Styryl pyrazoles, isoxazoles and analogs thereof having activity as 5-lipoxygenase inhibitors and pharmaceutical compositions containing them.
Description

This is a continuation in part of United States Serial No. 910,692 filed September 22, 1988, which is a continuation in part of United States Serial No. 861,179 filed May 9, 1986.

The present invention is a novel styryl pyrazoles and analogs thereof as well as pharmaceutical compositions containing them.

Styryl isozazole derivatives having cardiovascular activity are known. For example, European Patent Applications No. 34754 and NO. 5192 and German Application No. 2943-405 having Derwent Abstract Nos. 63618 D/37, 84501 B/47 and 34567 D/20, respectively, disclose a compound of the general formula

![Chemical Structure](image)

However, the present compounds differ from such references by a completely different side chain from that shown above linked to the phenyl at the 2-position through an ether group in each reference. Further, European Patent Application No. 5166 reviewed by Derwent Abstract No. 844908/47 discloses an intermediate isozazole of the formula

![Chemical Structure](image)

for which no pharmaceutical utility is disclosed.

Pyrazole derivatives having biological, specifically antiinflammatory, activity are found in Belgian Patent Nos. 819,890 and 844,972 abstracted in Derwent Abstract Nos. 20948W/13 and 08406Y/06, respectively. A similar derivative is disclosed in German Patent No. 292041 of Derwent Abstract No. 86535C/49. However, each of these disclosed pyrazole derivatives requires substituents on adjacent carbons of the pyrazole ring.

Specifically excluded from the compounds of the present invention are the compounds of French Patent No. 2104336 of Derwent Abstract No. 46150T-B useful as hypcholesteroleemics, antiinflammatories, analgesics, sedatives, antipyretics, and in some instances diuretics. The compounds of the French Patent generally have the formula

![Chemical Structure](image)

Finally, of lesser interest numerous imidazoles are known having various pharmaceutical activity. For
example, U.S. Patent No. 3812111 and British 1,046,248 disclose compounds of general formula

\[
\begin{align*}
\text{phenyl, isopropyl, or} & \quad \text{hydroxyethyl} \\
\end{align*}
\]

respectively wherein the - represents various substituents. However, the imidazoles are compounds differing from the present invention in that the compounds have a different ring system from the pyrazoles.

Thus, the novel compounds that are the present invention provide activity for use in the treatment of diseases in which 5-lipoxygenase enzyme activity contributes to the pathological condition. For example, the use for the present novel compounds, compositions and methods of use is for allergy, asthma, arthritis, skin disorders, such as psoriasis or acne, inflammation, for example, inflammatory bowel disease or pain, and further, also cardiovascular disorders including infarction, angina, arrhythmias, stroke, migraine, atherosclerosis, ulcers and other conditions particularly benefited by cytoprotective activity. An additional property of the present novel compounds now found to provide usefulness, for example, as sun screens, is absorption of ultraviolet light.

The present invention is a novel compound of the formula (I)

\[
\begin{align*}
\end{align*}
\]

and pharmaceutically acceptable salts thereof; wherein

(1) --- is a single or double bond;

(2) \(R, R_1, \) and \(R_2 \) may be the same or different and are selected from the group consisting of hydrogen, lower alkyl, hydroxy, OR wherein \(R_3 \) is lower alkyl, C(O)OR wherein \(R_4 \) is hydrogen or lower alkyl, C(O)NH \(R_3 \) wherein \(R_3 \) is independently as defined above, C(O)R \(R_2 \) wherein \(R_3 \) is independently as defined above, NR \(R_3 \) wherein \(R_3 \) and \(R_4 \) may be the same or different and are hydrogen or lower alkyl, NHC(O)R wherein \(R_3 \) is independently as defined above, NHCHO, NHSO \(R_3 \) wherein \(R_3 \) is independently as defined above, NHC(O)R \(R_4 \) wherein \(R_3 \) is independently as defined above, hydroxymethyl, halogen, trifluoromethyl, SR \(R_4 \) wherein \(R_3 \) is independently as defined above, or nitro;

(3) \(Q \) is

\[
\begin{align*}
\text{CH} = \text{CH} \quad \text{or} \quad \text{CH} = \text{C} \\
\end{align*}
\]

\[
\begin{align*}
\text{CO}_2 \quad R_4 \\
\end{align*}
\]
wherein R_4 is independently as defined above;
(4) x and y are (i) N_1, (ii)NR_5 wherein R_5 is hydrogen, lower alkyl,

$$\text{CH}_2\text{CO}_2\text{R}_1\text{R}_2$$

wherein R_1 and R_2 may be the same or different and are hydrogen or lower alkyl, C(O)R$_4$ wherein R_4 is independently as defined above, cycloalkyl of from three to twenty carbons having from three to eight ring carbons, aryl, or aralkyl, (iii) O, or (iv) S; with the proviso that X and Y cannot both be O or S at once and with the proviso that one of X and y cannot be O at the same time the other of X and Y is S or NR$_5$ and that one of X and Y cannot be S at the same time the other of X and y is NR$_5$ and that if X and Y are both nitrogen one of X and Y must be NR$_5$ at the same time the other of X and Y is $\equiv N$.

