 6 and 7 the relief coding consists of a plurality of code elements spaced along the blade. Each code element is a groove 45 extending across the edge face, either perpendicularly to the length of the blade or inclined one way or the other to a perpendicular. In the example shown there are ten such grooves, although it is to be understood that any convenient number may be employed.

For coating with the front plate 28 there is a rectangular notch 43 in the blade 41 immediately adjacent the stop 44 which limits key insertion. The key can be inserted only when the cylinder 23 is in the home position shown in Figure 4 and can be turned only when fully inserted (assuming the solenoid 28 to be energised). The notch 43 embraces the edge of the hole in the plate 28 and prevents withdrawal of the key when the cylinder is turned out of its home position.

The modified key shown in Figures 8 and 9 has instead of the grooves 45 a pair of notches 46, 47 at the positions where the grooves 45 would have run out at the extreme edges of the edge face. These notches can be formed by relatively simple tooling in which a cutter head is stepped along the blade and, at each code element position turned to the appropriate angle before being fed towards the blade to form both notches 26, 27 simultaneously.

The electronic circuity of the lock is divided into two parts, one of which is in the form of a small, encapsulated package 50 located in a recess in the cylinder body as close as possible to the reading devices. This package contains a buffer circuit which is shown in Figure 10. The piezoelectric film elements 31A, 31B each have one terminal grounded and the other terminal connected by a very short lead to the non-inverting input of an operational amplifier A1A, A1B. Each such amplifier is connected as a high input impedance voltage follower, there being a direct feedback connection from the output terminal of each amplifier to its inverting input terminal. A resistor R1A, R1B connects the inverting input of each amplifier to ground.

In the remaining description of Figure 10 only one channel is described, namely that associated with element 31A. The other channel is identical, the corresponding parts being indicated in Figure 10 by reference numerals with subscript B instead of A.

The output terminal of amplifier 1A is connected by a resistor R2A to the inverting input terminal of a voltage comparator A2A. A capacitor C2A connects this inverting input to ground. The comparator A2A is connected as a Schmitt trigger circuit, having a pair of resistors R3A and R4A connected in series between its output terminal and ground and the common point of these resistors connected to the non-inverting input of the comparator. The output terminal of the comparator is connected by a resistor R5A to the input terminal of a monostable circuit 1A having timing components R6A and C2A chosen to provide a reversion time of about 1mS. A diode D1A has its cathode connected to the input terminal of the monostable circuit C1A and its anode grounded.

The film elements 31A, 31B are arranged to provide an increasing positive voltage as the strips on which they are mounted are bent away from the key. As the Schmitt trigger circuits are connected to operate in inverting mode this means that each monostable circuit C1A, C1B is triggered as the corresponding probe element drops into a groove or notch in the key blade edge. The monostable circuits C1A, C1B are non-retiggerable so that a single 1mS pulse is produced commencing as the probe drops into the groove or notch. Any "bounce" effects are ignored.

Turning now to Figure 11, the output terminals of the two monostable circuits M1A, M1B are connected respectively to the CLOCK input terminals of two D-type flip-flop circuits F1A, F1B. The Q output of each of these circuits is connected to the D input of the other one. The SET inputs of both flip-flop circuits are grounded and the CLEAR in-
puts are connected to the output of a NAND gate G1. This NAND gate G1 has one input from the Q output of a monostable circuit M2 and another input from the output of a NAND gate G2, the two inputs of which are connected to the outputs of the two monostable circuits M1A, M1B.

The outputs of the two monostable circuits M1A and M1B are also connected to the CLOCK inputs of two further D-type flip-flop circuits F2A, F2B, the SET terminals of which are grounded and the D terminals of which are connected to the positive supply rail. The Q output terminals of the circuits F2A, F2B are connected to the input terminals of an AND gate G3, the output of which is connected to the input terminal of a monostable circuit M3, set up to give a 10μS pulse. This monostable circuit has its Q output connected to the input of another monostable circuit M4, again having a 10μS rever-
son time.

