Method for the scrap-free manufacture of coated profiles and thermally shaped containers.

References cited:
- EP-A-0 177 470
- FR-A-2 010 239
- FR-A-2 315 388
- GB-A-2 158 269
- PATENT ABSTRACTS OF JAPAN, vol. 10, no. 37 (M-453) [2094], 14th February 1986;

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

Field of the invention.

The present invention relates to a method for manufacturing of coated profiles, preferably for containers and for thermoforming of containers. More precisely, the invention relates to scrap-free manufacturing of a container body to be closed by at least one end piece and scrap-free thermoforming of containers, respectively.

Background of the invention and prior art.

The problem of the present invention is to minimize the scrap when manufacturing packages, especially packages having qualified barrier characteristics, for instance of the quality required for full conserves.

According to a specific embodiment of the invention, the problem of the invention is to make the total procedure, from plastics granulate to a finished packing container, waste or scrap-free, starting out from so-called 'scrapfree' thermoforming technique.

The general problem of minimizing waste has, of course, been dealt with before and it is known to extrude an extrudate in pipe form and laminate such pipe by a barrier material.

In the Swedish patent No. 751 017 069 (DE-A 2 640 311) there is a method of applying a barrier laminate cross-wise an extruded pipe.

According to another method described in Swedish patent application No. 850 170 160 (EP-A 0 197 904 published on 15.10.86) the starting point is a profile, which may be solid or hollow, and strips are applied in the longitudinal direction of the profile.

In the first mentioned case, where the extrudate is a hollow extrudate, and in the last mentioned case, the extrudate is a hollow profile, there is obtained an absolutely scrap free manufacture of the "supporting container" casing requiring the largest amount of material, i.e. the seamless inner layer.

That, which has been said, is one of the reasons for making extrusion of hollow profiles a most competitive approach to the package manufacturing technique. The dimension of the extrudate defines exactly the dimension of the casing of the container without any need for scrap introducing working, for instance edge cutting. However, according to one embodiment of the present invention further working includes a thermo-forming process of the so-called scrap-free type.

According to prior art, webs obtained by planar extrusion of plastics through a straight orifice onto a mould roller, in contrary to the cut profile of the present invention, obtain marginal regions which do not meet the stipulated tolerances, implying that such marginal regions have to be removed as waste material, for instance by roller cutting.

However, when extruding pipes and cutting such into casings, the transport volume, from the manufacturing place of the casings and the packages to the filling place, if said locations are geographically separate, will be pretty large and "air containing".

The prior art lamination operations are carried out against a support which perhaps does not always provide a sufficient pressure for lamination, meaning there is a risk for air bubbles and an inferior end product. In certain cases the prior art lamination methods do also imply problems with matching the print of the package.

Summary of the invention.

The object of the present invention is to offer alternatives to the known methods and broaden the concept of scrap-free manufacturing of a container casing and a thermoformed container by starting out from a hollow profile, which by being cut longitudinally in a waste free manner is given well defined edge regions without any need for subsequent working, at least not scrap introducing working.

The invention provides a waste-free method of manufacturing a multi-layered article having a profile with a predetermined perimeter, according to the preamble of claim 1.

The invention provides also a waste-free method of manufacturing and filling a container casing according to the preamble of claim 7.

Such methods are known from SE-A 751 017 069 (DE-A 1 640 311).

The method of manufacturing a container casing is characterized by forming a longitudinally-extendable thermoplastic material into a tubular profile having substantially said predetermined perimeter; cutting said thermoplastic material having said tubular profile in said longitudinal direction thereof so as to provide a substantially planar sheet having a width corresponding to said predetermined perimeter; laminating by planar lamination said substantially planar sheet with a web material so as to form a laminate therefrom; and reforming said tubular profile from said laminate so that said reform said tubular profile has said predetermined perimeter.

The method of manufacturing and filling a container casing is characterized by the characterizing features of claim 7. Preferably, a container casing of a predetermined length is manufactured from the cut, laminated profile, for instance by reshaping to the original shape, sealing the body longitudinally and cutting it.

In order to allow a so called in-plant forming of a container, the planar laminated, cut profile is delivered in roller form to the place for manufacturing container casings. After such casings have been manufactured, each one is provided with a first end piece or sealed cross-wise, the end sealed container casing is filled with a product, and the container casing is closed by a second end piece or by a cross-wise seal.

