Silylated derivatives of isobutene crosslinkable under ambient conditions, and process for preparing them.
Description

This invention relates to a process for preparing silylated isobutene copolymers which can be crosslinked under ambient conditions of temperature and relative humidity, for use in sealants and paints.

Elastomeric compositions are known, which contain polymers having been substituted with reactive functional groups, said compositions being capable of being cured to rubbery elastomers under the effect of the ambient temperature and relative humidity, so that they are recommendable as sealants.

GB-A 1 167 521 discloses a process for converting hydrocarbon polymers, such as isobutene-piperidine copolymers, into elastomers of the kind referred to above, by the agency of a chlorosilane catalytically grafted thereon: this process, however, is objectionable in that it uses too large an amount of chlorosilane with free-radical catalysts, since milder catalysts, such as Pt-based catalysts, proved inefficient.

FR-A 2 955 048 discloses, instead, the preparation of silylated organic polymers by reacting an unsaturated silylated monomer with a carbonionic organic polymer, but polymers of this kind are capable of cross-linking only if admixed with cross-linking agents, such as alkoxysilanes or acyloxyxilanes.

Polymer Sci. Polymer Chem., 18th Edn., 1529 (1980) and Polym. Bull., 1, 575, (1979) by Kennedy, discloses the preparation of alpha-omega-chlorosilane-substituted polyisobutenes, followed by the treatment with alcohols, to give polymers, which can be cross-linked under the ambient humidity conditions referred to above, and contain the alkoxysilane function.

Such preparation is anyway difficult to applicable on an industrial scale, due to the complexity and of the high costs thereof.

In U.K. patent GB-A 2 110 706, filed on December 8, 1982 issued on August 7, 1985, a process is disclosed for preparing fluid silylated copolymers of isobutene, suitable for use in sealants, and crosslinkable under the influence of the ambient humidity. According to this process, particular copolymers of isobutene with 1,3,7-octatriene or with 5-methyl-1,3,6-heptatriene are grafted with chlorosilanes, such as, e.g., SiMe₃OCl and SiMe₂Cl. The alkoxysilanic functions necessary for the crosslinking are obtained by means of the subsequent treatment with alcohols. In this process, mild grafting conditions in the presence of platinum-based catalysts, or the like, are used.

In U.K. Patent GB-A 2 110 706 issued on August 7, 1985, the alkoxysilanic function is on the contrary directly grafted on copolymers of isobutene with 1,3,7-octatriene or 5-methyl-1,3,6-heptatriene, by means of the reaction with thiolmercaptopyrrolealkoxyxilanes in the presence of free-radical or anionic catalysts.

The processes disclosed in said U.K. patent is burdensome and shows the drawback that the special copolymers of isobutene with 1,3,7-octatriene or 5-methyl-1,3,6-heptatriene must be produced according to a process wherein blends of (chlorinated/non-chlorinated) solvents are used, to secure the solubility of the catalyst, with this latter being furthermore used in large amounts, and that in the subsequent grafting reaction the solvent must be changed.

The present Applicant has found now that it is possible to overcome the drawbacks deriving from the present state of the art, by means of a process which makes it possible to obtain a silylated polyisobutene which crosslinks under ambient conditions of temperature and pressure, by means of the direct copolymerization of isobutene with a suitable comonomer containing the chlorosilanic function, and the subsequent conversion of the chlorosilanic bond into the alkoxysilanic bond by reaction with the corresponding alcohol.

A purpose of the present invention is therefore a process for the preparation of fluid silylated copolymers of isobutene, crosslinkable under ambient conditions of humidity and temperature, suitable for use in sealants and paints.

Another purpose of the present invention are said copolymers.

A further purpose of the present invention are formulations suitable for use in the field of sealants and of paints containing said copolymers.