(5) Z is H, lower alkyl, aryl, aralkyl, 0C(O)R$_2$ wherein R_2 is independently as defined above, C(O)OR$_4$ wherein R_4 is independently as defined above, C(O)R$_3$ wherein R_3 is independently as defined above, CH$($=R$_1$)CO_2R_2 wherein R_1 and R_2 are independently as defined above, halogen, trifluoromethyl,

$$\text{CH}=\text{CH}$$

wherein R, R_1, and R_2 are independently as defined above, heterocaryl, or heteroaralkyl; with the overall proviso that when one of R, R_1, and R_2 is 2-hydroxy, X is O, Y is $=N$- and Q is $CH=CH$, then Z cannot be H or alkyl; and also with the overall proviso that when R, R_1, and R_2 are hydroxy or lower alkyl, Y and X are $=N$-or NH, and n is zero then Z cannot be furyl or phenyl unsubstituted or substituted with halogen, trifluoromethyl, alkyl, alkoxy or NO$_2$.

The present invention is also a pharmaceutical composition for treating a disease such as allergy, asthma, arthritis, psoriasis, acne, inflammation, pain, or cardiovascular disorders comprising an antiallergic, antiinflammatory, analgesic, or beneficial cardiovascular effective amount of the compound of formula (I)

$$\text{R}_1$$

and pharmaceutically acceptable salts thereof; and a pharmaceutically acceptable carrier.

The present invention is also a composition of the compound of formula I not including the overall provisos and a carrier from among the carriers known to be for use in combination with a sunscreen.

Further, the invention is a method of use of a compound of general formula I or the manufacturing of a pharmaceutical composition for the treatment of diseases noted above.

Also, the invention is a method of using a compound of formula I; again as defined above but not including the overall provisos, as a sunscreen, for example, in a coating on humans, in paint and the like.

Finally, the present invention is a process of preparing a compound of formula I as defined above.

In the compounds of formula I the term lower alkyl is of one to four carbons, inclusive, and includes methyl, ethyl, propyl, or butyl and isomers thereof.

Halogen includes particularly fluorine, chlorine, bromine or iodine.

Aryl is phenyl unsubstituted or substituted by one, two or three substituents of one or more of each of alkyl of one to four carbons, inclusive, OR$_4$ wherein R_4 is independently as defined above, SR$_4$ wherein R_4 is independently as defined above.
wherein R₄ is independently as defined above, C(=O)OR₄ wherein R₄ is independently as defined above, hydroxymethyl, NR₆R₇ wherein R₆ and R₇ are each independently as defined above, or nitro, or halogen.

Aralkyl is an aryl as defined above and attached through an alkylenyl such as methylenyl, ethylenyl, propylenyl, butylenyl and isomers thereof.

Heteroaryl means 2-, or 3-pyridyl; 2- or 3-furyl; 2- or 3-thiophenyl; 2-, 4-, or 5-oxazolyl; 2-, 4-, or 5-thiazolyl; 1-, 2-, or 4-imidazolyl; 2-, 3-, or 4-isothiazolyl, 2-, 3-, or 4-isoxazolyl, 1-, 2-, or 3-pyrazolyl, and 2-, 3-, 4-pyridyl.

The compounds of the present invention contemplate compounds having the following ring systems
wherein ..., R₅ and Z are as defined above.
When R₅ is hydrogen it is understood the ring system may be represented by the following equilibrium:
The compounds of formula I are useful both in the free base form, in the form of base salts where possible, and in the form of acid addition salts. The three forms are within the scope of the invention. In practice, use of the salt form amounts to use of the base form. Appropriate pharmaceutically acceptable salts within the scope of the invention are those derived from mineral acids such as hydrochloric acid and sulfuric acid; and organic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like, giving the hydrochloride, sulfamate, methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like, respectively or those derived from bases such as suitable organic and inorganic bases. Examples of suitable inorganic bases for the formation of salts of compounds of this invention include the hydroxides, carbonates, and bicarbonates of ammonia, sodium, lithium, potassium, calcium, magnesium, aluminum, zinc, and the like.

