EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 12.08.92
Int. Cl.: H01Q 1/02
Application number: 87308610.2
Date of filing: 29.09.87

Heated dish antennas.

Priority: 30.09.86 US 913290
Date of publication of application: 25.05.88 Bulletin 88/21
Publication of the grant of the patent: 12.08.92 Bulletin 92/33
Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI NL SE

References cited:
DE-A- 2 163 168
DE-A- 3 525 488
FR-A- 2 426 343
GB-A- 2 059 155
US-A- 4 304 987

Proprietor: RAYCHEM CORPORATION (a California corporation)
300 Constitution Drive
Menlo Park California 94025(US)

Inventor: Barma, Pradeep
2416 Jackson Street
Fremont California 94538(US)
Inventor: Chan, Chi-Ming
7676 Berland Court
Cupertino California 95104(US)

Representative: Jones, David Colin et al
Raychem Limited Intellectual Property Law
Department Faraday Road Dorcan
Swindon, Wiltshire SN3 5HH(GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to dish antennas, eg. for receiving and/or transmitting signals from satellites or terrestrial microwave antennas, and in particular means for heating such antennas.

The use of dish antennas, particularly for receiving signals from satellites, is increasing rapidly. Dish antennas vary widely in size, but many have diameters of 1 to 7 meters; for example, 1.2 meter and 1.8 meter aperture antennas are most frequently used for signals in the 12-14 GHz band which is widely used for private networks transmitting data, voice and video communications. In many countries there are regulations, eg. United States FCC Regulation 25.209, which set requirements, eg. radiation pattern sidelobe envelope requirements, for both transmit and receive antennas, and a major concern of antenna manufacturers and users is to ensure not only that antennas meet those requirements when first manufactured, but also that they do not become distorted subsequently, so that the requirements are no longer met. If ice or snow is present on a dish antenna, it frequently causes distortion of the shape of the antenna and/or attenuation of the signal; the larger the dish, the more serious the problems are likely to be. Much effort, therefore, has been devoted to methods of heating dish antennas to keep them free from ice and snow. Unfortunately, however, no method has been found which is technically satisfactory and economically acceptable; and if care is not taken, the heating can itself cause distortion of the antenna.

We have now discovered that dish antennas can be very satisfactorily heated, and thus kept free of ice and snow, by means of an electrical heater which is placed behind the antenna and spaced apart therefrom, so that the antenna is heated by radiation from the heater.

In one aspect, the present invention provides a dish antenna assembly which comprises
(1) a dish antenna having a concave front surface and a convex back surface; and
(2) an electrical heater in the form of a sheet having a first surface and an opposite second surface, the first surface being adjacent to the back surface of the antenna but substantially separated therefrom by a medium which is substantially transparent to thermal radiation, typically air, so that heat generated by the heater radiates from the first surface and strikes the back surface of the antenna, wherein at least 40% of the heat received by the dish antenna is radiant heat.

As further described below, the heaters used in this invention preferably comprise a resistive element in the form of a sheet; however they can alternatively comprise one or more strip heaters secured to a thermally conductive sheet, preferably of metal. All such heaters are included in the term "sheet heater" or "heater in the form of a sheet" as used herein.

The invention is illustrated in the accompanying drawing, in which
Figure 1 is a diaphragm back view of an assembly of the invention;
Figure 2 is a diaphragm cross-section on line AA of Figure 1;
Figure 3 is a diaphragm cross-section of another assembly of the invention;
Figure 4 is an enlarged and more detailed view of a part of Figure 3.
Figure 5 is a diaphragm plan view of another sheet heater which can be used in this invention; and
Figure 6 is a diaphragm cross-section through the strip heater used in Figure 5.