An output from amplifier A1B in Figure 10 is connected by a resistor R7 to the inverting input of an operational amplifier A3 which has a feedback resistor R6 and operates as an inverting amplifier with a gain of about 50. A resistor R5 connects the output of amplifier A3 to the input of a monostable circuit M5 which is set up to give a pulse length of 4 seconds. The output of this monostable circuit is connected by a capacitor C5 to the cathode of a diode D1; the anode of which is grounded. A resistor R10 is connected in parallel with the diode D1. The cathode of diode D1 is connected to the input of a logic inverter I1 the output of which is connected to one input of a NOR gate G4. The other input of gate G4 is connected to the Q output of the monostable circuit M4 and the output of gate G4 is connected to the input of the monostable circuit M5. The Q output of circuit M5 is connected to the CLEAR input terminals of flip-flop circuits F2A, and F2B.

The outputs of circuits F1A and F1B are connected respectively to the inputs of two OR gates G5A and G5B which have their other inputs connected to the output of the gate G1. The outputs of the gates G5A and G5B are connected respectively to the DATA inputs of two serial-in parallel-out shift registers SR1A and SR1B. The CLOCK input terminals of these two shift registers are connected to the Q output terminal of monostable circuit M5 and their CLEAR input terminals are connected to the cathode of the diode D1. The parallel data output terminals of each shift register are connected to respective input terminals of two digital comparators DC1A and DC1B. The other set of inputs of each of these comparators is connected to an associated code matrix CM1A, CM1B which may be in the form of an array of switches or links determining whether each input of said other set of inputs is set high or low.

The A=B outputs of the comparators DC1A, DC1B are connected to two logical inverters I2A, I2B, the outputs of which are connected to two inputs of an AND gate G6. Gate G6 is connected to drive a power f.e.t. Q1 which controls the current in the solenoid 28. When a key is inserted into the keyslot the first signal from the piezoelectric element 31B will trigger monostable circuit M6. The four second output pulse from this enables gate G6 for 4 seconds in case the correct code combination is subsequently received as the key is read. The start of the four second pulse also clears two shift registers and also clears all four flip-flop circuits via monostable circuit M2.

If the 1mS pulses from both monostable circuits M1A and M2A overlap (indicating that the groove being read is perpendicular to the length of the blade) this is detected by gate G2 which clears both flip-flop circuits via gate G1. This will mean that both of gates G5A and G5B will output high level signals. If, on the other hand, there is no overlap, the output of gate G2 will not go low, and only one of the flip-flop circuits will be cleared, i.e. that which first receives an input pulse.

Gate G3 detects when there has been a pulse from each of the monostable circuits M1A, M1B and triggers monostable circuit M3 so as to clock the outputs of gates G5A and G5B into the respective shift registers. 10μS later monostable circuit M4 is triggered so that monostable circuit M5 is fired clearing all four flip-flop circuits in preparation for the next pair of input pulses.

When all the code elements of the key have been read, if the contents of the two shift registers both match the corresponding codes set by code matrices CM1A, CM1B, then gate G6 will turn on f.e.t. Q1 and energise the solenoid.

It will be understood that the above described embodiment is a very simple one in which logic circuits are employed to compare the key code with but a single stored code. Other more sophisticated embodiments, utilizing microprocessors are envisaged in which a number of acceptable codes are stored in the microprocessor memory and the lock is operable if any acceptable code is read.

The electronic circuits, other than the circuit package 50 are housed in a casing 51 housed in an extended mortice hole in the door edge and access to this casing 51 is obtained by removal of a cover plate 52 covering the normal lock housing flange 53 and the extended mortice hole. Where the electronics includes a microprocessor, the casing may mount various displays, switches, and sockets, which are used in programming the electronics. The memory which contains the acceptable key codes or other data may be programmed either by inserting a key whilst a switch on the casing is in a programming position or by down-
loading data from a portable computer into the lock. Preferably the memory is non-volatile, but electrically overwritable so that key combinations can be changed at will. Many additional functions may be included in a microprocessor program, including lock-out functions (preventing the lock being opened by any key except the one used to lock it), key usage recording.