In accordance with the above purposes, according to the present invention silylated copolymers of isobutene, crosslinkable under ambient conditions of humidity and temperature, which are suitable for use in sealants and paints, are prepared by means of a process according to which:

a) isobutene is copolymerized with a silylated unsaturated comonomer defined by the formula:

\[\text{SiR}_{3} \]
wherein:
R and R' = H, CH₃;
R'' = an alkyl radical containing from 1 to 5 carbon atoms;
X = Cl, Br;
n = 0, 1, 2;
and the substituents on the benzene rings are in ortho, or meta, or para position,
by operating in solution, in inert organic solvents, at a temperature comprised within the range of from
100°C to 0°C, in the presence of Lewis' acids catalysts, until copolymers with an Mn of from 2,000 to
50,000 are obtained, which contain percentages of from 0.1 to 10% by weight of the silylated comonomer;
b) the so-obtained copolymer is treated with an aliphatic alcohol of from 1 to 5 carbon atoms, to yield an
end polymer containing the alkoxyasilane function:

wherein:
R, R', R'', n have the above seen meaning; and
R'' = an alkyl radical of from 1 to 5 carbon atoms;
c) the copolymer is recovered from the reaction mixture.

According to the present invention, the unsaturated silylated comonomer (I) can be obtained by means
of the hydrosilation of divinylbenzene (either pure, or as the commercial mixture of ethylvinylbenzene-divinylbenzene) or of dipropenylbenzene, with halosilanes of the type:

wherein R'' X and n have the above seen meaning, in the presence of catalytic amounts of chloroplatinic acid.

The reaction is carried out at a temperature of from 40 to 80°C and for a time of some hours under an
atmosphere of an inert gas in an anhydrous environment.
The preferred silylating agent is HSiMeCl₂ (Me = CH₃), but also HSiCl₃, HSiMesCl can be used. An
advantage of the present invention is the fact that for the subsequent copolymerization with isobutene,
the raw product coming from such a hydrosilation reaction can be used, without separating the pure
comonomer (I) being necessary.

The copolymerization of isobutene with the unsaturated silylated comonomer (I) (either in pure form, or as the raw material, or coming from the hydrolysis reaction) is carried out in solution, in inert, anhydrous, organic solvents, in particular, aliphatic hydrocarbons, such as, e.g., pentane, hexane, isopentane, heptane, kerosene, either pure or mixed with one another.

As the copolymerization catalyst, Lewis' acids, are used, preferably AlCl₃, which is charged to the copolymerization reaction as a suspension in hydrocarbons of particles having an average dimension of from 0.5 to 2 µm, at the concentration of from 0.1 to 2% by weight.

The reaction temperature is comprised within the range of from -100°C to 0°C and preferably of from -60°C to 0°C, and the reaction is carried out under an atmosphere of inert gas, in an anhydrous environment.

By controlling the temperature within the above-said range, it is possible to obtain copolymers having a desired molecular weight (Mn of from 2,000 to 50,000, and preferably of from 2,500 to 20,000).

For the purpose of regulating the molecular weight, chain transfer agents can be furthermore used, such as, e.g., tert-butyl chloride, allyl chloride and bromide, or, if one does not wish to use halogenated compounds, indene, cyclopentadiene, isococene, and so forth, can be used.

If a copolymer with one unsaturated comonomer is extremely reactive and copolymerizes to a complete extent, within a time comprised within the range of from 5 to 30 minutes.

The amounts of comonomer regarded as optimum in the copolymer are comprised within the range of from 0.1 to 10% by weight, or, preferably, from 1 to 5% by weight.

To the polymeric solution contained inside the polymerization reactor, an aliphatic alcohol of from 1 to 5 carbon atoms is added, in an amount from 1.5 to 5 times as large as the amount required by the stoichiometry of alcoholysis of the Si-Cl and Al-Cl bonds, and an HCl-blocker is added, in a molar ratio of the HCl-blocker to the alcohol from 3/1 to 4/1. This reaction occurs normally at a temperature comprised within the range of from room temperature (20-25°C) to approximately 40°C.

