EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 20.05.92

Application number: 88101827.9

Date of filing: 09.02.88

Transverse zipper bag material and method of and means for making same.

Priority: 16.03.87 US 26011

Date of publication of application: 21.09.88 Bulletin 88/38

Publication of the grant of the patent: 20.05.92 Bulletin 92/21

Designated Contracting States:

BE CH DE ES FR GB IT LI NL SE

References cited:

US-A- 4 617 683

Proprietor: MINIGRIP EUROPE GMBH
Heilbronner Strasse 43
W-7000 Stuttgart 1(DE)

Inventor: van Erden, Donald L.
33457 Lake View Court
Wildwood Illinois 60030(US)

Representative: Hoeger, Stellrecht & Partner
Uhlandstrasse 14 c
W-7000 Stuttgart 1(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to a method of preparing material suitable for use in a form, fill and seal operation comprising in combination:

- intermittently advancing a continuous sheet of thin plastic film along a path extending in the longitudinal direction of said sheet and including a fastener means securing station therealong; and
- intermittently moving flexible reclosable fastener means comprising a first fastener member and a second fastener member capable of being interlocked with said first member laterally onto the sheet, placing said fastener means on the sheet and securing said fastener means to the adjacent surface of the sheet at said fastener means securing station.

Further, the present invention relates to a mechanism for carrying through said method and to the material made by said method and mechanism, respectively, said material being intended for the manufacture of reclosable plastic bags and more particularly to an improved arrangement wherein a continuous sheet of film is supplemented by attaching fastener elements to the surface thereof.

A sheet material of this general type is known from US-A-4,617,683 disclosing a method and mechanism, respectively, for intermittently moving a flexible reclosable fastener strip being provided with a V-type notch laterally onto the sheet over the entire width thereof between the opposite longitudinal edges of such sheet and for adhering said strip to the sheet material, which later on is folded about a fold line parallel to said longitudinal edges and coinciding with said notch facilitating folding of the strip and a slight lateral displacement of identical profiles provided on said strip so as to enable closing of reclosable fastener means comprising superposed elements of said strip.

Generally, in the manufacture of plastic bags, various approaches have been used, some where the fastener profiles are integral with extruded thin plastic film material and others wherein the plastic profile strips are attached to the surface of the film. In most arrangements, the bags essentially are formed in side-to-side relationship with the fastener profiles extending parallel to the continuous strip of material. When this type of material is converted into bags on certain form, fill and seal machines, the fasteners will end on the wrong part of the bag, i.e., along the side instead of across the top. In order to provide a bag made in such an form, fill and seal machine, with the fastener across the top, it is necessary to position said fastener across the machine direction of the film.

Other procedures less frequently used have provided bags in end-to-end relationship whereby the continuous material can be rolled on a roll with the material of uniform thickness in the axial direction of the roll.

An object of the present invention is to provide an improved method and apparatus for the manufacture of material from which plastic bags are to be made employing a unique arrangement for the attachment of the fastener members with the members extending laterally across a continuous supply of bag material to provide material suitable for use in a form, fill and seal operation.

This object is accomplished by the method indicated at the outset and being characterized, according to the present invention, in that said first fastener member is moved laterally onto the sheet from one of the longitudinal edges thereof and that said second fastener member is moved laterally onto the sheet from the opposite longitudinal edge thereof, with each said fastener member being moved with a length of substantially one half of the lateral width of said sheet.

Regarding the mechanism for manufacturing a sheet material with transverse zipper elements for use in a form, fill and seal machine, and regarding the sheet material itself the object underlying the invention is accomplished by the mechanism according to claim 6 and by the materials according to claims 9 and 10, respectively.

It is an advantage of the invention to provide an arrangement wherein separate and different coating fastener strips can be attached to a continuous strip of material preparatory to forming reclosable bags from the material such as in a form, fill and seal operation.

It is a further advantage of the invention to provide an improved apparatus and method wherein an improved bag material can be formed from which bags having reclosable tops can be made utilizing continuous rib and groove fastener members which extend laterally across the supply of bag material.