The alternative key reading devices used in the embodiment shown in Figure 12 are electromagnetic, rather than piezo-electric. The two probes 101 are formed of non-ferrous metal and are urged into the key slot by spring-loaded magnets 102 slideable inside two coils 103. The movement of the magnets in the coils caused by the displacement of the probes by the key code elements, causes voltage signals to be induced in the coils. These are amplified and "de-bounced" as in the example described above and applied, as before, to the logic circuit or micro-processor.

Claims

1. A key for operating an electronically operable lock, said key having a grip portion (40) and a blade portion (41) of a cross-section suitable for reception by the key slot of a conventional mechanical cylinder lock, said blade portion being notched along one edge (42) for operation of a conventional cylinder lock, the opposite edge face of said blade being formed with a relief code pattern comprising a plurality of code elements spaced along the blade (45, 46, 47), characterised in that each code element comprises two mechanically readable code portions (46, 47) spaced apart across the width of said other edge of the blade and located relative to one another in one of three possible positional relationships, the code portions of some of the code elements being directly opposite one another, other code portions being longitudinally spaced along the blade in one direction relative to one another and other code portions being longitudinally spaced along the blade in the opposite direction relative to one another.

2. A key as claimed in claim 1 in which said code elements comprise grooves (45) across said other edge face of the blade, some of said grooves extending perpendicularly to the length of the blade, others being inclined in one direction to a perpendicular to the length of the blade, and others being inclined in the opposite direction to such perpendicular.

3. A key as claimed in claim 1 in which the two code portions of each code element comprise separate notches (46, 47) at each edge of said edge face.

4. An electronic lock for operation by a key as claimed in any preceding claim, comprising a body (22), a cylinder (23) rotatably mounted in a bore in the body, said cylinder being formed with a key slot (24) for receiving the key, and an electro-mechanical means (27, 28) operable by a key recognition circuit on recognition of an acceptable key to permit opening of the lock by turning of the key, characterised by a pair of mechanically operable reading devices (30) having probes projecting into the key slot so as to be actuable by the code elements (45, 46, 47) on the key, said recognition circuit determining whether actuation of one of said reading devices by one code portion of each code element occurs before, simultaneously with or after actuation of the other reading device by the other code portion of the same code element.

5. A lock as claimed in claim 4 in which each of said reading devices (30) comprises a resilient arm which is fixed at one end and has said probe (34) mounted on the other end thereof and a piezo-electric element (31) on said arm for producing an electric output dependent on the degree of bending of said arm.

6. A lock as claimed in claim 5 in which said piezo-electric element comprises a layer (31) of piezo-electric plastics film on the arm, such film being coated on each side with conductive material to provide terminals for reading the device.

7. A lock as claimed in claim 4 in which said electro-mechanical means comprises a solenoid device (28) which is fixed relative to the lock body (22) and a plunger (27) movable by said solenoid and coating with a recess in said cylinder (23) to prevent turning of the cylinder except when said solenoid is energised.

8. A lock as claimed in claim 4 in which each of said reading devices comprises a winding (103), and magnetic means (102) associated with said winding, movement of said probe (101) causing a voltage signal to be induced in said winding.

9. The combination of a lock as claimed in claim 4 with a key as claimed in claim 1.
10. An electronic lock for operation by a key having a relief coding thereon, said lock having a key slot (24) therein for receiving the key, and at least one mechanically operable reading device (30) having a probe (34) projecting into the key slot so as to be movable by the relief coding on the key, and electronic circuit means connected to said reading device (30) so as to receive code signals therefrom, said electronic circuit means operating to enable operation of the lock only on receipt by said circuit means of an acceptable sequence of code signals from said transducer device, characterised in that said reading device includes a piezo-electric transducer element (31) operable by said probe.