The sheet heater must be positioned so that it is substantially separated from the antenna by a medium which is substantially transparent to thermal radiation, usually air, so that heat generated by the heater radiates from the heater through the medium and strikes the back surface of the antenna. Typically, the distance between the first surface of the heater and the back surface of the antenna is 3 to 6 inches (7.6 to 15.2 cm). In known methods in which an electrical resistance heater is placed in direct contact with an antenna, heating of the antenna takes place mainly or exclusively by conduction. In the present invention, by contrast, little or none of the heating of the antenna is the result of conduction and a substantial proportion, preferably at least 40%, particularly at least 60% of the heating of the antenna is the result of radiation. The antenna is generally also heated by free convection from air (or other gas) which lies between the antenna and the heater. The air is preferably still air, i.e. any movement thereof is solely the result of convection currents.

We have found that by heating the antenna in this way, the antenna is heated surprisingly uniformly even when the cooling effect of ice or snow is localized, and that as a result, improved signal reception and transmission, and compliance with the appropriate regulations, are achieved. This is apparently due to a combination of two factors. First, heat can be transferred to a localized cold spot not only from the portion of the heater directly opposite the cold spot, but also (though to a gradually decreasing extent) by the adjacent parts of the heater which can "view" the cold spot. Secondly, the heat transferred by radiation from the heater to the antenna is not directly proportional to the temperature difference between them (as it is if the heat is transferred by conduction) but is propor-
tional to $T_H^4 - T_A^4$, where T_H is the temperature of the first surface of the heater and T_A is the temperature of the back surface of the antenna (in °K).

Another important advantage of the present invention stems from the fact that dish antennas generally comprise a plurality of ribs which extend from the back surface of the antenna. As a result, if an electrical resistance heater is to be placed in direct contact with the antenna, a large number of specially shaped and interconnected component heaters must be used, and they must contact substantially the whole of the antenna. When radiant heating is employed, as in the present invention, the heater can be positioned clear of the ribs, thus making it possible to use one or a relatively small number of sheet heaters, e.g. less than 8, for example 4 to 6, each of which has an easily manufactured shape, e.g. a rectangular shape. Furthermore, it is not necessary for the heater to cover the whole of the back surface of the antenna. The ratio of the area of the heater to the area of the back surface of the antenna (ignoring the ribs) should generally be at least 0.3, but it need not be (though of course it can be) as high as 1.0; thus the ratio is preferably 0.4 to 0.9, particularly 0.5 to 0.8.

Direct physical contact between the antenna and the heater is preferably minimized, especially when the antenna comprises ribs of metal or other thermally conductive material, since heating of the antenna by conduction through the ribs tends to cause irregular heating, and consequent distortion, of the front surface. Thus it is preferred that at least 90%, particularly at least 95%, especially substantially 100%, of the first surface of the heater is exposed to the air (or other medium which separates the dish antenna and the heater). If the heater is secured to ribs on the back surface of the antenna, it is preferably secured to the ribs by fasteners which are composed of polymeric material or other material of low thermal conductivity, which are spaced apart from each other, and which preferably prevent direct contact between the heater and the ribs. Preferably, however, the heater is secured to a back shell which is secured to the dish antenna around the perimeter thereof. The back shell is preferably environmentally sealed to the antenna, to minimize heat losses.

The first surface of the heater and/or the back surface of the dish antenna are preferably treated in some way which improves the emissivity thereof, for example by painting with a flat black paint. The second surface of the heater, on the other hand, is preferably such that its emissivity is low. Furthermore, the second surface is preferably substantially covered by thermal insulation material, e.g. a foamed polymer, fiberglass or other void-containing polymeric material, either alone or backed by a metallic foil.