According to a preferred embodiment of the invention there is provided an arrangement whereby a continuous supply of thin thermoplastic film is advanced along a path and separate mating fastener elements are brought in laterally over the top surface of the film simultaneously from opposite directions to almost the film center and then attached to the surface of the film. The fastener strips are supplied off of rolls and cut to the desired length as they are fed onto the film. With this arrangement, the length of the fastener strips can be accurately controlled and their location on the film can be accurately controlled so that they will mate properly when the film is folded.
Other objects, advantages and features will become more apparent with the teaching of the principles of the invention in connection with the disclosure of the preferred embodiments thereof in the specification and drawings in which:

FIG. 1 is a fragmentary perspective view illustrating mechanism for forming film with fasteners in accordance with the principles of the present invention;

FIG. 2 is a vertical sectional view taken substantially along line II-II of Fig. 1;

FIG. 3 is a vertical sectional view similar to Fig. 2 but illustrating another form of fastener used in the practice of the invention;

FIG. 4 is a fragmentary plan view of the center of the film at the ends of the fastener strips;

FIG. 5 is a fragmentary vertical view showing means for attaching the fastener strips to the film;

FIG. 6 is a fragmentary enlarged perspective view illustrating mechanism for guiding the strips onto the film;

FIG. 7 is a fragmentary end elevational view illustrating mechanism for permitting the film to be advanced;

FIG. 8 is a fragmentary perspective view illustrating a further step in the folding of the film such as may occur in a form, fill and seal machine;

FIG. 9 is a fragmentary perspective view illustrating forming seams at each side of the film; and

FIG. 10 is a perspective view of a finished bag.

As illustrated in Figs. 1 and 2, a continuous sheet of thin plastic film adapted for eventually providing a bag body is fed forwardly intermittently from a roll, not shown, by a means, not shown, applying a controlled intermittent forward drawing force. For example, the material may be wound on a roll and the roll driven in rotation intermittently to pull the material 10 forwardly.

The material has lateral side edges 11 and 12 and the longitudinal center is indicated by the broken line 13.

In accordance with the principles of the invention, flexible rib and groove fastener elements 14 and 15 are applied to the surface of the film. In the form shown in Fig. 1, the member 14 is a rib member and the member 15 is a groove member, with 14 and 15 being complementary shaped so that when pressed together, they will interlock. The member 14 has a central rib 14a and side flanges 14b and 14c to accommodate attachment to the surface of the film.

The strip 15 has a center groove 15a with lateral flanges 15b and 15c for attachment to the surface of the strip. The rib and groove strips 14 and 15 are preferably formed of a thin thermoplastic so that they can be heat sealed to the surface but other forms of attachment such as by adhesive may be employed. Under other circumstances, attachment by heat or impulse seal need be made only at the base area, directly under the grooves 15d or rib 14d, or can be by means of a reactive adhesive on the fastener base.

For the benefit of continuous operation, the film is moved forwardly incrementally and stopped so that the fastener strips 14 and 15 can be fed laterally across the material at a fastener attachment station shown wherein a supporting frame 26 is located. The fastener strip 14 is fed laterally from the left, as shown in Fig. 1, by a pair of friction rolls 16 and 17 which are suitably driven to advance the material axially in a lateral direction over the side of the sheet 10. At the opposite side of the sheet are a pair of pinch rolls 8 and 9 which are suitably driven to advance the fastener strip 15 laterally over the side of the material 10. The strips are advanced until they are adjacent the center 13, but a space at 14d may be left between the ends of the strips to accommodate folding of the sheet 10 about its longitudinal center 13 and to permit providing a spot heat seal at the ends of the strips 14 and 15. Also spaces at 14e and 15d may be left at the ends of the strips, i.e., between the ends and the edges of the film.

The strips are advanced to the position shown in Fig. 1 with a space therebetween and cutters are brought down to sever the strips to the desired length. The cutters are shown in the form of knives 28 and 30 which are lowered to perform their severing operation by supporting the piston and cylinder assemblies 27 and 29 carried on the frame 26. The knives have sharpened edges so that when they are brought down, they sever the material.

For guiding the material as it is thrust laterally across the top surface of the sheet 10, fixed outer downwardly facing channels 19 and 20 are positioned at either end. These channels are shaped to accommodate the rib, for the channel 19 and the groove for the channel 20, with the latter generally as shown in the end view of Fig. 2. The fixed channels have a center continuation channel 18 which is shaped on one side, up to its center point, so as to accommodate the fastener rib and on the other side of the center point so as to accommodate the fastener groove and has a front or forward gate 21 - a downstream gate considering the direction of advancing sheet 10 - which when lowered completes the channel groove, but which when raised releases the fastener strips by then attached to the film so that they can be moved forwardly as the sheet 10 is advanced. The center portion and end portions of the channels are suspended on vertical posts depending from the frame 26. The channel 18 has a rear fixed portion 32.
which remains in place while the front gate 21 is supported on hinges 22 and 23. The gate is lifted to permit the fastener strips to be slid forwardly with movement of the sheet 10 by a bracket 25 attached to the gate 21 and which is operated by a piston rod 24 and a cylinder 30 supported on brackets 31 on the frame 26.