Practically, the alcohol is added to the polymeric solution coming from the polymerization step at the polymerization temperature, and temperature is permitted to increase up to the indicated values.

The preferred alcohol is methanol, due to its volatility, and the hydrogen chloride blocker is usually a low molecular weight epoxide, such as, e.g., propylene oxide or ethylene oxide, or an orthoformate, e.g., trimethyl orthoformate.

The conversion of the chlorosiilanic groups into alkoxysiilanic groups is quantitative, and at the end of the reaction, the AlCl₃ catalyst, which precipitates from the polymeric solution as Al(OH)₃, can be removed by simple filtration or decantation.

The silylated copolymers obtained by means of the process of the present invention are characterized in that they contain at least one molecule, and preferably two molecules, of silylated comonomer, per each macromolecule, and have an Mn comprised within the range of from 2,000 to 50,000, and preferably of from 2,500 to 20,000, and can be used in the field of the sealants and of the paints, wherein a low permeability to water, a considerably high resistance to oxidation and to the chemical agents, excellent electrical properties are required.

Such copolymers can be used as such, or to them diluents and/or plastifiers can be added, and they can be used in formulations containing crosslinking catalysts, siliceous materials, mineral fillers, dyeing agents, UV absorbers, and so forth.

The catalysts are generally constituted by salts and organic compounds of heavy metals, such as, e.g., dibutyltin dilaurate or titanium tetrafluoroxide and/or by aliphatic amines, such as, e.g., laurylamine.

Ammonium hydroxide or siliceous silica can be used.

The advantages achieved with the preparation of said fluid silylated copolymers of isobutene according to the process disclosed in the present invention are numerous.

First of all, the preparation of the copolymer containing the chlorosiilanic function can be carried out in one single step only, and the subsequent transformation of the chlorosiilanic function into the alkoxysiilanic function can be carried out inside the same reactor, and with the same solvent.

The efficacy, then of the alkoxysiilanic function introduced is such that, for copolymers having an Mw comprised within the range of from 2,000 to 50,000, amounts of comonomer of from 0.1 to 2% by weight in the copolymer are enough to cause the same copolymer to crosslink due to the effect of the ambient humidity and at ambient temperature, with amount of end gel larger than 60% by weight, relatively to the weight of the crosslinked material.

The silylated copolymers obtained by the process disclosed in the present invention show, after the crosslinking, excellent mechanical properties, higher than of the polymers of the prior art, with the molecular weight and the crosslinking function being the same (ultimate tensile strength of from 0.3 to 1 MPa (3 to 10 kg/cm²), elongation at break from 200 to 800%), combined with a considerable adhesion to many substrates such as, e.g., glass and concrete, without the aid of primers or of adhesion promoters.

Such copolymers are furthermore endowed with the excellent properties of chemical resistance and of barrier for gases, which is typical of isobutene polymers.

Because of the total absence of unsaturations, said copolymers are endowed with chemical-physical characteristics better than any other polymers which can be obtained by direct silylation, of the prior art.
The following examples are illustrative and not limitative of the same invention.

Example 1

To a reaction tube perfectly dry, and equipped with a side stopcock and screw cover, under a nitrogen atmosphere 18 g of commercial divinylbenzene (mixture of 45% by weight of ethylidivinylbenzene), 16.8 g of methyl dichlorosilane and 4.10^{-5} mol of H2PCL6 (as a 0.73 M solution in isopropanol) are charged.

The reaction tube, perfectly sealed, is heated in an oil bath at 60°C for 4 hours, with magnetic stirring. After the contents being cooled down to room temperature, they are stripped under vacuum, to remove unreacted chlorosilane. The obtained product is not furthermore purified, but is used as such in the copolymerizations with isobutene.

On the basis of the gas-chromatographic analysis, it is possible to determine that the product mixture is constituted by 8% of monosilylated products, with the balance to 100% being mainly constituted by unreacted ethylidivinylbenzene.

