New pharmaceutical compositions for parenteral use containing a calcitonin as the active ingredient.

Proprietor: SCLAVO S.p.A.
Via Fiorentina 1
I-53100 Siena(IT)

Inventor: Lattanzi, Filippo
Via Sansedoni, 9
Siena(IT)
Inventor: Vanni, Riccardo
Via Montesanto, 3
Siena(IT)

Representative: Gervasi, Gemma, Dr. et al
Studio Brevetti e Marchi NOTARBARTOLO & GERVASI 33, Viale Bianca Maria
I-20122 Milano(IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 98(1) European patent convention).
The present invention refers to a new, freeze-dried, pharmaceutical composition suitable for parenteral administration as defined in the claims, which comprises a therapeutically effective amount of a calcitonin, as the active ingredient, and a defined ratio of human albumin, and ingredients as defined below for the injectable solution which is obtained by dissolving the freeze-dried product in a suitable, physiologically acceptable, solvent.

Calcitonins are calcium regulating hormones which are secreted from the thyroid gland, in mammals, and from the ultimobranchial gland, in non-mammals. Their chemical structure corresponds to a single polypeptide chain containing 32 amino acid residues. Amino acid sequence, however, considerably differs among the animal species, particularly showing a marked difference between the mammalian calcitonins (chiefly human calcitonin and porcine calcitonin) and those of non-mammalian origin (mainly salmon calcitonin and eel calcitonin), whereas the latter ones have shown a more potent specific biological activity (IU/mg).

Over-all action of calcitonins is to oppose the bone and renal effects of parathyroid hormone, thus inhibiting bone resorption and showing a hypocalcemic and hypophosphatemic action. Animal calcitonins administration is therefore used in the therapy of severe hypercalcaemia associated with neoplastic disease, hyperparathyroidism, and vitamin D intoxication. It is also suitable in the treatment of idiopathic hypercalcaemia of infancy, in osteoporosis, and in Sudek's and Paget's diseases. Calcitonin is typically administered parenterally, and mainly, subcutaneously or intramuscularly. It is, however, a problem facing the industrial pharmacy expert, how to formulate such a product, in order to obtain pharmaceutical preparations stable enough to allow industrial scale production, and to ensure correspondence of the administered dose to the prescribed therapeutically effective one, and repeatability of the selected dosages.

For the time being, just to overcome the former of the above two problems, most of the dosage forms on the market, consist of single-dose calcitonin-containing freeze-dried products and solvent ampouls used to reconstitute the injectable solutions just prior to their administration (see, for instance, the brand-products Cibacalcin®, Calcitare®, Stapore®, etc.).

The latter problem indicated above, is of particular interest in the present case because calcitonin is a quite active drug which is generally administered in very low doses, typically from 0.001 to 0.1 mg.

Furthermore calcitonins have a high tendency to be adsorbed on the walls of the container, either be it in glass or plastic (Parson J.A. "Calcitonin : Proceedings of a Symposium on Thyrocaltacin and C Cells" (1988)) thus creating serious problems concerning the reproducibility of a constant and therapeutically effective dosage.

C.A. 102, no. 225984y (1985) (Yoshihira) prepares a long-acting salmon calcitonin by adding of Zn to the solution of the derivate of salmon calcitonin wherein said derivate, prepared by the incubation of reduced salmon calcitonin with bovine serum albumin, is not longer acting than the original calcitonin.

Therefore Yoshihira teaches to stabilize salmon calcitonin by ZN EP-122036 (Suzuki) teaches a powdery pharmaceutical composition for nasal administration which may contain as the active ingredient any physiologically active polypeptides/proteins with a molecular weight ranging from 1,000 to 300,000 and a water-absorbing and water-insoluble base.

Moreover, it is known, in industrial pharmacy, that sometimes it is possible, in the formulation of some hormones which need to be administered in very small doses and have a tendency to be adsorbed on the container walls, to reduce said inconvenience by the use of some proteins, whose effect, if any, and its entity, can however not be foreseen, as the mechanism through which they act has not been understood yet.

It has now been found that suitably formulating a calcitonin, and particularly, salmon or eel calcitonin, with human albumin, it is possible to get freeze-dried products, whose biological titer, evaluated in the injectable solutions obtained therefrom by reconstitution, remains constant for more than three years. This means not only that the product, when formulated according to the present invention, is stable for at least three years but also that it is possible to guarantee the administration of the suitably selected doses, thus allowing a meaningful therapy and valuable results.