When the fastener strips are driven across on top of the sheet 10, the rear and forward part 32 and 21 respectively of the center channel portion 18 are positioned as shown in Figs. 1 and 2. After the strips have been driven across and cut, a vertical reciprocal heat sealing shoe 31 moves upwardly. The shoe has a center groove 32 so that heat is not applied to the rib 14a or the groove 15a portion of the strips but heat is applied to the film directly opposite the webs 14b and 14c, and the webs 15b and 15c. A suitable heating element, not shown, within the shoe 31 provides heat and the shoe is brought up into contact with the film long enough to seal the fastener strips to the film. Alternately, a shoe with a single centrally positioned wire that seals the base sections of the fastener directly under the rib and groove elements, to the film, can be used. The shoe is then dropped, and the forward gate 21 is lifted, and the film 10 then is moved forwardly as indicated by the arrowed line in Fig. 1. The forward gate is then returned to its closed position. The strips, thus attached, move forwardly as shown in Fig. 1 and a new set of strips is placed on the sheet with the strips being attached at predetermined longitudinally spaced intervals. The fastener can either be cut to the same width as the film, or to a slightly shorter width. In the latter case, small base plates 34 are provided that ride between the film and the fastener so as to prevent cutting of the film at that location. Whichever arrangement is used, the sealing bars will have the same width as the cut fastener section.

Subsequently the sheet is folded down its center 13 with the rib and groove members interlocked in the manner that will be explained below in connection with Figs. 8 and 9.

Figs. 3 through 7 illustrate the method and apparatus adapted for a different form of fastener strip wherein the strip portions from both sides of the film are identical in construction. The strip as shown at 41 in Fig. 3 has a plurality of ribs 41c thereon with grooves 41d therebetween. With this form of fastener strip, a supplementary strip having identical construction has ribs which will enter the grooves 41d, but the strips must be slightly laterally offset from each other so that the ribs of the other strip will confront the grooves. The strips have webs 41a and 41b at the sides for attaching the strips to the film 10.

As shown in Fig. 4, two strips are brought in from opposite lateral sides of the film 10 in the manner which was described in connection with Fig. 1. A space may be left between the inner ends of the film as shown in Figs. 1 and 4. The channels which guide the film are slightly offset as indicated at 42a so that ribs 41c are opposite grooves 41d. With this relationship of the strips when the film is folded upon itself along the centerline 13, the ribs will enter the grooves for the strips to interlock.

Figs. 5, 6 and 7 indicate the guide arrangements for guiding the strips into place. A fixed channel 46 is positioned at the lateral edge of the film and as the strip 41 is driven laterally across the film, it also slides into the center portion 40 of the channel. The center portion has a hinged front gate 42 which is in its lowered position, as shown in Figs. 5 and 6, when the fastener strip is driven into place, and which is raised to its raised position as shown in Fig. 7 when the film 10 with the attached fastener 41 is advanced in the direction indicated by the arrowed line in Fig. 7.

A heated sealing shoe 44 is brought up beneath the film to seal the flanges 41a and 41b of the strip to the upper surface of the film, or to seal the base area of the fastener.

The film thus formed is ready for processing through a form, fill and seal machine or is suited for the manufacture of bags and at that point may be rolled onto a roll or may be first folded upon itself in the manner indicated in Fig. 8, for subsequent manufacture into empty bags.

In Fig. 8 the film is folded down its longitudinal center so that the edges 50 and 51 are brought together. Figs. 8 and 9 illustrate one form of utilization of the film which has now had the fasteners attached. The features of the invention find principal use in the preparation of material for a form, fill and seal operation. In such operation, the film is fed forwardly intermittently, wrapped around a mandril where contents are placed in the wrapped film, and the edges that are brought together from the wrapping are sealed to each other so that a tube is formed. Thereafter, a cross seal is formed behind the contents and forming the bottom of the next bag to hold the next charge of contents. The fasteners are in a location so that there will be a reclosable fastener at the top of each of the bags. After the bags have been handled so that their side seam is formed, and they are filled, they are cut off so that individual bags are provided each filled in the operation. Fig. 9 illustrates an alternative way of utilizing the continuous strip of material which has had the fastener strips attached. As illustrated in Fig. 9, the edges are sealed to each other to form a side seam 53 for the bag by bringing a heated bar 54 against the aligned edges. To maintain uniformity of appearance a side seam 53a is
formed, on the folded film, opposite seam 53 by another heated bar 54a. Pressure rollers 57 and 58 are moved across the bag to join the interlocking rib and groove members. Alternately, upper and lower pressure bars can be used. Spot seals 61 and 62 are formed at the ends of the strips locking them in their relative positions so that the ribs and grooves remain aligned. The spot seals are formed by bringing heated spot seal members 63 and 64 down onto the material at the ends. A cross-seam 56 is formed by a heat seal bar 55 with the cross-seams being formed at spaced intervals to be spaced from the fastener strips 52 to form a bag.