In another embodiment where the manufacturing of the package and the filling thereof are carried out geographically at the same place, the container casing is manufactured in line with the planar lamination, and the container casing is provided with a first end piece, the end sealed container casing is filled with a product, and finally the container casing is closed by a second end piece or by a cross-wise seal.
In order to obtain a high barrier package, the strip shaped material is selected as a material having qualified gas and water vapour barrier characteristics, for instance a material comprising a metal foil, metallized plastics material or a laminate of high barrier plastics.

A preferred embodiment of end pieces, one or two, comprises an end piece formed as a layer structure, where an outer layer, preferably of plastics, acts as a mechanically protective barrier and a layer inside said layer acts as a barrier layer.

The wall thickness of the extruded hollow profile is determined by the size of the package, however, wall thicknesses in the interval 0.2 to 1.0 mm are preferable.

According to a further embodiment, the present invention provides a method for a waste or scrap-free manufacture of packing containers. The method is characterized in that the hollow profile is extruded from a thermoformable material in an extruder, that the hollow profile is cut longitudinally, and that the cut hollow profile in web or roller form or as individual blanks, is supplied to a so called scrap-free thermoforming machinery, for manufacture of said packing containers.

The longitudinal or lengthwise cutting may comprise one or several cuts, dependent on the cross section of the hollow profile and the desired size for the thermoforming operation, which is to follow.

The wall thickness of the extruded hollow profile exceeds considerably the film thickness of so called blown films and is at least approximately 0.2 mm.

The cut hollow profile may also be planar laminated if necessary, for instance by a metal foil before further process steps are applied.

The invention will now be exemplified by reference to the accompanying drawings.

Brief description of the drawings

Fig. 1 in a schematic side view shows the extruder in a line for manufacturing containers according to the present invention.

Fig. 2 shows the cutting and laminating units of the manufacturing line.

Fig. 3 shows the pipe forming unit of the line,

Fig. 4 shows the cutting unit of the line,

Fig. 5 shows the filling and sealing unit,

Fig. 6 in a schematic side view shows the extruder of another manufacturing line according to the present invention,

Fig. 7 shows the cutting and laminating units or stations of the line,

Fig. 8 shows the roller unit and palleting station,

Fig. 9 shows the pipe forming unit of an implant line for manufacturing of containers,

Fig. 10 shows the cutter unit of the line,

Fig. 11 shows the filling and end sealing unit of the line, and

Fig. 12 shows an alternative embodiment of an end sealing unit, where one end of each container casing is sealed crosswise.

Description of preferred embodiments.

The extruder 10 in Fig. 1 provides an extrudate 11 in pipe form having a circular cross section. The extrudate may comprise a thermoplastic material, for instance polypropylene or a copolymer comprising polypropylene having a thickness in the interval approximately 0.2–1.0 mm. Having in mind that the material normally forms part of a package which is to withstand high temperatures at sterilisation, polypropylene or suitable copolymers are preferable.

If so desired a suitable calibration device (not shown) may be arranged between the extruder 10 and a pulling bench 13. It is essential that the cross section of the extruded pipe basically corresponds to the cross section of the desired container casing.

A cutting device 14 is arranged for cutting the pipe 11 in the longitudinal direction. Downstream said cutting device there is arranged guide rails 15 for guiding the cut pipe or hollow profile into such a "flattened" shape that it will be insertable in the nip of a planar lamination unit, comprising laminating rollers 16, 17 and a glue applicator (not shown) and a drying unit (not shown).

To the laminating nip between the rollers 16, 17 there is fed a web 18 of a high barrier material, for instance aluminium foil, from a storage roller 19. The material is fed over a guide roller 20. The term "planar lamination" means general methods for laminating between pairs of rollers, for instance lamination by use of a two component glue or some more up to date version of hot melt, for instance "MOREPRIME". As is well known, planar lamination is very reliable and the risk for the entrapped air spaces mentioned in the introduction is practically not existing.

Usually, the web 18 is a laminate or a metal foil which has been coated on both sides thereof or lacquered. Generally there is required a so called roller cutting operation for obtaining the correct web width. In spite of the fact that certain waste cannot be avoided, such waste does not comprise waste containing also the thick material of the hollow profile.

Following to the planar lamination operation, the cut pipe or laminate 21 is represented by the web 18 and the cut pipe 11. This laminate is fed to a forming and welding station 39 comprising a forming member 22 and a weld device 23, for instance a high frequency welding equipment, for providing a longitudinal joint. Preferably, a sealing strip 24 is used and attached against the joint, and the weld may be a butt weld. Alternatively, there may of course be an overlap joint.