It has also been found that human albumin is compatible with the active ingredient and does not affect its chemico-physical characteristics, absorption pattern and metabolic pathway.

A first object of the present invention is therefore a freeze-dried composition for parenteral administration containing a calcitonin as the active ingredient, characterized in that it contains from 0.005 to 2.5 mg of human albumin per IU of calcitonin. According to a preferred embodiment of the present invention said composition will contain from 0.05 to 2 mg of human albumin per IU of calcitonin, and, according to a most preferred embodiment, from 0.1 to 1.2 mg of human albumin per IU of calcitonin. Albumin which can
suitably be employed for said formulation is purified human albumin for human use complying with the standard requirements of the most recent Italian Pharmacopeia (F.U.). More particularly, either freeze-dried human serum albumin ready for use in humans, or the Albumin Injectable Solution, which consists of an aqueous solution containing from 5 to 28% (w/v) albumin, may be utilized.

To prepare a lyophilized formulation according to the present invention, calcitonin and albumin, in the suitably selected proportions, are dissolved in Water for Injection up to the desired concentration.

The solution may contain, if desired, further additives or excipients, which must be compatible with the active principle and, if they are not removed during the freeze-drying stage, also with the administration route. In particular, as the literature available as well as the experimental results obtained show that slightly acidic conditions favourably affect the preparation stability (see, for instance, F.U. IX Ed. Vol. II, pages 316 and 1414, where an optimum pH of from 3.5 to 5.5 is reported for the "Injectable Porcine Calcitonin Solution", and a pH comprised between 3.9 and 4.5 is reported for the "Salcatonin" injectable preparation), and additional excipient suitably used in the new formulation of the present invention, is an organic or inorganic acid, salt or acid buffer, in a concentration suitable to provide a pH value within the range 3.5-5.5, preferably 4.0-5.0, and, more preferably, 4.4-4.8. Said acid, acid salt or acid buffer must be physiologically acceptable for parenteral administration at the doses employed. Monobasic sodium phosphate is the acid salt of choice for said purpose, but other compounds, such as for instance citric acid, may also be used in said preparations. Additional excipients which might conveniently be employed in the formulations of the present invention are, for instance, carbohydrates such as dextrose, mannitol or dextran, which could be added to the composition just to increase the amount of solids present.

Additives, which might also be used in preparing the calcitonin-containing formulations of the present invention, are local anesthetics and/or antiemetics suitable for parenteral administration.

In actual practice, once a solution is obtained containing the active principle, human albumin, and all the other excipients or additives, if any, in the desired concentrations, said solution is transferred into the previously sterilized individual unit containers, by pouring into each vial a volume of the obtained solution which provides the selected amount of active principle per single-dose administration unit. The filled vials are then loaded into the freeze-drying chamber and freeze-dried until the product is dry. When the freeze-drying stage is complete, the vials are sealed by closing the opening with a rubber closure, while still in the freeze-drying chamber, under rigorously sterile conditions. Rubber closures are finally held in place by means of aluminum caps which cover the closures and are crimped under the lid of the vials.

As for the concentration of the active principle in the solution, the solution volume which is charged into each vial, and the capacity of the vials (interrelated parameters which can suitably be modified, depending on the desired concentration of active principle in the end dosage unit), these may vary within wide ranges bearing in mind however that preferred single-dose administration units will contain an amount of calcitonin ranging from 1 to 250 IU, generally corresponding to a content in mg comprised between 0.002 and 1.25 mg, depending on the size of the starting material, and also that a suitable vial capacity, according to a conventional pharmaceutical practice, is generally comprised between 1 and 5 ml and preferably between 1 and 2.5 ml.

For its use in therapy, the freeze-dried formulation of the present invention is redissolved in a suitable solvent and injected soon after its reconstitution. The solvent of choice, in this case, is sterile water for injectable preparations because both calcitonin and albumin are very soluble in water. However, other aqueous solvents which are capable of dissolving the freeze-dried composition, are compatible with the selected administration route and do not negatively interfere with the active principle and the excipients or additives employed, may be used for the preparation of the injectable formulation. A further object of the present invention is therefore an injectable formulation obtained by dissolving the above freeze-dried product in a suitable solvent. A still further object of the present invention is the pharmaceutical single-dose administration unit which consists of a lyophilized composition as seen before containing from 1 to 250 IU of calcitonin, and from 1 to 5 ml of a suitable solvent.