This completes a finished bag as illustrated at 60. The bag 60 is completed when individual bags are cut from the length of material formed in the manner above described.

Thus, it will be seen that there has been provided an improved method and mechanism for making material for a bag wherein fastener strips extend laterally across the material. The material and the mechanism meet the objects and advantages above set forth and provide an improved arrangement for rapid and effective forming of bag material.

According to the invention the sheet of plastic film is folded along the longitudinal center and said first and second fastener members are interlocked.

Moreover, a seam is folded along the lateral overlying edges of the sheet after folding.

Finally, cross bottom seams are formed at a predetermined distance from the location of the fastener members.

Preferably, the inventive mechanism includes a hot shoe with means for moving the shoe upwardly beneath the film opposite the location of said first and second thermoplastic fastener strip material for heat sealing the material to the sheet of film.

Moreover, the mechanism includes a cutter means for severing said first and second supply of strip material at the edge of the sheet of thin plastic material.

It is also advantageous, when said first and second supply of fastener strip material is identical and includes a plurality of ribs and grooves and said second guide means is slightly offset from the first so that the ribs of one strip will be aligned with grooves of the other strip.

Preferably, the mechanism includes means for folding said sheet longitudinally down its center positioning said first and second fastener strip material into overlying relationship.

A preferred embodiment of the mechanism includes means for applying a joining pressure forcing said first and second fastener strip together to cause ribs and grooves on the surface thereof to interlock.

It is also advisable to provide means for joining the edges of the sheet after folding to form a seal for bags to be formed of the sheet and means for forming cross-seams spaced a predetermined distance from the fastener strip to form the bottom seam of bags to be formed from the sheet.

Finally, it is preferred to provide means for forming end spot seals at the ends of the joined first and second strip material for maintaining ribs and grooves on the surface thereof in alignment.

Claims

1. The method of preparing material suitable for use in a form, fill and seal operation comprising in combination:
 - intermittently advancing a continuous sheet of thin plastic film along a path extending in the longitudinal direction of said sheet and including a fastener means securing station therealong; and
 - intermittently moving flexible reclosable fastener means comprising a first fastener member and a second fastener member capable of being interlocked with said first member laterally onto the sheet, placing said fastener means on the sheet and securing said fastener means to the adjacent surface of the sheet at said fastener means securing station,

 said method being characterized in that said first fastener member is moved laterally onto the sheet from one of the longitudinal edges thereof and that said second fastener member is moved laterally onto the sheet from the opposite longitudinal edge thereof, with each said fastener member being moved with a length of substantially one half of the lateral width of said sheet.

2. The method according to claim 1, including supplying said first and second fastener members from first and second continuous supplies and cutting said members from said supplies when the members extend into place on the film sheet.

3. The method according to claim 1, wherein said fastener members are thermoplastic and wherein first and second heated sealing means in the form of sealing bars or rollers are moved against the sheet in alignment with said fastener members and from the surface of the sheet opposite said members to seal said members to the film sheet.
4. The method according to claim 1, wherein said fastener members are positioned on the film with a space between the ends of said first and second fastener members and/or the longitudinal edges of said sheet.

5. The method according to claim 1, wherein said fastener members are offset slightly in the longitudinal direction of said sheet and are formed substantially identical with a plurality of ribs and grooves.

6. A mechanism for making material suitable for use in a form, fill and seal operation, comprising in combination:

 - advancing means for intermittently advancing a continuous sheet (10) of thin plastic film material along a path extending in the longitudinal direction of said sheet (10) and including a fastener means securing station therealong;
 - supply means (8, 9, 16, 17) for supplying flexible reclosable fastener means (14, 15) comprising a first fastener member (15) and a second fastener member (14) capable of being interlocked with said first member (15) and for intermittently moving said fastener means (14, 15) laterally onto the sheet (10),
 - guide means (18, 19, 20) for guiding said fastener means on the sheet; and
 - securing means (31) for securing said fastener means (14, 15) to the adjacent surface of the sheet (10) at said fastener means securing station,