Any form of sheet heater can be used in this invention providing that it radiates heat sufficiently uniformly to warm the antenna without causing substantial distortion thereof. For this purpose, the radiant thermal output preferably does not vary by more than ±20%, particularly not more than ±10%, from the average value, when the thermal load is the same at all points on the heater, i.e. when the antenna is at a uniform temperature. Preferred heaters comprise a resistive element which is in the form of a sheet having electrodes secured (directly or indirectly) thereto. Preferably each of the electrodes is also in the form of a sheet, e.g. a metal foil, the resistive element lying between the electrodes so that the current passes normally through the resistive element; however, other electrode arrangements are also possible. Satisfactory heaters can also be made by combining one or more strip heaters with a sheet of metal, e.g. aluminum, or other material of high thermal conductivity. The strip heater(s) can be secured to one surface of the metal sheet, the opposite face then serving as the radiant surface, or can be sandwiched between two metal sheets, or can be embedded in the sheet. The arrangement and spacing of the strip heater(s) should be such as to provide a sufficiently uniform radiant heat output. Thus one or more strip heaters can for example be arranged in serpentine fashion; or a plurality of strip heaters can be arranged parallel to each other, together with electrical bus connectors to feed power to the heaters.

The heater is preferably self-regulating, i.e. the higher the thermal load at any particular point on the heater (or in any particular zone which is small in comparison with the overall size of the heater), the higher the heat output of the heater at that point (or in that zone); this avoids overheating of the antenna in areas which are not being cooled by ice or snow, and results in remarkable temperature uniformity of the dish antenna, and consequent minimization of distortion of the antenna. The separation of the antenna and the self-regulating heater would be expected to result in a reduction of the sensitivity of the thermal output of the heater to the temperature of the antenna. In fact, however, the sensitivity is increased, and this apparently results from a combination of the self-regulating characteristic with the two factors discussed above (i.e. (1) a localized change in the temperature of the antenna is sensed not only by the portion of the heater directly opposite the change, but also by the adjacent parts of the heater, and (2) the heat transferred by radiation from the heater to the antenna is proportional to $T_H^4 - T_A^4$).

Preferred self-regulating heaters for use in this invention comprise a PTC (positive temperature
coefficient of resistance) conductive polymer composition which forms part or all of the resistive heating element or which acts as a control element for a ZTC (zero temperature coefficient) resistive heating element i.e., a heating element whose thermal output is substantially independent of temperature, which may be composed of a conductive polymer composition or other material, e.g. a Nichrome or other resistive heating wire. Self-regulation through other PTC materials or through other means (e.g., the skin effect or the Curie point effect) is also possible.

If a self-regulating heater is not used, one or more thermostats may be used to control a ZTC heater.

Referring now to the drawings, Figures 1 and 2 show a dish antenna 1 having a concave front surface 11 and a convex back surface 12 and a plurality of ribs 13 extending from the back surface. An electrical heater comprising four rectangular panels 2, 3, 4 and 5 is secured to the ribs by means of polymeric straps 6.

Figure 3 is similar to Figure 2, but shows an assembly further comprising a back shell 7, which is environmentally sealed to the periphery of dish antenna 1; the heater panels 2, 3, 4 and 5 are secured to the back shell 7 instead of to the ribs 13, and a layer 8 of fiberglass insulation secured to a metal foil 9 lies between the heater and the insulation.

As shown in the detailed view of Figure 4, the heater comprises metal foil electrodes 41 and 42, with a PTC conductive polymer resistive heating element 43 sandwiched between them. The front surface of the heater has a coating 44 of flat black paint thereon.

Figure 5 shows an alternative form of sheet heater for use in the invention which comprises a metal, e.g., aluminum, plate 100 having a strip heater 101 secured one surface thereof. The first (radiant) surface of the heater is the opposite face. Figure 6 is a cross-section through a preferred strip heater which comprises wires 61 and 62 embedded in a strip 63 of a PTC conductive polymer, and polymeric insulation 64 surrounding the strip 63.

The invention is further illustrated by the following Example.