The following examples illustrate in further detail some representative compositions of the present invention and the process for their preparation.

Example 1

Process for preparing the freeze-dried product

Human albumin (680 g) and mono-basic sodium phosphate monohydrate (136.62 g) are charged in a suitable glass vessel and dissolved, by stirring, in water for injectable preparations, checking, when a homogeneous solution is obtained, the pH of the solution (pH = 4.6 ± 0.2).
Eel calcitonin (1.650.000 IU) is then dissolved therein and the solution is brought to the desired volume by the addition of water for injectable preparations still checking the pH of the obtained solution.

The solution is then filtered through a sterilizing Millipore® 0.22 μm filter collecting the filtrate in a sterile glass flask kept in a sterile chamber.

With a suitable liquid filler, the solution is distributed into previously sterilized vials (33.000), which are then loaded into the freeze-drier and lyophilized.

When lyophilization is complete, the vials are sealed while still in the freeze-drier (stoppering). Aluminum caps are then applied to the vials at the end of process line by means of a mechanical crimper.

Each vial will contain a lyophilized product having the following composition:

- eel calcitonin 50 IU
- human albumin 20 mg
- monobasic sodium phosphate monohydrate 4.14 mg

By following substantially the same procedure as above but using a higher amount of eel calcitonin (3.300.000 IU instead of 1.650.000 IU), 33.000 vials, each containing a lyophilized product with the following composition, are obtained:

- eel calcitonin 100 IU
- human albumin 20 mg
- monobasic sodium phosphate monohydrate 4.14 mg

For the preparation of the above lyophilized product the following ingredients are employed:

- eel calcitonin (synthetic) having the following structural formula:

\[
\text{Cys-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-}
\]

\[
\text{-Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-}
\]

\[
\text{-Thr-Asp-Val-Gly-Ala-Gly-Thr-Pro-NH}_2
\]

as a white fluffy powder, easily soluble in water, which must contain not more than 10 % water and not more than 15 % acetic acid, and, in each mg, not less than 4.000 IU of calcitonin;

- human albumin complying with the standard specifications reported in the pertinent monograph of F.U. IX Ed., Vol. II, page 68; and
- monobasic sodium phosphate monohydrate fulfilling the requirements of the US Pharmacopoeia (USP) XXI Ed., page 876.

Example 2

Process for the preparation of the solvent ampuls

Recently distilled water for injectable preparations complying with the requirements of the Italian Pharmacopoeia (F.U. IX Ed., Vol.II, page 52), is poured into a suitable glass vessel. It is filtered through a sterilizing Millipore® 0.20 μm membrane filter into previously sterilized glass containers under rigorously sterile conditions. With a suitable liquid filler machine, the filtered solvent is distributed in glass ampuls. These are then sterilized in steam autoclave for 40 minutes at 121° C, and sealed.

Example 3

Evaluation of the stability of the lyophilized formulation

Stability of the lyophilized products obtained as described in example 1, containing, respectively, 50 or 100 IU of eel calcitonin per dosage unit, has been evaluated by assaying samples of the lyophilized formulations, stored at room temperature, for "visual appearance" and "biological titer".

The results are reported in following Tables I and II:
Table I

Stability data of the lyophilized product of Example 1 containing 100 IU/vial, stored at room temperature

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time (mo)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White po-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>un-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>un-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological titer (IU)</td>
<td></td>
<td>89.2</td>
<td>96.2</td>
<td>109.0</td>
<td>109.9</td>
</tr>
</tbody>
</table>

Table II

Stability data of the lyophilized product of Example 1 containing 50 IU/vial, stored at room temperature

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time (mo)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White po-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>un-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>un-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological titer (IU)</td>
<td></td>
<td>52.75</td>
<td>61.4</td>
<td>59.95</td>
<td>51.8</td>
</tr>
</tbody>
</table>

An HPLC quantitative determination of the active principle in the same lyophilized products, stored for three years at room temperature, gave highly satisfactory results.