said mechanism being characterized in that said supply means comprises first supply means (8, 9) for supplying a first supply of flexible fastener strip material comprising said first fastener member (15) at one (12) of the longitudinal edges (11, 12) of said sheet (10), that said supply means comprises second supply means (16, 17) for supplying a second supply of flexible fastener strip material comprising said second fastener member (15) at the opposite longitudinal edge (11) of said sheet, that said guide means comprises first guide means (20) positioned at said securing station aligned with said first supply means (8, 9) for guiding the first strip material (15) laterally onto said sheet (10), and that said guide means comprises second guide means (19) positioned at said securing station and aligned with said second supply means (16, 17) for guiding the second strip material (14) laterally onto said sheet (10).

7. A mechanism according to claim 6, wherein said first and second guide means (18, 19, 20) includes open channels through which the flexible strip material slides with the open side of said channels facing downwardly toward the film (10).

8. A mechanism according to claim 7, including a movable wall (21) along the downstream side of at least one (18) of the channels (18, 19, 20) movable to a noninterfering position to allow exit of the fastener strip material from the channels when the film sheet (10) is moved forwardly along its path after the strip material has been attached thereto.

9. Material for forming a series of reclosable bags comprising:

 - a thin continuous sheet (10) of plastic film;
 - a series of first fastener members (15), each extending laterally inwardly from one of the longitudinal edges (11, 12) of the sheet (10) substantially to the center line (13) thereof and attached to the surface of the sheet; and
 - a series of second fastener members (14), each extending from the opposite longitudinal edge (11) of the sheet (10) in alignment with the first members (15) and shaped so as to be releasably interlocked therewith when the first and second fastener members (14, 15) are pressed together while said sheet (10) is folded down along the longitudinal center line (13) thereof,

said material being characterized in that said second fastener members (14) are shaped complementary to said first members (15).

10. Material for forming a series of reclosable bags comprising:

 - a thin continuous sheet (10) of plastic film;
 - a series of first fastener members (15), each extending laterally inwardly from one of the longitudinal edges (11, 12) of the sheet (10) substantially to the center line (13) thereof and attached to the surface of the sheet; and
 - a series of second fastener members (14), each extending from the opposite longitudinal edge (11) of the sheet (10) shaped so as to be releasably interlocked with said first members (15) when the first and second fastener members (14, 15) are pressed together while said sheet (10) is folded down along the lon-
Revendications

1. Procédé de préparation d’un matériau convenant pour emploi dans une opération de mise en forme, remplissage et scellement, comportant en combinaison:
 - le fait de faire avancer par intermittence une feuille continue d’un fin film plastique que le long d’un chemin qui s’étend dans la direction longitudinale de ladite feuille et qui inclut, le long du chemin, une station de fixation de moyens de fermeture; et
 - le fait de faire avancer latéralement sur la feuille, par intermittence, des moyens flexibles de fermeture refermable, comportant un premier élément de fermeture et un second élément de fermeture pouvant s’interverrouiller avec ledit premier élément, de placer lesdits moyens de fermeture sur la feuille et de fixer lesdits moyens de fermeture sur la surface, adjacente, de la feuille, à ladite station de fixation des moyens de fermeture,
 ledit procédé étant caractérisé par le fait que ledit premier élément de fermeture s’avançe latéralement sur la feuille depuis l’un de ses bords longitudinaux et par le fait que ledit second élément de fermeture s’avance latéralement sur la feuille depuis son bord longitudinal opposé, chacun desdits éléments de fermeture s’avancant d’une longueur sensiblement égale à la moitié de la largeur latérale de ladite feuille.

2. Procédé selon la revendication 1, comportant le fait d’amener ledit premier et ledit second éléments formant baguette depuis une première et une seconde sources continues et de couper lesdits éléments provenant desdites sources lorsque les éléments s’étendent en place sur la feuille formant le film.

3. Procédé selon la revendication 1, dans lequel lesdits éléments formant les baguettes sont des éléments thermoplastiques et dans lequel lesdits premiers et lesdits seconds moyens de scellement à chaud, sous forme de barreaux ou de galets de scellement, se déplacent pour venir contre la feuille, dans l’alignement desdits éléments formant les baguettes, et pour s’écarter de la surface de la feuille située en face desdits éléments, pour sceller lesdits éléments à la feuille formant le film.

4. Procédé selon la revendication 1, dans lequel lesdits éléments formant les baguettes sont placés sur le film avec un espace entre les extrémités dudit premier et dudit second éléments formant les baguettes et/ou les bords longitudinaux de ladite feuille.