Example 2

To a glass reactor of 400 ml of capacity, perfectly dry, equipped with mechanical stirrer, nitrogen inlet and low-temperature thermometer, 150 ml of anhydrous hexane is charged.

The reactor is then cooled to the temperature of -50°C with a dry ice-ethanol bath.

To such reactor, 22 ml of anhydrous isobutene and 1 g of comonomer (I), prepared as in Example 1, are added.

The operations are all carried out under an inert atmosphere of nitrogen.

To the reaction mixture, cooled to the temperature of -50°C and kept stirred, during a time of approximately 15 minutes 6 ml of an hexanic suspension of AlCl3 at 1.5% by weight is added, while the temperature is controlled to remain within the range of from -55°C to -45°C.

When the addition of the suspension of AlCl3 is complete, the reaction mixture is maintained at -50°C for a 30-minute time. To the polymerization reactor, 5 ml of a methanol/propylene oxide, in a molar ratio of 1/4 to each other, is then added.

At the end of the addition, the temperature is allowed to increase up to room values (20-25°C).

The catalyst, which has precipitated as Al(OMe)3, is filtered off, and the solvent is eliminated by stripping under vacuum.

The polymer is obtained with a conversion yield of 90%.

The polymer shows the following characteristics:

- viscosity at 50°C (η²θ) 10^{4} Pa.s;
- number average molecular weight (Mn): 10,000.
- The polymer, after the addition to it of 1% of usual stabilizers, and of 1% of laurylamine and dibutyltin dilaurate as crosslinking catalysts, is used to spread a film of 2 mm of thickness, for the purpose of evaluating the parameters relating to the crosslinking under room conditions. The following results are obtained:
 - time to touch dry: 1-2 hours
 - Gel % after 10 days: 80%.

On the crosslinked material, after that constant values of gel % are reached, mechanical tests for tensile strength are carried out. The following results are obtained in accordance with ASTM D-412:

- modulus at 100%: 2.92 kg/cm² - ultimate tensile strength: 7.01 kg/cm² - elongation at break: 400%
- elastic recovery (after 5 minutes): 98%

Example 3

By following the same operating modalities as of Example 2, to the reactor 250 ml of anhydrous hexane, 20 g of anhydrous isobutene and 0.5 g of comonomer (I), prepared as in Example 1, are added.

For the polymerization, 8 ml is used of hexanic suspension of AlCl3, and in the following reaction of alcoholysis, 5 ml of methanol/propylene oxide mixture in the mutual ratio of 1/4 is added.

The polymer is obtained with a conversion yield of 90%, and shows the following characteristics:

- viscosity at 50°C (η²θ) 3.10^{4} Pa.s;
- number average molecular weight (Mn): 11,000.
- The polymer, after the addition to it of 1% of usual stabilizers, and of 1% of laurylamine and dibutyltin dilaurate as the crosslinking catalyst, is spread as a film of 1.5 mm of thickness, and the following results are obtained:
 - time to touch dry: 1-2 hours
 - Gel % after 10 days: 75%.

On the crosslinked material, after that constant values of gel % were obtained, mechanical tests for tensile strength were carried out. The following results were obtained in accordance with ASTM D-412:
- modulus at 100% : 0.89 kg/cm²
- ultimate tensile strength : 3.25 kg/cm²
- elongation at break : 650%

Example 4

By following the same operating modalities as of Example 2, to the reactor 250 ml of anhydrous hexane, 20 g of anhydrous isobutene and 2g of comonomer (I), prepared as in Example 1, are added.

The polymerization is carried out at -30°C, making sure that during the addition of 4 ml of hexanic suspension of AlCl₃ the temperature remains within the range of from -35 to -25°C.

For the following reaction of alcoholysis, 10 ml of methanol/propylene oxide in the mutual ratio of 1/4 is used.

The polymer is obtained with a conversion yield of 85%, and shows the following characteristics:
- viscosity at 50°C (η⁰) 450 : Pa.s;
- number average molecular weight (Mn) 4,000.