Pulling benches 25 and 26 transport the formed and welded or sealed pipe to a cutter 27. Individual container casings 28 are transferred to a conveyer 29. This conveyer transports the containers to a bottom applicator unit, shown by a single arrow 30, for mounting of a bottom piece 31.

The structure of such a bottom is basically described in the publications mentioned at the introduction. It may be mentioned that the end piece, top or bottom piece, comprises an outer layer, generally
of plastics, and a barrier layer, for instance of aluminium foil, arranged inside the plastics layer.

A further conveyor 32 transports the containers 28 having bottom pieces thereon to a filler 33. Thereafter an end sealing station 34 is arranged for applying a top piece 35, basically of the same type as the end piece 31, however, usually without any arrangement for easy opening. The ready packed and sealed container 28 finally arrives at an output conveyor 36 leading to a packing station (not shown).

The line just described is an integrated container manufacturing and filling line. In Figs. 6-11 there is shown another application.

The arrangement and the procedure, respectively, in Figs. 6 and 7 coincides exactly with what is shown in Figs. 1 and 2. Reference numbers just having an addition of a prime sign have been used in Figs. 6 and 7.

In Fig. 8 there is shown how the cut, laminated low profile forming the web 21' is winded up to a roller 37. Such rollers 37 therefor are placed transport ready on a pallet 38. The object of this is to offer an in plant manufacture of containers starting out from the roller material.

Figs. 9-11 illustrate a "plant" or filling unit. From a roller 137 a web of material 121' is withdrawn, comprising the "flattened" pipe material laminated to a barrier material 18, and is formed and welded in a station 39, identical to the station 39.

The ready-formed and longitudinally sealed pipe 40' is drawn by a pulling bench 26' towards a cutter 27'. This one cuts the pipe into container casings 28' of the desired length.

The conveyor 25' feeds the casings to the arrangement in Fig. 11, which is identical to the one in Fig. 5.

Inside the circle 41 in Fig. 11 there is shown in a perspective view what the finished containers look like.

Inside the circle 42 in Fig. 12 there is shown an alternative design, where instead for an end piece 35' there has been accomplished a cross seal 35", basically of "tube type". The double arrows 43 in Fig. 12 indicate the cross sealing station where the seal 35' is accomplished, in an arrangement which for the rest is identical to the one in Fig. 11 and which therefore has the same reference numerals with the additional of a biss-sign.

Claims

1. A waste-free method of manufacturing a multi-layered article having a profile with a predetermined perimeter, characterized by:
 a. forming (10; 10') a longitudinally-extending thermoplastic material into a tubular profile (12) having substantially said predetermined perimeter;
 b. cutting (14; 14') said thermoplastic material having said tubular profile in said longitudinal direction thereof so as to provide a substantially planar sheet (21) having a width corresponding to said predetermined perimeter;
 c. laminating (16, 17) by planar lamination said sub-
 d. forming (22, 23, 24) said tubular profile from said laminate so that said reforming tubular profile has said predetermined perimeter.
 e. reforming (22, 23, 24) said tubular profile from said laminate so that said reforming tubular profile has said predetermined perimeter.

2. A waste-free method of manufacturing a multi-layered profile as claimed in claim 1, characterized by calibrating said hollow profile (12) after formation so as to insure that said hollow profile has said predetermined perimeter of said multilayered article.

3. A waste-free method of manufacturing a multi-layered article having a profile with a predetermined perimeter as claimed in claim 1, characterized in that said web material (18) has high gas and vapor barrier characteristics.

4. A waste-free method of manufacturing a multi-layered article as in claim 1, characterized in that said cut and laminated planar sheet is formed as a container casing blank (21), that said tubular profile is reformed from said blank, and that said profile is sealed in the longitudinal direction to form said container casings (28).

5. A waste-free method of manufacturing a multi-layered article as claimed in claim 4, characterized in that said container casing includes a first end and a second end and including covering said first end of said container casing with a first end piece (31).

6. A waste-free method of manufacturing a container casing as claimed in claim 4, characterized in that said first end of said container casing is sealed with a crosswise seal (35').