5. Procédé selon la revendication 1, dans lequel lesdits éléments formant les baguettes sont légèrement décalés en direction longitudinale de ladite feuille et sont de forme substantiellement identique, avec une pluralité de nervures et de rainures.

6. Mécanisme pour fabriquer un matériau convenant pour emploi dans une opération de mise en forme, remplissage et scellement, comportant en combinaison:
 - des moyens d’avancement pour faire avancer de façon intermittente une feuille continue (10) de fin matériau plastique formant un film, le long d’un chemin s’étendant dans la direction longitudinale de ladite feuille (10) et incluant, le long de ce chemin, une station de fixation des moyens de fermeture,
 - des moyens d’aménée (8, 9, 16, 17) pour amener des moyens flexibles (14, 15) de fermeture refermable, comportant un premier élément de fermeture (15) et un second élément de fermeture (14) pouvant s’interverrouiller avec ledit premier élément (15), et pour faire avancer par intermittence lesdits moyens de fermeture (14, 15) latéralement sur la feuille (10),
 - des moyens de guidage (18, 19, 20) pour guider lesdits moyens de fermeture sur la feuille; et
 - des moyens de fixation (31) pour fixer lesdits moyens de fermeture (14, 15) sur la surface adjacente, de la feuille (10) à ladite station de fixation des moyens de fermeture,
 ledit mécanisme étant caractérisé par le fait que lesdits moyens d’aménée comportant des premiers moyens d’aménée (8, 9) pour amener une première longueur de matériau formant baguette flexible de fermeture comprenant ledit élément de fermeture (15) à l’un (12)
des bords longitudinaux (11, 12) de ladite feuille (10), par le fait que lesdits moyens d’amenée comportent des secondes moyens d’aménée (16, 17) pour amener une seconde longueur de matériau formant baguette flexible de fermeture comprenant ledit second élément de fermeture (15) au bord longitudinal opposé (11) de ladite feuille,
par le fait que lesdits moyens de guidage comportent des premiers moyens de guidage (20) placés à ladite station de fixation, alignés avec lesdits premiers moyens d’aménée (8, 9), pour guider le premier matériau formant baguette de fermeture (15) latéralement sur ladite feuille (10), et par le fait que lesdits moyens de guidage comportent des secondes moyens de guidage (19) placés à ladite station de fixation et alignés avec lesdits seconds moyens d’aménée (16, 17) pour guider le second matériau formant baguette (14) latéralement sur ladite feuille (10).

7. Mécanisme selon la revendication 6, dans lequel ledit premier et ledit second moyens de guidage (18, 19, 20) sont constitués de profilés en U ouverts dans lesquels le matériau flexible formant la baguette coulisse, le côté ouvert desdits profilés en U faisant face vers le bas en direction du film (10).

8. Mécanisme selon la revendication 7, comportant une paroi mobile (21) le long du côté aval d'au moins l'un (18) des profilés en U (128, 19, 20), paroi qui peut se mouvoir pour venir à une position de non-interférence pour permettre au matériau formant la baguette de fermeture de sortir des profilés en U lorsque la feuille formant le film (10) s'avance le long de son chemin après que le matériau formant la baguette y a été fixé.

9. Matériau pour former une série de sacs fermables, comportant:
- une fine feuille continue (10) de film plastique;
- une série de premiers éléments de fermeture (15), s’étendant chacun latéralement vers l’intérieur depuis l’un des bords longitudinaux (11, 12) de la feuille (10) sensiblement jusqu’à l’axe (13) de cette feuille et fixés à la surface de la feuille; et
- une série de seconds éléments de fermeture (14), s’étendant chacun depuis le bord longitudinal opposé (11) de la feuille (10), dans l’alignement des premiers éléments (15), et présentant une forme leur permettant de s’interverrouiller, avec li-berté de déverrouiller, avec eux, lorsque l’on presse ensemble le premier et le second éléments de fermeture (14, 15) tandis que ladite feuille (10) est pliée le long de son axe longitudinal (13), ledit matériau étant caractérisé par le fait que lesdits seconds éléments de fermeture (14) ont une forme complémentaire de celle desdits premiers éléments (15).