More particularly, the content of a vial prepared as in Example 1, containing 100 IU of eel calcitonin, stored for three years at room temperature, was dissolved in a 3% aqueous solution of sodium dodecyl-bisulphate (1 ml) and analysed by HPLC showing a titer of 98.0 IU, corresponding to 98% of the theoretical titer.

The same analysis has been performed also with a sample of the lyophilized product of Example 1 containing 50 IU of eel calcitonin per vial, giving a titer of 47.5 IU, corresponding to 95% of the theory.

Claims
Claims for the following Contracting States: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE
1. A lyophilized pharmaceutical composition containing a calcitonin as the active ingredient characterized in that it contains from 0.005 to 2.5 mg of human albumin per IU of calcitonin and a suitably pharmaceutically acceptable acid, acid salt or acid buffer in such a concentration to impart a pH comprised between 4.0 and 5.0 to the preparation.

2. The composition according to claim 1, wherein the amount of human albumin is comprised between 0.05 and 2.0 mg per IU of calcitonin.

3. The composition according to claim 2, wherein the amount of human albumin is comprised between 0.1 and 1.2 mg per IU of calcitonin.

4. The composition according to claims from 1 to 3, wherein calcitonin is eel or salmon calcitonin.

5. The composition according to claim 4, wherein calcitonin is eel calcitonin.

6. The composition according to claim 1, wherein said acid, acid salt or acid buffer is employed in such a concentration to impart a pH comprised between 4.0 and 5.0 to the preparation.

7. The composition according to claim 6, wherein said acid, acid salt or acid buffer is employed in such a concentration to impart a pH comprised between 4.4 and 4.8 to the preparation.

8. The composition according to claims 6 and 7, wherein said acid salt is monobasic sodium phosphate.

9. A composition according to claims from 1 to 8 for the preparation of a single-dose administration unit characterized in that it contains from 1 to 250 IU of calcitonin.

10. A single-dose administration unit which consists of the composition according to claim 9 and from 1 to 5 ml of a physiologically acceptable solvent.

11. The single-dose administration unit according to claim 10, wherein the amount of calcitonin is comprised between 10 and 200 IU.

12. The single-dose administration unit according to claim 10, wherein the physiologically acceptable solvent is sterile water for injectable preparations.

Claims for the following Contracting States : GR, ES

1. A process for preparing a lyophilized pharmaceutical composition containing a calcitonin as the active ingredient, from 0.005 to 2.5 mg of human albumin per IU of calcitonin, wherein calcitonin and albumin are dissolved in water for injection up to the desired concentration and a suitably pharmaceutically acceptable acid, acid salt or acid buffer may be added to the above said solution in a concentration suitable to impart a pH comprised between 4.0 and 5.0 to the preparation.

2. A process according to claim 1, wherein the amount of human albumin is comprised between 0.05 and 2.0 mg per IU of calcitonin.

3. A process according to claim 2, wherein the amount of human albumin is comprised between 0.1 and 1.2 mg per IU of calcitonin.

4. A process according to claims 1 to 3, wherein calcitonin is eel or salmon calcitonin.

5. A process according to claim 4, wherein calcitonin is eel calcitonin.

6. A process according to claim 1, wherein said acid, acid salt or acid buffer is employed in such a concentration to impart a pH comprised between 4.0 and 5.0 to the preparation.

7. A process according to claim 6, wherein said acid, acid salt or acid buffer is employed in such a concentration to impart a pH comprised between 4.4 and 4.8 to the preparation.
8. A process according to claims 6 and 7, wherein said acid salt is monobasic sodium phosphate.

9. A process according to claims 1 to 8 for the preparation of a single-dose administration unit wherein that unit contains from 1 to 250 IU of calcitonin.

10. A process according to claim 9, wherein that unit contains from 1 to 5 ml of a physiologically acceptable solvent.

11. A process according to claim 10, wherein the amount of calcitonin is comprised between 10 and 200 IU.

12. A process according to claim 10, wherein the physiologically acceptable solvent is sterile water for injectable preparations.

Revendications

1. Composition pharmaceutique lyophilisée contenant une calcitonine en tant qu'agent actif, caractérisée en ce qu'elle contient de 0,005 à 2,5 mg d'albumine humaine par UI de calcitonine et un acide, un sel acide ou un tampon acide approprié pharmaceutiquement acceptable à une concentration telle qu'elle donne à la préparation un pH compris entre 4,0 et 5,0.