7. A waste-free method of manufacturing and filling a container casing comprising a multi-layered wall having a profile with a predetermined perimeter, characterized by:
 a. forming (10; 10') a longitudinally-extending thermoplastic material into a tubular profile having substantially said predetermined perimeter;
 b. cutting (14; 14') said thermoplastic material having said tubular profile in said longitudinal direction thereof so as to provide a substantially planar sheet having a width corresponding to said predetermined perimeter;
 c. laminating (16, 17; 16'; 17') by planar lamination said substantially planar sheet with a web material so as to form a laminate (21; 21') therefrom;
 d. reforming said tubular profile (40; 40') from said laminate so that said reforming tubular profile has said predetermined perimeter;
 e. sealing (23, 24; 23'; 24') the profile in the longitudinal direction thereof;
 f. cutting (27; 27') the profile in a lateral direction to form said container casings including a first end and a second end;
 g. sealing (30; 30') said first end of said container casing;
 h. filling (33; 33') said container casing with a filler material; and
 i. sealing (34; 34') said second end of said container casing.

Patentansprüche

1. Verfahren zum abfallfreien Herstellen eines mehrschichtigen Artikels mit einem Profile eines
vorbestimmten Umfangs, gekennzeichnet durch
a) Formen (10) eines in Längsrichtung sich er-
streckenden thermoplastischen Werkstoffs zu
einem röhrenförmigen Profil (12) des allgemein
vorbestimmten Umfangs,
b) Schneiden (14) des zu röhrenförmigen Profil
geformten thermoplastischen Werkstoffs in sei-
er Längsrichtung, so daß sich ein allgemein pla-
nerer Bogen (21) mit einer dem vorbestimmten Um-
fang entsprechenden Breite ergibt,
c) Schichtstoffherstellen (16, 17) durch planares
Laminieren des allgemein planaren Bogens mit ei-
nem Bahnwerkstoff (18), um daraus ein Schicht-
preßstoff-Erzeugnis zu bilden, und
d) Nach- oder Neuformen (22, 23, 24) des röh-
renförmigen Profils aus dem Schichtpreßstoff-
Erzeugnis, so daß das nach- oder neugeformte Röhrenprofil den vorbestimmtcm Umfang hat.
2. Abfallfreies Herstellungsverfahren nach An-
spruch 1, gekennzeichnet durch Kallibrieren des
Hohlprofils (12) nach dem Formen, um zu gewährleis-
ten, daß das Hohlprofil den vorbestimmten Umfang des mehrschichtigen Artikels hat.
3. Verfahren zum abfallfreien Herstellen eines
mehrschichtigen Artikels mit einem Profil eines vor-
bestimmten Umfangs nach Anspruch 1, dadurch ge-
kennzeichnet, daß der Bahnwerkstoff (18) hohe
Gas- und Dampfspeicherkapazität aufweist.
4. Abfallfreies Herstellungsverfahren nach An-
spruch 1, dadurch gekennzeichnet, daß der ge-
schnittene und laminierte planare Bogen als Behäl-
terhüllenzuschnitt oder Rohling (21) geformt wird,
doß das Röhrenprofil aus dem Zuschnitt oder Roh-
ling nach- oder neugeformt wird und daß das Profil
in Längsrichtung zum Formen der Behälterhüllen
(28) verschlossen wird.
5. Abfallfreies Herstellungsverfahren nach An-
spruch 4, dadurch gekennzeichnet, daß die Behäl-
terhülle ein erstes und ein zweites Ende sowie ein
das erste Ende der Behälterhülle abdeckendes er-
estes Endstück (31) aufweist.
6. Verfahren zum abfallfreien Herstellen und Fül-
en einer mehrschichtigen Wand mit einem Profil
vorbestimmten Umfangs aufweisenden Behälterhül-
le, gekennzeichnet durch
a) Formen (10; 10') eines in Längsrichtung sich er-
streckenden thermoplastischen Werkstoffs zu
einem röhrenförmigen Profil von allgemein vorbe-
stimmtem Umfang,
b) Schneiden (14; 14') des zu röhrenförmigen Pro-
fil geformten Werkstoffs in seiner Längsrich-
tung, so daß sich ein allgemein planarer Bogen mit
einer dem vorbestimmten Umfang entsprechenden
Breite ergibt,
c) Schichtstoffherstellen (16, 17; 16', 17') durch
planares Laminieren des allgemein planaren Bo-
gens mit einem Bahnwerkstoff, um daraus ein
Schichtpreßstoff-Erzeugnis zu bilden,
d) Nach- oder Neuformen des röhrenförmigen Profils (40; 40') aus dem Schichtpreßstoff-Er-
zeugnis, so daß das nach- oder neugeformte Röhrenprofil den vorbestimmten Umfang hat,
e) Verschließen (23, 24; 23', 24') des Profils in