Example

A PTC conductive polymer powder was prepared by mixing 56% by weight of Marlex 50100 (high density polyethylene made by Phillips Petroleum), 43% by weight of Statex GH (carbon black made by Columbian Chemicals), and 1% by weight of an antioxidant in a Banbury mixer. The resulting compound was irradiated to a dose of 50 Mrads in a 3MeV electron beam and pulverized until all the particles were smaller than 187 micrometers (80 mesh). This PTC powder was tumble-blended with an equal weight of FA750 (high density polyethylene made by USI Chemicals), and the blend was extruded into a 12 inch by 0.040 inch (30.5 x 0.10 cm) sheet.

Using a belt laminator set at 400 °F (204 °C), the sheet was laminated on each side with 0.001 inch (0.0025 cm) TEX-1 foil (nickel/zinc passivated electro deposited copper made by Yates).

A heater for a 1.8 meter diameter antenna was made as follows. The laminated sheet was trimmed into five approximately 10 by 60 inch (25.4 by 152.4 cm) panels. Electrical busbars were attached to the two surfaces of each panel by soldering 0.020 by 0.5 inch (0.05 x 1.27 cm) copper strips terminated with 16 AWG copper conductor onto the copper foil. Adjacent panels were electrically connected in parallel using a standard connection suitable for attachment to a 120V power source. The panels and connections were electrically insulated by covering all surfaces completely with adhesive-backed Mylar tape. The first surface of the resulting heater (i.e., the radiant surface) was then painted with flat black paint (Krylon) to enhance its thermal emissivity.

The heater was fastened with plastic straps to the back surface of the dish antenna, avoiding direct contact with all structural ribs. A back shell for the antenna was mated to the antenna, placing polyurethane foam between the back of the heater and the back shell to reduce heat losses.

Claims

1. A dish antenna assembly which comprises
 (1) a dish antenna (1) having a concave front surface (11) and a convex back surface (12); and
 (2) an electrical heater (2,3,4,5) in the form of a sheet having a first surface and an opposite second surface, the assembly being characterised in that the first surface of the heater (2,3,4,5) is adjacent to the back surface of the antenna (1) but separated therefrom by a medium, typically air, which is substantially transparent to thermal radiation, whereby heat gener-
2. An assembly according to claim 1 wherein substantially all of the first surface of the heater (2,3,4,5) is contacted by the medium which separates the dish antenna (1) and the heater (2,3,4,5).

3. An assembly according to claim 1 or 2 wherein the antenna (1) comprises a plurality of ribs (13) which extend from the back surface thereof and the heater (2,3,4,5) is secured to the ribs (13) by fastening members (6) which are composed of polymeric material and which are spaced apart from each other.

4. An assembly according to any one of the preceding claims which comprises a back shell (7) which is secured to the dish antenna (1) around the perimeter thereof and to which the heater (2,3,4,5) is secured.

5. An assembly according to any one of the preceding claims which comprises (a) a back shell (7) which is environmentally sealed to the dish antenna (1), and (b) thermal insulation material (8) which substantially covers the second surface of the heater (2,3,4,5).

6. An assembly according to anyone of the preceding claims wherein the heater (2,3,4,5) is a self-regulating heater, preferably a heater which comprises two metal foil electrodes (41,42) and a resistive heating element (43) which is composed of a conductive polymer element exhibiting PTC behavior and is in the form of a sheet lying between the foil electrodes (41,42).

7. An assembly according to any one of the preceding claims wherein the ratio of the area of the first surface of the heater (2,3,4,5) to the area of the back surface of the dish antenna (1) is at least 0.3, preferably 0.4 to 0.9, especially 0.5 to 0.8.

8. An assembly according to any one of the preceding claims which comprises a plurality of heaters (2,3,4,5) which are connected in parallel and at least one of which comprises a resistive heating element which is in the form of substantially rectangular sheet.

9. An assembly according to any one of the preceding claims, wherein the heater comprises a self-regulating strip heater (101) arranged in serpentine form, the strip heater being secured to a metal sheet (100) or being sandwiched between two metal sheets.

10. An assembly according to claim 9, wherein the self-regulating strip heater (101) comprises wire electrodes (61,62) embedded in a strip (63) of a PTC conductive polymer.