2. Composition selon la revendication 1, dans laquelle la quantité d'albumine humaine est comprise entre 0,05 et 2,0 mg par UI de calcitonine.

3. Composition selon la revendication 2, dans laquelle la quantité d'albumine humaine est comprise entre 0,1 et 1,2 mg par UI de calcitonine.

4. Composition selon les revendications 1 à 3, dans laquelle la calcitonine est de la calcitonine d'anguille ou de saumon.

5. Composition selon la revendication 4, dans laquelle la calcitonine est de la calcitonine d'anguille.

6. Composition selon la revendication 1, dans laquelle l'acide, le sel acide ou le tampon acide est employé à une concentration telle qu'elle donne à la préparation un pH compris entre 4,0 et 5,0.

7. Composition selon la revendication 6, dans laquelle l'acide, le sel acide ou le tampon acide est employé à une concentration telle qu'elle donne à la préparation un pH compris entre 4,4 et 4,8.

8. Composition selon les revendications 6 et 7, dans laquelle ce sel acide est le phosphate de sodium monobasique.

9. Composition selon les revendications 1 à 8, destinée à la préparation d'une unité administrable en une seule dose, caractérisée en ce qu'elle contient de 1 à 250 UI de calcitonine.

10. Unité administrable en une seule dose, qui consiste en la composition selon la revendication 9 et contenant de 1 à 5 ml d'un solvant physiologiquement acceptable.

11. Unité administrable en une seule dose, selon la revendication 10, dans laquelle la quantité de calcitonine est comprise entre 10 et 200 UI.

12. Unité administrable en une seule dose, selon la revendication 10, dans laquelle le solvant physiologiquement acceptable est de l'eau stérile destinée à des préparations injectables.

Revendications pour les Etats contractants suivants : GR, ES

1. Procédé de préparation d'une composition pharmaceutique lyophilisée contenant une calcitonine comme agent actif, de 0,005 à 2,5 mg d'albumine humaine par UI de calcitonine, dans laquelle la
calcitonine et l'albumine sont dissoutes dans de l'eau en vue d'une injection jusqu'à la concentration désirée et un acide approprié pharmaceutiquement acceptable, un sel acide ou un tampon acide peut être ajouté à la solution ci-dessus à une concentration convenable pour donner à la préparation un pH compris entre 4,0 et 5,0.

2. Procédé selon la revendication 1, dans lequel la quantité d'albumine humaine est comprise entre 0,05 et 2,0 mg par UI de calcitonine.

3. Procédé selon la revendication 2, dans lequel la quantité d'albumine humaine est comprise entre 0,1 et 1,2 mg par UI de calcitonine.

4. Procédé selon les revendications 1 à 3, dans lequel la calcitonine est de la calcitonine d'anguille ou de saumon.

5. Procédé selon la revendication 4, dans lequel la calcitonine est de la calcitonine d'anguille.

6. Procédé selon la revendication 1, dans lequel l'acide, le sel acide ou le tampon acide est utilisé à une concentration telle qu'elle donne à la préparation un pH compris entre 4,0 et 5,0.

7. Procédé selon la revendication 6, dans lequel l'acide, le sel acide ou le tampon acide est utilisé à une concentration telle qu'elle donne à la préparation un pH compris entre 4,4 et 4,8.

8. Procédé selon les revendications 6 et 7, dans lequel ce sel acide est le phosphate de sodium monobasique.

9. Procédé selon les revendications 1 à 8, pour la préparation d'une unité administrable en une seule dose, dans lequel cette unité contient de 1 à 250 UI de calcitonine.

10. Procédé selon la revendication 9, dans lequel cette unité contient de 1 à 5 ml d'un solvant physiologiquement acceptable.

11. Procédé selon la revendication 10, dans lequel la quantité de calcitonine est comprise entre 10 et 200 UI.

12. Procédé selon la revendication 10, dans lequel le solvant physiologiquement acceptable est de l'eau stérile destinée à des préparations injectables.

Patentansprüche
Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Gefriergetrocknete pharmazeutische Zusammensetzung enthaltend ein Calcitonin als aktiven Bestandteil, dadurch gekennzeichnet, daß sie 0,005 bis 2,5 mg menschliches Albumin pro IE Calcitonin und eine geeignete pharmazeutisch annehmbare Säure, ein Säuresalz oder einen Säurepuffer in einer Konzentration enthält, die der Zubereitung einen pH von 4,0 bis 5,0 verleiht.