The polymer is treated as in Example 3, and the characteristics of the film are:
- time to touch dry : 36 hours
- gel % after 9 days : 70%

The mechanical tests for tensile strength, carried out on the crosslinked material, after that constant values of gel % were obtained, gave the following results, in accordance with ASTM D-412:
- modulus at 100% : 1.73 kg/cm²
- ultimate tensile strength : 4.30 kg/cm²
- elongation at break : 289%

Example 5

In this Example, the polymer was prepared by following the same modalities as reported in Example 3, both as relates the proportions of the reactants, and as relates to the temperature of polymerization.

The so-obtained polymer was used for preparing a formulation having the following percent composition by weight:
- polymer : 60.6%
- plasticizer (Vistanex® polybutenes) : 15.1%
- solvent (toluene, xylene) : 15.1%
- SiCl₃ : 7.5%
- antioxidant : 0.8%
- U.V. stabilizer : 0.8%

To the formulation, 0.5% of laurylamine and 1% of dibutyltin dilaurate were added, and the formulation was made crosslink in the air, as in the preceding Example. The following results were obtained:
- time to touch dry : 1-2 hours
- gel % after 30 days : 54%

The mechanical tests for tensile strength, carried out on the crosslinked material, after that constant values of gel % were obtained, gave the following results, in accordance with ASTM D-412:
- modulus at 100% : 0.60 kg/cm²
- ultimate tensile strength : 4.77 kg/cm²
- elongation at break : 720%

Claims

1. Process for the preparation of silylated copolymers of isobutene, crosslinkable under ambient conditions of humidity and temperature, suitable for use in sealants and paints, characterized in that:
 a) isobutene is copolymerized with a silylated unsaturated comonomer defined by the formula:

 \[
 \text{CH}_2 = \text{CH} \quad \text{CH} - \text{CH}_2 - \text{Si} - (\text{X})_{3-n} \quad \text{Si} - (\text{X})_{3-n}
 \]

 wherein:
 R and R' = H, CH₃;
 R'' = an alkyl radical containing from 1 to 5 carbon atoms;
 X = Cl, Br;
and the substituents on the benzene rings are in ortho, or meta, or para position, by operating in solution, in inert organic solvents, at a temperature comprised within the range of from -100°C to 0°C, in the presence of Lewis' acids catalysts, until copolymers with an Mn of from 2,000 to 50,000 are obtained, which contain percentages of from 0.1 to 10% by weight of the silylated comonomer;

b) the so-obtained copolymer is treated with an aliphatic alcohol of from 1 to 5 carbon atoms, to yield an end polymer containing the alkoxy silicic function:

\[
\begin{align*}
\text{R} & \quad \text{C} \\
\text{H}_2 & \quad \text{C} \\
\text{R}^* & \quad \text{Si}-(\text{R}'')_n \\
\text{CH}_2 & \quad \text{OR}^{***} \\
3-n &
\end{align*}
\]

wherein:
R, R', R*, n have the above seen meaning; and
R'' = an alkyl radical of from 1 to 5 carbon atoms;

c) the copolymer is recovered from the reaction mixture.

2. Process according to claim 1, characterized in that the inert organic solvent of the step (a) is an aliphatic hydrocarbon.

3. Process according to claim 2, characterized in that the solvent is selected from pentane, hexane, isopentane, heptane, kerosene.

4. Process according to claim 1, characterized in that the temperature is comprised within the range of from -60°C to 0°C.

5. Process according to claim 1, characterized in that the catalyst in the step (a) is AlCl₃.

6. Process according to claim 5, characterized in that AlCl₃ is charged to the copolymerization reactor in the form of a suspension in hydrocarbons, at the concentration of from 0.1 to 2% by weight.

7. Process according to claim 1, characterized in that in stage a), the copolymerization is continued until obtaining copolymers having an Mn of from 2,500 to 20,000.

8. Process according to claim 1, characterized in that the percentage of the silylated comonomer in the step (a) ranges from 1 to 5% by weight.