Revendications

1. Ensemble à antenne parabolique qui comporte (1) une antenne parabolique (1) présentant une surface avant concave (11) et une surface arrière convexe (12) ; et (2) un dispositif chauffant électrique (2, 3, 4, 5) sous la forme d’une feuille ayant une première surface et une seconde surface opposée, l’ensemble étant caractérisé en ce que la première surface du dispositif chauffant (2, 3, 4, 5) est adjacente à la surface arrière de l’antenne (1), mais en est séparée par un milieu, habituellement de l’air, qui est sensiblement transparent au rayonnement thermique, de manière que de la chaleur généraée par le dispositif chauffant (2, 3, 4, 5) rayonne depuis la première surface et atteigne la surface arrière de l’antenne (1), l’ensemble étant tel qu’au moins 40 % de la chaleur reçue par l’antenne parabolique (1) est de la chaleur rayonnante.

2. Ensemble selon la revendication 1, dans lequel le milieu qui sépare l’antenne parabolique (1) du dispositif chauffant (2, 3, 4, 5) est en contact avec pratiquement la totalité de la première surface du dispositif chauffant (2, 3, 4, 5).

3. Ensemble selon la revendication 1 ou 2, dans lequel l’antenne (1) comporte plusieurs nervures (13) qui font saillie de sa surface arrière et le dispositif chauffant (2, 3, 4, 5) est fixé aux nervures (13) par des organes de fixation (6) qui sont composés d’une matière polymérique et qui sont espacés des uns des autres.

4. Ensemble selon l’une quelconque des revendications précédentes, qui comporte une coque arrière (7) qui est fixée à l’antenne parabolique (1) le long de son périmètre et à laquelle le dispositif chauffant (2, 3, 4, 5) est fixé.

5. Ensemble selon l’une quelconque des revendications précédentes, qui comporte (a) une co-
que arrière (7) qui est en liaison étanche à l’environnement avec l’antenne parabolique (1), et (b) une matière d’isolation thermique (8) qui recouvre sensiblement la seconde surface du dispositif chauffant (2, 3, 4, 5).

6. Ensemble selon l’une quelconque des revendications précédentes, dans lequel le dispositif chauffant (2, 3, 4, 5) est un dispositif chauffant à auto-régulation, de préférence un dispositif chauffant qui comporte deux électrodes (41, 42) en feuille métallique mince et un élément chauffant résistant (43) qui est composé d’un élément en polyémer conducteur présentant un comportement CPT et se présente sous la forme d’une feuille s’étendant entre les électrodes (41, 42) en feuille mince.

7. Ensemble selon l’une quelconque des revendications précédentes, dans lequel le rapport de l’aire de la première surface du dispositif chauffant (2, 3, 4, 5) à l’aire de la surface arrière de l’antenne parabolique (1) est d’au moins 0,3, de préférence 0,4 à 0,9, en particulier 0,5 à 0,8.

8. Ensemble selon l’une quelconque des revendications précédentes, qui comporte plusieurs dispositifs chauffants (2, 3, 4, 5) qui sont connectés en parallèle et dont au moins l’un comprend un élément chauffant résistant qui se présente sous la forme d’une feuille sensible-ment rectangulaire.

9. Ensemble suivant l’une quelconque des revendications précédentes, dans lequel les dispositifs chauffants comportent une bande chauffante (101) à auto-régulation agencée en forme de serpentine, la bande chauffante étant fixée à une feuille métallique (100) ou étant prise en sandwich entre deux feuilles métalliques.

10. Ensemble selon la revendication 9, dans lequel la bande chauffante (101) à auto-régulation comporte des électrodes (61, 62) en fil noyées dans une bande (63) de polyémer conducteur CPT.