2. Zusammensetzung gemäß Anspruch 1, worin die Menge an menschlichem Albumin 0,05 bis 2,0 mg pro IE Calcitonin beträgt.

3. Zusammensetzung gemäß Anspruch 2, worin die Menge an menschlichem Albumin 0,1 bis 1,2 mg pro IE Calcitonin beträgt.

5. Zusammensetzung gemäß Anspruch 4, worin das Calcitonin Aalcalcitonin ist.

6. Zusammensetzung gemäß Anspruch 1, worin die Säure, das Säuresalz oder der Säurepuffer in einer Konzentration verwendet wird, die der Zubereitung einen pH von 4,0 bis 5,0 verleiht.
7. Zusammensetzung gemäß Anspruch 6, worin die Säure, das Säuresalz oder der Säurepuffer in einer Konzentration verwendet wird, die der Zubereitung einen pH von 4,4 bis 4,8 verleiht.

9. Zusammensetzung gemäß einem der Ansprüche 1 bis 8 zur Herstellung einer Einzeldosisverabreichungseinheit, dadurch gekennzeichnet, daß sie 1 bis 250 IE Calcitonin enthält.

10. Einzeldosisverabreichungseinheit, bestehend aus der Zusammensetzung gemäß Anspruch 9 und 1 bis 5 ml eines physiologisch annehmbaren Lösungsmittels.

11. Einzeldosisverabreichungseinheit gemäß Anspruch 10, worin die Menge an Calcitonin 10 bis 200 IE beträgt.

12. Einzeldosisverabreichungseinheit gemäß Anspruch 10, worin das physiologisch annehmbare Lösungsmittel sterile Wasser für injizierbare Zubereitungen ist.

Patentansprüche für folgende Vertragsstaaten : GR, ES

1. Verfahren zur Herstellung einer gefriergotrockneten pharmazeutischen Zusammensetzung, die ein Calcitonin als aktiven Bestandteil und 0,005 bis 2,5 mg menschliches Albumin pro IE Calcitonin enthält, worin Calcitonin und Albumin in Wasser für Injektion bis zu der gewünschten Konzentration gelöst werden und eine geeignete pharmazeutisch annehmbare Säure, ein Säuresalz oder ein Säurepuffer der obigen Lösung in einer Konzentration zugesetzt werden kann, die der Zubereitung einen pH von 4,0 bis 5,0 verleiht.

2. Verfahren gemäß Anspruch 1, worin die Menge an menschlichem Albumin 0,05 bis 2,0 mg pro IE Calcitonin beträgt.

3. Verfahren gemäß Anspruch 2, worin die Menge an menschlichem Albumin 0,1 bis 1,2 mg pro IE Calcitonin beträgt.

4. Verfahren gemäß einem der Ansprüche 1 bis 3, worin das Calcitonin Aal- oder Lachscalcitonin ist.

5. Verfahren gemäß Anspruch 4, worin das Calcitonin Aalcalcitonin ist.

6. Verfahren gemäß Anspruch 1, worin die Säure, das Säuresalz oder der Säurepuffer in einer Konzentration verwendet wird, die der Zubereitung einen pH von 4,0 bis 5,0 verleiht.

7. Verfahren gemäß Anspruch 6, worin die Säure, das Säuresalz oder der Säurepuffer in einer Konzentration verwendet wird, die der Zubereitung einen pH von 4,4 bis 4,8 verleiht.

8. Verfahren gemäß den Ansprüchen 6 und 7, worin das Säuresalz Mononatriumphosphat ist.

9. Verfahren gemäß einem der Ansprüche 1 bis 8 zur Herstellung einer Einzeldosisverabreichungseinheit, worin die Einheit 1 bis 250 IE Calcitonin enthält.

10. Verfahren gemäß Anspruch 9, worin die Einheit 1 bis 5 ml eines physiologisch annehmbaren Lösungsmittels enthält.

11. Verfahren gemäß Anspruch 10, worin die Menge an Calcitonin 10 bis 200 IE beträgt.

12. Verfahren gemäß Anspruch 10, worin das physiologisch annehmbare Lösungsmittel sterile Wasser für injizierbare Zubereitungen ist.