11. An electronic lock as claimed in claim 10 in which said piezo-electric transducer comprises a resilient arm (30) which is fixed to a part of the lock at one end and has said probe (34) mounted on the other end thereof and a piezo-electric element (31) on said arm for producing an electrical output dependent on the degree of bending of said arm.

12. An electronic lock as claimed in claim 11 in which said piezo-electric element comprises a layer of piezo-electric plastics film (31) on the arm, such film being coated on each side with conductive material to provide terminals for the transducer device.

13. An electronic lock as claimed in claim 10 wherein said lock comprises a cylinder body (22) for mounting on a door, a cylinder (23) rotatably mounted in a bore in said cylinder body, said cylinder being formed with said key slot (24) and said cylinder body having said reading device mounted thereon.

14. An electronic lock as claimed in claim 13 in which said electronic circuit means includes a buffer circuit (50) mounted on said cylinder body adjacent the transducer device and a main circuit (51) spaced from the cylinder body and connected by wiring to said buffer circuit (50).

Patentansprüche

1. Schlüssel zum Betätigen eines elektronisch betätigungsfähigen Schlosses, wobei der Schlüssel einen Griffabschnitt (40) und einen Blattabschnitt (41) eines Querschnittes, der geeignet zur Aufnahme durch das Schlüsselloch eines herkömmlichen mechanischen Zylinderschlosses ist, aufweist, wobei der Blattabschnitt ent-
Codeelementes vor, gleichzeitig mit oder nach der Betätigung der anderen Leseeinrichtung
durch den anderen Codeabschnitt des gleichen
Codeelementes auftritt.

5. Schloß nach Anspruch 4, bei dem jede der
Lesevorrichtungen (30) einen biegsamen Arm,
der an einem Ende befestigt ist und an des-
sem anderen Ende die Probe (34) angebracht
ist, und ein piezoelektrisches Element (31) auf
dem Arm zum Erzeugen eines elektrischen
Ausgangssignales in Abhängigkeit des Grades
des Biegens des Armes aufweist.

6. Schloß nach Anspruch 5, bei dem das piezo-
elektrische Element eine Schicht (31) eines
piezoelektrischen Kunststofffilms auf dem Arm
aufweist, wobei solcher Film auf jeder Seite mit
leitendem Material zum Vorsehen von An-
schlüssen für die Lesevorrichtung beschichtet
ist.

15 7. Schloß nach Anspruch 4, bei dem das elektro-
magnetische Mittel eine Solenoidvorrichtung
(28), die relativ zu dem Schloßkörper (22) fest
fest ist, und einen Tauchmagnet (27), der durch
das Solenoid bewegbar ist und mit einer Aus-
nehmung in dem Zylinder (23) zusammenwirkt
zum Verhindern des Drehens des Zylinders
mit der Ausnahme, wenn das Solenoid aktiviert
ist, aufweist.

25 8. Schloß nach Anspruch 4, bei dem jede der
Lesevorrichtungen eine Windung (103) und ein
Magnetmittel (102), das mit der Windung ver-
knüpft ist, aufweist, wobei die Bewegung der
Probe (101) bewirkt, daß ein Spannungssignal
in der Windung induziert wird.

35 9. Die Kombination eines Schlosses nach An-
spruch 4 mit einem Schlüssel nach Anspruch
1.

40 10. Elektronisches Schloß zum Betätigen durch ei-
en Schlüssel mit einem Ausnehmungscode
darauf, wobei das Schloß ein Schlüsselloch
(24) darin zum Aufnehmen des Schlüssels und
mindestens eine mechanisch betätigbare Lese-
vorrichtung (30) mit einer Probe (34), die in
das Schlüsselloch so vorsteht, daß sie durch
den Ausnehmungscode auf dem Schlüssel be-
wegbar ist, und ein elektronisches Schaltungs-
mittel, das mit der Lesevorrichtung (30) so
verbunden ist, daß es Codesignale davon emp-
fängt, aufweist, wobei das elektronische Schal-
tungsmittel zum Ermöglichen des Betriebes
des Schlosses nur dann betätigbar ist, wenn
das Schaltungsmedium eine akzeptable Folge
von Codesignalen von der Meßwandlervorrich-
tung empfängt, dadurch gekennzeichnet, daß die Lesevorrich-
tung ein piezoelektrisches Meßwandlermedium
(31) enthält, das durch die Probe betätigbar
ist.