9. Process according to claim 1, characterized in that the alcohol is added in an amount from 1.5 to 5 times as large as the amount required by the stoichiometry of alcoholsysis of Si–Cl and Al–Cl bonds.

10. Process according to claim 9, characterized in that the alcohol is added in mixture with a blocker for hydrogen chloride, in a hydrogen chloride blocker/alcohol molar ratio comprised within the range of from 3/1 to 4/1.

11. Process according to claim 10, characterized in that the alcohol is methanol, and that the hydrogen chloride blocker is an epoxide, or is trimethyl orthoformate.

12. Process according to claim 11, characterized in that the epoxide is propylene oxide or ethylene oxide, and that the process is carried out at a temperature comprised within the range of from room temperature (20–25°C) to 40°C.

13. Use of the copolymers according to claim 1 in sealant compositions and paints.

Patentansprüche

1. Verfahren zur Herstellung von silylierten Copolymere von Isobuten, die unter Umgebungsbedingungen hinsichtlich Feuchtigkeit und Temperatur vernetzbar sind und zur Anwendung in Dichtmitteln und
Farben geeignet sind, dadurch gekennzeichnet, daß
a) Isobuten mit einem silylierten ungesättigten Comonomer, definiert durch die Formel:

\[R \quad \text{CH} \quad CH \quad CH \quad CH \quad Si \quad (X)_{3-n} \quad (R'')_n \]

worin:
- \(R \) und \(R' = H, CH_3 \);
- \(R'' \) = Alkylrest mit 1 bis 5 Kohlenstoffatomen;
- \(X = Cl, Br \);
- \(n = 0, 1, 2 \);

und die Substituenten an den Benzolringen in ortho- oder meta- oder para-Stellung vorliegen,

durch Arbeiten in Lösung, in Inerten organischen Lösungsmitteln bei einer Temperatur im Bereich von -100°C bis 0°C in Gegenwart von Lewis-Säure-Katalysatoren copolymerisiert wird, bis Copolymeren mit einem \(M_n \) von 2000 bis 50000 erhalten werden, welche 0,1 bis 10 Gew.-% des silylierten Comonomers enthalten;

b) das so erhaltene Copolymer mit einem aliphatischen Alkohol mit 1 bis 5 Kohlenstoffatomen behandelt wird, um ein Endpolymer zu ergeben, das die Alkoxyasilfunktion enthält, worin:
- \(R, R', R'' \) und \(n \) die oben angeführte Bedeutung besitzen; und
- \(R'' \) einen Alkylrest mit 1 bis 5 Kohlenstoffatomen bedeutet;

c) das Copolymer aus dem Reaktionsgemisch gewonnen wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das inerte organische Lösungsmittel in Stufe (a) ein aliphatischer Kohlenwasserstoff ist.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur im Bereich von -60°C bis 0°C gehalten wird.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator in Stufe (a) \(AlCl_3 \) ist.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das \(AlCl_3 \) in Form einer Suspension in Kohlenwasserstoffen mit einer Konzentration von 0,1 bis 2 Gew.-% dem Copolymerisationsreaktor zugeführt wird.

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Stufe (a) die Copolymerisation fortge-
setzt wird, bis Copolymere mit einem M_n von 2500 bis 20000 erhalten werden.

8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Prozentsatz an silyliertem Comonomer in Stufe (a) von 1 bis 5 Gew.-% beträgt.

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Alkohol in einer Menge zugesetzt wird, die dem 1,5- bis 5-fachen jener Menge entspricht, die durch die Stöchiometrie der Alkoholyse von Si-Cl- und Al-Cl-Bindungen benötigt wird.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Alkohol Methanol ist und daß das Chlorwasserstoffblockierungsmittel ein Epoxy oder Trimethylorthoformiat ist.