Salts may also be formed with suitable organic bases. Bases suitable for the formation of pharmaceutically acceptable base addition salts with compounds of the present invention include organic bases which are nontoxic and strong enough to form such salts. These organic bases form a class whose limits are readily understood by those skilled in the art. Merely for purposes of illustration, the class may be said to include mono-, di-, and trialkylamines, such as methyamine, dimethylamine, and triethylamine; mono-, di-, or trihydroxyalkylamines such as mono- or di- or triethanolamine; amino acids such as arginine, and lysine; guanidine; N-methylglucosamine; N-methyglucamime; L-glutamine; N-methylpiperazine; morpholine; ethylenediamine; N-benzylphenethyamine; tris(hydroxymethyl)aminomethane; and the like. (See for example, "Pharmaceutical Salts," J. Pharm. Sci. 66 (1):1-19 (1977.))

The acid addition salts of said basic compounds are prepared either by dissolving the free base of compound I, I' or II in aqueous or aqueous alcohol solution or other suitable solvents containing the appropriate acid or base and isolating the salt by evaporating the solution, or by reacting the free base of compound I, I' or II with an acid as well as reacting compound I, I' or II having an acid group thereon with a base such that the reactions are in an organic solvent, in which case the salt separates directly or can be obtained by concentration of the solution.

The compounds of the invention may contain an asymmetric carbon atom. Thus, the invention includes the individual stereoisomers, and the mixtures thereof. The individual isomers may be prepared or isolated by methods known in the art.

Compounds of the present invention that are preferred are of formula I wherein Y is N and X is NH or Y is N and X is O.

The most preferred compounds of the present invention are 5-[β-(4′-hydroxy-3′,5′-bis(1,1-dimethylethyl)-phenyl)ethenyl]-3-methylisoxazole, 3-[β-(4′-hydroxy-3-methoxyphenyl)ethenyl]-5-methylpyrazole, and 5-[β-(4′-hydroxy-3′,5′-dimethoxyphenyl)ethenyl]-3-methylisoxazole.

A physician or veterinarian of ordinary skill readily determines a subject who is exhibiting symptoms of any one or more of the diseases described above. Regardless of the route of administration selected, the compounds of the present invention of the formula I as described in pharmaceutical compositions above are formulated into pharmaceutically acceptable dosage forms by conventional methods known to the pharmaceutical art.

The compounds can be administered in such oral unit dosage forms as tablets, capsules, pills, powders, or granules. They also may be administered rectally or vaginally in such forms as suppositories or bougies; they may also be introduced parenterally (e.g., subcutaneously, intravenously, or intramuscularly), using forms known to the pharmaceutical art. They are also introduced directly to an affected area (e.g., in the form of eye drops or by inhalation). For the treatment of asthma or allergies, particularly dermatological disorders; such as erythema, psoriasis and acne, the compounds may also be administered topically in the form of ointments, gels, or the like. However, in general, the preferred route of administration is orally.

An effective but nontoxic quantity of the compound is employed in treatment. The ordinarily skilled physician or veterinarian will readily determine and prescribe the effective amount of the compound to prevent or arrest the progress of the condition for which treatment is administered. In so proceeding, the physician or veterinarian could employ relatively low dosages at first, subsequently increasing the dose until a maximum response is obtained.

Initial dosages of the compounds of formula I of the invention in pharmaceutical compositions are ordinarily in the area of 10 mg up to 2 grams per day orally, preferably 10 mg to 500 mg per dose orally given one to four times daily or as needed. When other forms of administration are employed equivalent doses are administered.

Additionally, the present invention is compositions comprising the compounds of formula I, for use as sunscreens, having a suitable carrier therefor.

The ultraviolet absorbing properties of the compounds of the present invention is generally shown by a comparison with p-aminobenzoic acid which is the active ingredient in most commercial sunscreens. Such
properties are within the ultraviolet absorbing ranges of 280 to 300 nM range critical to effectiveness. A representative compound of the invention is compared to p-aminobenzoic acid in the following Table.

TABLE

<table>
<thead>
<tr>
<th>Compound</th>
<th>UV max</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-aminobenzoic acid</td>
<td>285 nM</td>
<td>132.2</td>
</tr>
<tr>
<td>3-[(β-(4′-hydroxy-3′-methoxy-phenyl)ethenyl)-5-methylpyrazole</td>
<td>292 nM</td>
<td>111.1</td>
</tr>
</tbody>
</table>

The methods of preparation for the compounds of the present invention may, generally, be accomplished in a manner according to the definition of \(X \) and \(Y \).

For example, generally compounds of formula I wherein \(X \) and \(Y \) are each \(=\text{N-} \) or \(\text{NRs} \) are prepared in a manner shown by Scheme I as follows:
wherein \(\cdots \), \(R, R_1, R_2, R_5 \) and \(Z \) are as defined above.