seiner Längsrichtung,
f) Schneiden (27; 27') des Profils in einer seitli-
chen Richtung zum Formen der Behälterhüllen mit
einem ersten und einem zweiten Ende,
g) Verschließen (30; 30') des ersten Endes der
Behälterhülle,
h) Füllen (33; 33') der Behälterhülle mit einem Füll-
stoff und
i) Verschließen (34, 34') des zweiten Endes der
Behälterhülle.
Revidierungen
1. Méthode de fabrication sans chutes d'un arti-
cle multicouche ayant un profil de périmètre pré-
déterminé, caractérisée par:
(a) le formage (10) d'une matière thermoplastique
s'étendant longitudinalement en un profil tubulai-
re (12) ayant sensiblement ledit périmètre pré-
déterminé;
(b) la coupe (14) de ladite matière thermoplastique
dudit profilé tubulaire dans sa dite direction longi-
tudinale, de façon à obtenir une feuille sensiblement
plane (21) ayant une largeur qui correspond
audit périmètre prédéterminé;
(c) le contrecollage (16, 17) par contrecollage plan
de ladite feuille sensiblement plane avec une ma-
tière en bande (18) de façon à engendrer un stra-
tifié de ces matières; et
d) le reformage (22, 23, 24) dudit profilé tubulai-
re à partir dudit stratifié, de sorte que ledit profilé
tubulaire reformé possède ledit périmètre pré-
déterminé.
2. Méthode de fabrication sans chutes d'un profilé
multicouche suivant la revendication 1, caractéri-
sée par le calibrage dudit profilé creux (12) après
formage, de façon à assurer que ledit profilé creux
possède ledit périmètre prédéterminé dudit article
multicouche.
3. Méthode de fabrication sans chutes d'un arti-
cle multicouche ayant un profil de périmètre prédé-
terminé suivant la revendication 1, caractérisée en
ce que ladite matière en bande (18) possède des ca-
RACTtÉristiques élevées d'arrêt des gaz et des va-
peurs.
4. Méthode de fabrication sans chutes d'un article
multicouche suivant la revendication 1, caracté-
risée en ce que ladite feuille plane coupée et stratifi-
ée est formée en une ébauche de corps de réci-
pient (21), en ce que ledit profilé tubulaire est
reformé à partir de ladite ébauche, et en ce que ledit
profilé est souduit dans la direction longitudinale
pour produire lesdits corps de réciipient (28).
5. Méthode de fabrication sans chutes d'un article
multicouche suivant la revendication 4, caracté-
risée en ce que ledit corps de réciipient comporte
une première extrémité et une deuxième extrémité
et la méthode comprend la couverture de ladite premiè-
re extrémité dudit corps de réciipient avec une pre-
mière pièce d'extrémité (31).
6. Méthode de fabrication sans chutes d'un corps de réciipient suivant la revendication 4, ca-
RACTtÉrisée en ce que ladite première extrémité dudit
corps de réciipient est fermée par une fermeture
transversale (35').
7. Méthode de fabrication sans chutes et de rem-
plissage d'un corps de réciipient comprenant une pa-
roi multicouche ayant un profil de périmètre prédéterminé, caractérisée par:
(a) le formage (10; 10') d'une matière thermoplastique s'étendant longitudinalement en un profilé tubulaire ayant sensiblement ledit périmètre prédéterminé;
(b) la coupe (14; 14') de ladite matière thermoplastique dudit profilé tubulaire dans sa dite direction longitudinale, de façon à obtenir une feuille sensiblement plane ayant une largeur qui correspond audit périmètre prédéterminé;
(c) le contrecollage (16; 17; 16'; 17') par contrecollage plan de ladite feuille sensiblement plane avec une matière en bande de façon à produire un stratifié (21; 21') de ces deux matières;
(d) le reformage dudit profilé tubulaire (40; 40') à partir dudit stratifié, de sorte que ledit profilé tubulaire reformé possède ledit périmètre prédéterminé;
(e) la fermeture (23, 24; 23', 24') du profilé dans sa direction longitudinale
(f) la coupe (27; 27') du profilé dans une direction latérale, pour obtenir lesdits corps de récipient présentant une première extrémité et une deuxième extrémité;
(g) la fermeture (30, 30') de ladite première extrémité dudit corps de récipient;
(h) le remplissage (33; 33') dudit corps de récipient avec une matière de remplissage; et
(i) la fermeture (34; 34') de ladite deuxième extrémité dudit corps de récipient.