5 10 11. Elektronisches Schloß nach Anspruch 10, bei
dem der piezoelektrische Meßwandler einen
biegsamen Arm (30), der an einem Teil des
Schlosses an einem Ende befestigt ist und an
dessen anderem Ende die Probe (34) ange-
bracht ist, und ein piezoelektrisches Element
(31) auf dem Arm zum Erzeugen eines elektri-
schen Ausgangssignales in Abhängigkeit von
dem Grad des Biegens des Armes aufweist.

20 12. Elektronisches Schloß nach Anspruch 11, bei
dem das piezoelektrische Element eine
Schicht eines piezoelektrischen Kunststofffilms
(31) auf dem Arm aufweist, wobei solcher Film
auf jeder Seite mit leitendem Material zum Vorsehen von Anschlüssen für die Meßwand-
lervorrichtung beschichtet ist.

30 13. Elektronisches Schloß nach Anspruch 10, bei
dem das Schloß einen Zylinderkörper (22) zum
Anbringen an einer Tür, einen drehbar in einer
Bohrung in dem Zylinderkörper angebrachten
Zylinder (23) aufweist, wobei der Zylinder mit
dem Schlüsselloch (24) gebildet ist und der
Zylinderkörper die Lesevorrichtung darauf an-
gebracht aufweist.

35 14. Elektronisches Schloß nach Anspruch 13, bei
dem das elektronische Schaltungsmedium eine
auf dem Zylinderkörper benachbart zu der
Meßwandlervorrichtung angebrachte Pufferschaltung (50) und eine in einem Abstand von
dem Zylinderkörper vorgesehen und mit Ver-
drahtung mit der Pufferschaltung (50) verbun-
dene Hauptschaltung (51) aufweist.

40 45

Revendications

1. Clé pour actionner une serrure manoeuvrable
electroniquement, ladite clé comportant une
partie de préhension (40) et une partie de lame
(41) dont la section en coupe convient pour
être rée par la fente de clé d’un barillet
mécanique classique, ladite partie de lame
étant munie d’encoches le long d’un bord (42),
en vue de la manoeuvre d’un barillet classique,
la face de bord opposé de ladite lame étant
munie d’un motif de code en relief comprenant
une pluralité d’éléments de codes espacés le
long de la lame (45, 46, 47), caractérisée en ce
que chaque élément de code comprend deux
2. Clé selon la revendication 1, dans laquelle lesdits éléments de code comprennent des gorges (45) qui courent sur ladite autre face de bord de la lame, certaines desdites gorges s'étendant perpendiculairement à la longueur de la lame, d'autres étant inclinées suivant une certaine direction par rapport à une perpendiculaire à la longueur de la lame et d'autres étant inclinées suivant la direction opposée par rapport à cette perpendiculaire.

3. Clé selon la revendication 1, dans laquelle les deux parties de code de chaque élément de code comprennent des encoches distinctes (46, 47) au niveau de chaque bord de ladite face de bord.

4. Serrure électronique destinée à être manœuvrée au moyen d'une clé selon l'une quelconque des revendications précédentes, comprenant un corps (22), un barillet (23) monté à rotation dans un alésage ménagé dans le corps, ledit barillet étant muni d'une fente de clé (24) destinée à recevoir la clé, et un moyen électromécanique (27, 28) manœuvrable au moyen d'un circuit de reconnaissance de clé suite à la reconnaissance d'une clé autorisée afin de permettre l'ouverture de la serrure en tournant la clé, caractérisée par une paire de dispositifs de lecture manœuvrables mécaniquement (30) comportant des sondes se projetant à l'intérieur de la fente de clé de manière à pouvoir être actionnées par les éléments de code (45, 46, 47) situés sur la clé, ledit circuit de reconnaissance déterminant si oui ou non un actionnement de l'un desdits dispositifs de lecture par une partie de code de chaque élément de code se produisant avant, simultanément ou après l'actionnement de l'autre dispositif de lecture par l'autre partie de code du même élément de code.