10. Matériau pour former une série de sacs fermables, comportant:
- une fine feuille continue (10) de film plastique;
- une série de premiers éléments de fermeture (15), s’étendant chacun latéralement vers l’intérieur depuis l’un des bords longitudinaux (11, 12) de la feuille (10) sensiblement jusqu’à l’axe (13) de cette feuille et fixés à la surface de la feuille; et
- une série de seconds éléments de fermeture (14), s’étendant chacun depuis le bord longitudinal opposé (11) de la feuille (10) est pliée le long de son axe longitudinal (13), ledit premier et ledit second éléments de fermeture (14, 15) présentaient des profilés de nervure et de rainure identiques,
ledit matériau étant caractérisé par le fait que ledit premier et ledit second éléments de fermeture (14, 15) sont décalés dans la direction longitudinale de ladite feuille (10), de façon que les nervures (41c) de l’un desdits éléments de fermeture (14, 15) se trouvent en face des rainures (41d) de l’autre desdits éléments de fermeture (14, 15).

Patentansprüche

1. Verfahren zum Herstellen eines zur Verwendung bei einer Form-, Füll- und Siegeloperation geeigneten Materials, in Kombination umfassend:
- man läßt eine kontinuierliche Bahn aus dünnen Kunststofffolie intermittierend längs eines Pfades vorrücken, der sich in Längsrichtung der Bahn erstreckt und längs welchem eine Befestigungsstation für Verschlüsseinrichtungen vorgesehen ist, und
- man bewegt intermittierend flexible, wiederverschließbare Verschlußeinrichtungen, welche ein erstes Verschlußelement umfassen sowie ein zweites Verschlußelement, welches mit dem ersten Element verrastrbar ist, seitlich auf die Bahn, plaziert die Verschlußeinrichtungen auf der Bahn und sichert die Verschlußeinrichtungen an der Verschlußeinrichtungsfestigungsstation an der angrenzenden Oberfläche der Bahn, wobei das Verfahren dadurch gekennzeichnet ist, daß das erste Verschlußelement von einer Seite ihrer Längskanten her seitlich auf die Bahn bewegt wird und daß das zweite Verschlußelement von der gegenüberliegenden Längskante derselben her seitlich auf die Bahn bewegt wird, wobei jedes Verschlußelement mit einer Länge bewegt wird, die im wesentlichen gleich der Hälfte der seitlichen Breite der Bahn ist.

2. Verfahren nach Anspruch 1, welches umfaßt: Das Zuführen des ersten und des zweiten Befestigungselementes von einem ersten und einem zweiten kontinuierlichen Vorrat und das Abschneiden der Elemente von dem jeweiligen Vorrat, wenn die Elemente sich auf der Folienbahn bis zu ihrer (Befestigungs-)Stelle erstrecken.

3. Verfahren nach Anspruch 1, bei dem die Befestigungselemente thermoplastische Elemente sind und bei dem erste und zweite erhitzte Siegelstreifen leinrichtungen in Form von Siegestangen oder -rollen fluchtend zu den Befestigungselementen gegen die Bahn bewegt werden, und zwar von der den Elementen gegenüberliegenden Seite der Bahn her, um die Elemente an der Folienbahn anzusiegeln.

4. Verfahren nach Anspruch 1, bei dem die Befestigungselemente auf der Folie so positioniert werden, daß sich zwischen den Enden des ersten und des zweiten Befestigungselementes und/oder den Längskanten der Bahn ein Zwischenraum ergibt.

5. Verfahren nach Anspruch 1, bei dem die Befestigungselemente in Längsrichtung der Bahn geringfügig gegeneinander versetzt und identisch mit (jeweils) einer Anzahl von Rippen und Nuten ausgebildet sind.

6. Mechanismus zum Herstellen eines zur Verwendung in einer Form-, Füll- und Siegelleoperation geeigneten Materials, in Kombination umfassend:

- Vorschubeinrichtungen für ein intermittierendes Vor- und Zuführen einer kontinuierlichen Bahn (10) aus dünnem Kunststofffolienmaterial längs eines Pfades, der sich in Längsrichtung der Bahn erstreckt und längs welchem eine Befestigungsstation für Verschlußeinrichtungen vorgesehen ist;
- Versorgungseinrichtungen (8, 9, 16, 17) zum Zuführen flexibler, wiederverschließbarer Verschlußseinrichtungen (14, 15), welche ein erstes Verschlußelement (15) und ein zweites Verschlußelement (14) umfassen, welches mit dem ersten Verschlußelement (15) verrastrbar ist, und zum intermittierenden Bewegen der Verschlußeinrichtungen (14, 15) von der Seite her auf die Bahn (10);
- Führungseinrichtungen (18, 19, 20) zum Führen der Verschlußeinrichtungen auf der Bahn; und
- Befestigungseinrichtungen (31) zum Befestigen der Verschlußeinrichtungen (14, 15) an der angrenzenden Oberfläche der Bahn (10) an der Befestigungsstation für die Verschlußeinrichtungen, wobei dieser Mechanismus dadurch gekennzeichnet ist, daß die Versorgungseinrichtungen erste Versorgungseinrichtungen (8, 9) umfassen, um einen ersten Vorrat von flexiblen Verschlußstreifenmaterial zuzu führen, welches das erste Verschlußelement (15) umfaßt, und zwar an einer (12) der Längskanten (11, 12) der Bahn (10), daß die Versorgungseinrichtungen zweite Versorgungseinrichtungen (16, 17) umfassen, um einen zweiten Vorrat von flexiblen Verschlußstreifenmaterial zuzu führen, welches das zweite Verschlußelement (15) umfaßt, und zwar an der gegenüberliegenden Längskante (11) der Bahn, daß die Führungseinrichtungen erste Führungseinrichtungen (20) umfassen, die an der Befestigungsstation fluchtend zu den ersten Versorgungseinrichtungen (8, 9) positioniert sind, um das erste Verschlußstreifenmaterial (15) seitlich auf die Bahn (10) zu führen, und daß die Führungseinrichtungen zweite Führungseinrichtungen (19) umfassen, die an der Befestigungsstation fluchtend mit den zweiten Versorgungseinrichtungen (16, 17) positioniert sind, um das zweite Streifenförmige Material (14) seitlich auf das Blatt (10) zu führen.

7. Mechanismus nach Anspruch 6, bei dem die ersten und die zweiten Führungseinrichtungen (18, 19, 20) offene Kanäle umfassen, durch
welche das flexible Streifenmaterial gleitet, wo-
bei die offene Seite der Kanäle nach unten in
Richtung auf die Bahn (10) gewandt ist.

8. Mechanismus nach Anspruch 7, welcher längs
der stromabwärts gelegenen Seite mindestens
eines der Kanäle (18, 19, 20) eine bewegliche
Wand (20) aufweist, die in eine nicht störende
Position bewegbar ist, um das Austreten des
Verschlußstreifenmaterials aus den Kanälen zu
ermöglichen, wenn die Folienbahn (10) längs
ihres Pfades nach vorn bewegt wird, nachdem
das Streifenmaterial daran befestigt wurde.

9. Material zum Herstellen einer Serie von wie-
derverschließbaren Beuteln, umfassend:
- eine dünne kontinuierliche Bahn (10) aus
 Kunststoffolie;
- eine Serie von ersten Verschlußelementen
 (15), von denen sich jedes von einer
der Längskanten (11, 12) der Bahn seit-
lich im wesentlichen bis zu der Mittellinie
(13) derselben erstreckt und an der
Oberfläche der Bahn befestigt ist; und
- eine Serie von zweiten Verschlußelementen
(14), von denen sich jedes, ausgehend
von der gegenüberliegenden
Längskante (11) der Bahn, fluchtend mit
den ersten Elementen erstreckt und so
ausgebildet ist, daß es damit lösbar ver-
rastbar ist, wenn die ersten und die zwei-
ten Verschlußelemente (14, 15) zusam-
mengepreßt werden, während die Bahn
(10) längs ihrer Längsmittellinie (13) um-
gefaltet wird, wobei die ersten und die
zweiten Verschlußelemente (14, 15) iden-
tische Rippen- und Nutprofile haben,
wobei das Material dadurch gekennzeichnet
ist, daß die ersten und die zweiten Verschluß-
elemente (14, 15) in Längsrichtung der Bahn
(10) derart versetzt sind, daß die Rippen (41c)
eines der Verschlußelemente (14, 15) den Nu-
ten (41d) des (jeweils) anderen der Verschluß-
elemente (14, 15) gegenüberliegen.

10. Material zum Herstellen einer Serie von wie-
derverschließbaren Beuteln, umfassend:
- eine dünne kontinuierliche Bahn (10) aus
 Kunststoffolie;
- eine Serie von ersten Verschlußelementen
 (15), von denen sich jedes von einer
der Längskanten (11, 12) der Bahn seit-
lich im wesentlichen bis zu der Mittellinie
(13) derselben erstreckt und an der
Oberfläche der Bahn befestigt ist; und
- eine Serie von zweiten Verschlußelementen
(14), von denen sich jedes, ausgehend
von der gegenüberliegenden
Längskante (11) der Bahn, fluchtend mit
den ersten Elementen erstreckt und so
ausgebildet ist, daß es damit lösbar ver-
rastbar ist, wenn die ersten und die zwei-
ten Verschlußelemente (14, 15) zusam-