13. Verwendung der Copolymere gemäß Anspruch 1 in Dichlormeren und Farben.

Revendications

1. Procédé de préparation de, copolymères silylés d'isobutène, réticulables dans les conditions ambiantes d'humidité et de température, convenables pour être utilisés dans des produits d'obturation et des enduits, caractérisé en ce que:
 a) l'isobutène est copolymérisé avec un comonôme insaturé silylé, défini par la formule:

 \[
 \begin{align*}
 R & \quad R' \\
 CH_2 = CH & \quad CH - CH_2 - Si - (X)_3 - n
 \end{align*}
 \]

 dans laquelle:
 R et R' représentent H ou CH₃;
 R² représente un radical alkyne comportant de 1 à 5 atomes de carbone;
 X représente Cl ou Br;
 n vaut 0, 1 ou 2;

 et les substituants sur le noyau benzénique sont en position ortho, méta ou para, l'opération étant effectuée en solution, dans des solvants organiques inertes, à une température comprise dans l'intervalle de -100°C à 0°C, en présence de catalyseurs du type acides de Lewis, jusqu'à ce que l'on obtienne des copolymères présentant une M_n de 2000 à 50.000 et contenant de 0,1 à 10% en poids du comonomère silylé;

 b) le copolymère ainsi obtenu est traité avec un alcool aliphatique comportant de 1 à 5 atomes de carbone, pour donner un polymère final contenant la fonction alcoxyssilanique:
dans laquelle:
R, R', R'' et n ont les significations indiquées ci-dessus;
et R'' représente un radical alkyle comportant de 1 à 5 atomes de carbone;
c) le copolymère est récupéré à partir du mélange réactionnel.
2. Procédé conforme à la revendication 1, caractérisé en ce que le solvant organique inerte de l'étape
(a) est un hydrocarbure aliphatique.
3. Procédé conforme à la revendication 2, caractérisé en ce que le solvant est choisi parmi le penta-
ène, l'hexane, l'isopentane, l'heptane et le kérosène.
4. Procédé conforme à la revendication 1, caractérisé en ce que la température est comprise dans l'in-
tervalle de –60°C à 0°C.
5. Procédé conforme à la revendication 1, caractérisé en ce que le catalyseur de l'étape (a) est AlCl₃.
6. Procédé conforme à la revendication 5, caractérisé en ce que l'on introduit AlCl₃ dans le réacteur
de copolymérisation sous la forme d'une suspension dans des hydrocarbures, à une concentration de
0,1 à 2% en poids.
7. Procédé conforme à la revendication 1, caractérisé en ce que, dans l'étape (a), on poursuit la copo-
lymerisation jusqu'à l'obtention de copolymères présentant une Mₙ de 2500 à 20 000.
8. Procédé conforme à la revendication 1, caractérisé en ce que le pourcentage de comonomère silylé
dans le produit de l'étape (a) vaut de 1 à 5% en poids.
9. Procédé conforme à la revendication 1, caractérisé en ce que l'on ajoute l'alcool en une quantité de
1,5 à 5 fois aussi importante que la quantité requise par la stoechiométrie de l'alcoolysation des liaisons Si–Cl
et Al–Cl.
10. Procédé conforme à la revendication 9, caractérisé en ce que l'alcool est ajouté à l'état de mélange
avec un composé fixant le chlorure d'hydrogène, en un rapport molaire du composé fixant le chlorure
d'hydrogène à l'alcool compris dans l'intervalle de 3/1 à 4/1.
11. Procédé conforme à la revendication 10, caractérisé en ce que l'alcool est le méthanol et en ce que
le composé fixant le chlorure d'hydrogène est un époxyde ou l'orthoformiate de triméthyle.
12. Procédé conforme à la revendication 11, caractérisé en ce que l'époxyde est l'oxyde de propylène
ou l'oxyde d'éthylène, et en ce que le procédé est effectué à une température située dans l'intervalle al-
lant de la température ambiante (20–25°C) à 40°C.
13. Utilisation des copolymères conformes à la revendication 1 dans des compositions de produits d'ob-
turation et des enduits.

65