5. Serrure selon la revendication 4, dans laquelle chacun desdits dispositifs de lecture (30) comprend un bras élastique qui est fixé au niveau d'une extrémité et comporte ladite sonde (34) montée sur son autre extrémité ainsi qu'un élément piézo-électrique (31) placé sur ledit bras pour produire une sortie électrique qui dépend du degré de courbure dudit bras.

6. Serrure selon la revendication 5, dans laquelle ledit élément piézo-électrique comprend une couche (31) en un film en une matière plastique piézo-électrique déposé sur le bras, ce film étant recouvert sur chaque côté par un matériau conducteur afin de constituer des bornes pour le dispositif de lecture.

7. Serrure selon la revendication 4, dans laquelle ledit moyen électromécanique comprend un dispositif de solénoïde (28) qui est fixé par rapport au corps de serrure (22) et un piston plongeur (27) susceptible d'être déplacé par ledit solénoïde et co-associé avec un évidement ménagé dans le barillet (23) pour empêcher la rotation du barillet sauf lorsque ledit solénoïde est excité.

8. Serrure selon la revendication 4, dans laquelle chacun desdits dispositifs de lecture comprend un enroulement (103) et un moyen magnétique (102) associé audit enroulement, tout déplacement de ladite sonde (101) générant un signal de tension destiné à être induit dans ledit enroulement.

9. Combinaison d'une serrure selon la revendication 4 et d'une clé selon la revendication 1.

10. Serrure électronique destinée à être manœuvrée par une clé comportant un codage en relief sur elle, ladite serrure comportant une fente de clé (24) en son sein pour recevoir la clé et au moins un dispositif de lecture manœuvrable mécaniquement (30) comportant une sonde (34) se projetant à l'intérieur de la fente de clé de manière à pouvoir être déplacée par le codage en relief situé sur la clé, et un moyen de circuit électronique connecté au dispositif de lecture (30) de manière à en recevoir des signaux de code, ledit moyen de circuit électronique fonctionnant pour permettre le fonctionnement de la serrure seulement lors de la réception par ledit moyen de circuit d'une séquence acceptable de signaux de code en provenance dudit dispositif transducteur, caractérisée en ce que ledit dispositif de lecture inclut un élément transducteur piézo-électrique (31) manœuvrable au moyen de ladite sonde.
11. Serrure électronique selon la revendication 10, dans laquelle ledit transducteur piézo-électrique comprend un bras élastique (30) qui est fixé à une partie de la serrure au niveau d’une extrémité et qui comporte ladite sonde (34) montée sur son autre extrémité et un élément piézo-électrique (31) fixé sur ledit bras pour produire une sortie électrique en fonction du degré de courbure dudit bras.

12. Serrure électronique selon la revendication 11, dans laquelle ledit élément piézo-électrique comprend une couche en un film en une matière plastique piézo-électrique (31) située sur le bras, ce film étant recouvert sur chaque côté par un matériau conducteur pour constituer des bornes pour le dispositif transducteur.

13. Serrure électronique selon la revendication 10, dans laquelle ladite serrure comprend un corps de barillet (22) destiné à être monté sur une porte, un barillet (23) monté à rotation dans un alésage ménagé dans ledit corps de barillet, ledit barillet étant muni de ladite fente de clé (24) et ledit corps de barillet comportant ledit dispositif de lecture monté sur lui.

14. Serrure électronique selon la revendication 13, dans laquelle ledit moyen de circuit électronique inclut un circuit tampon (50) monté sur ledit corps de barillet de manière à être adjacent au dispositif de transducteur et un circuit principal (51) espacé du corps de barillet et connecté au moyen d’un câblage audit circuit tampon (50).