Patentansprüche

1. Schüsselantennenanordnung, die aufweist: (1) eine Schüsselantenne (1) mit einer konkaven Vorderseite (11) und einer konvexen Rückseite (12); und (2) eine elektrische Heizeinrichtung (2, 3, 4, 5) in Form eines Flächenkörpers mit einer ersten Oberfläche und einer entgegengesetzten zweiten Oberfläche, wobei die Anordnung dadurch gekennzeichnet ist, daß die erste Oberfläche der Heizeinrichtung (2, 3, 4, 5) an die Rückseite der Antenne (1) angrenzt, davon jedoch durch ein Medium, typischerweise Luft, das gegenüber Wärmestrahlung im wesentlichen durchlässig ist, getrennt ist, so daß von der Heizeinrichtung (2, 3, 4, 5) erzeugte Wärme von der ersten Oberfläche abstrahlt und auf die Rückseite der Antenne (1) auftritt, wobei die Anordnung derart ist, daß wenigstens 40 % der von der Schüsselantenne (1) aufgenommenen Wärme Strahlungswärme ist.

2. Anordnung nach Anspruch 1, wobei im wesentlichen die gesamte erste Oberfläche der Heizeinrichtung (2, 3, 4, 5) von dem die Schüsselantenne (1) und die Heizeinrichtung (2, 3, 4, 5) trennenden Medium berührt wird.

3. Anordnung nach Anspruch 1 oder 2, wobei die Antenne (1) eine von ihrer Rückseite ausgehende Vielzahl von Rippen (13) aufweist und die Heizeinrichtung (2, 3, 4, 5) durch Befestigungselemente (6), die aus einem polymeren Material bestehen und voneinander befestet sind, an den Rippen (13) befestigt ist.

4. Anordnung nach einem der vorhergehenden Ansprüche, die eine hintere Schale (7) aufweist, die um den Umfang der Schüsselantenne (1) herum an ihr befestigt und an der die Heizeinrichtung (2, 3, 4, 5) befestigt ist.

5. Anordnung nach einem der vorhergehenden Ansprüche, die aufweist (a) eine hintere Schale (7), die gegenüber der Umgebung dicht mit der Schüsselantenne (1) verbunden ist, und (b) Wärmeisoliermaterial (8), das die zweite Oberfläche der Heizeinrichtung (2, 3, 4, 5) im wesentlichen bedeckt.

6. Anordnung nach einem der vorhergehenden Ansprüche, wobei die Heizeinrichtung (2, 3, 4, 5) eine selbstregelnde Heizeinrichtung, bevorzugt eine Heizeinrichtung, die zwei Metallfolienelektroden (41, 42) und ein Widerstands-Heizelement (43) aufweist, das aus einem leitenden Polymerelement mit PTC-Verhalten besteht und in Form eines zwischen den Folientelektroden (41, 42) liegenden Flächenkörpers vorliegt.

7. Anordnung nach einem der vorhergehenden Ansprüche, wobei das Verhältnis der Fläche der ersten Oberfläche der Heizeinrichtung (2, 3, 4, 5) zu der Fläche der Rückseite der
8. Anordnung nach einem der vorhergehenden Ansprüche, die eine Vielzahl von Heizeinrichtungen (2, 3, 4, 5) aufweist, die parallelgeschaltet sind und von denen wenigstens eine ein Widerstands-Heizelement aufweist, das in Form eines im wesentlichen viereckigen Flächenkörpers vorliegt.

9. Anordnung nach einem der vorhergehenden Ansprüche, wobei die Heizeinrichtung ein selbstregelndes Heizband (101) aufweist, das serpentinformig angeordnet ist, wobei das Heizband an einem Metallflächenkörper (100) befestigt oder zwischen zwei Metallflächenkörperm sandwichartig angeordnet ist.

10. Anordnung nach Anspruch 9, wobei das selbstregelnde Heizband (101) Drahtelektroden (61, 62) aufweist, die in ein Band (63) aus einem PTC-leitenden Polymer eingebettet sind.