In Step 1 of Scheme I equimolar parts of hydrazine hydrate and a compound of the formula I/I are combined in a solvent such as 1 part ethanol and 1 part butanol, or 2-propanol, and the like. A small amount of about 0.1 ml to 10 ml preferably 0.5 ml of acetic acid is added with the hydrazine hydrate. Optionally, the step 1 product of formula I is further reacted as shown in step II with a compound MR wherein M is an electrofuge such as halogen, sulfonate, or the like and \(R_5 \) is as defined above but other than hydrogen to obtain a mixture of the compound of formula I and I', wherein \(\cdots \), \(R, R_1, R_2, R_5 \) when not hydrogen and 2 are as defined above. The compounds I and I' may be separated by conventional means.
Similarly compounds of formula I wherein X and Y are each N or NR₅ wherein Q is CH₂ and n is 1 can be prepared according to the following Scheme Ia using analogous conditions as provided above for Scheme I.

SCHEME Ia

Further, the compounds of formula Iₜ are prepared as shown in the following Scheme II and IIa.
wherein X and Y are O or N and S or N.
Triphenylphosphonium halide; preferably chloride, of the formula II₂ or II₂ₐ are contacted by an excess of a compound of the formula III₂ or III₂ₐ in a solvent such as dimethylsulfoxide, toluene, or the like to which an equivalent amount of potassium t-butoxide is added. The mixture is stirred at about room temperature for from 10 minutes to 2 hours or more under an inert atmosphere. A compound of formula I₂ or I₂ₐ is obtained wherein R, R₁, R₂ and Z are as defined above and Y and X are each either N or O and N or S, respectively.

Mild hydrogenation by conventional methods by an ordinarily skilled artisan may be carried out to provide a compound of formula I₂ wherein R, R₁, R₂ and Z are as defined and Y and X are O or N and S or N, respectively.

Additionally, for compounds wherein Z is defined such that the two substituents on the heterocyclic ring of formula

are the same, the compounds may be prepared according to the following Scheme III.
wherein Z is

and wherein R, R_1, R_2, and Q are as defined above and Y and X are either O and N or N and O.

The conditions of the reaction in Scheme III are, generally, carried out with equimolar parts of the compound of formula III' and hydroxylamine hydrochloride in a solvent such as methanol, ethanol and the like in the presence of a buffer such as sodium acetate at reflux temperature until completion as determined by TLC.
Scheme IV

\[\text{R} \text{CHO} + \text{O=N} \rightarrow \text{HCl/MeOH} \]

\[(-\text{H}_2\text{O}) (-\text{CO}_2) \]

\[\text{X}, \text{Y} = \text{any combination of N,O/O,N/N,NH} \]

\[\text{(-H}_2\text{O)} \]

\[\text{For R}_4=\text{alkyl} \]

\[\text{For R}_4=\text{H} \]

\[\text{R}_1 \text{R}_2 \]

\[\text{R}_1 \text{R}_2 \]

\[\text{X}, \text{Y} \]

\[\text{CO}_2 \text{R}_4 \]

\[\text{R}_1 \text{R}_2 \]

\[\text{R}_1 \text{R}_2 \]

\[\text{X}, \text{Y} \]

\[\text{CO}_2 \text{R}_4 \]

\[\text{R}_1 \text{R}_2 \]

\[\text{X}, \text{Y} \]

\[\text{CO}_2 \text{R}_4 \]

\[\text{R}_1 \text{R}_2 \]

\[\text{X}, \text{Y} \]

\[\text{CO}_2 \text{R}_4 \]

\[\text{R}_1 \text{R}_2 \]

wherein \(R, R_1, R_2, \) and \(Z \) are as defined above.

The conditions of the synthesis in Scheme IV step 1 are, generally, carried out in a manner analogous to those described by C. Kashima et al, Bull. Chem. Soc. Japan, 46, 310 (1973) and C. Kashima et al, Heterocycles, 6, 805 (1977). Unexpectedly the step 2 dehydration when \(R_4 \) is H or alkyl and also further decarboxylation when \(R_4 \) is H are carried out in a one pot reaction together with step 1. Conditions for step 2 are analogous to those known in the art and, thus, within the ordinary artisan's skill.

Finally, conditions analogous to those described in copending application PD-3493 United States Serial Number 851,003, filed April 11, 1986 are useful in step 1 of Scheme VI below. Step 2 of Scheme VI is carried out using anhydrous conditions in an inert solvent at about the temperature of 0°C to 50°C for from 90 min to 18 hours.

SCHEME VI
The compounds in Scheme VII are compounds wherein R, R₁, R₂ and Z are as defined above for compounds of formula III₅ and III₆ but III₁ and III₁ are symmetrical.

An alternate preparation for the compounds of formula III₅ is as found in Scheme VIII as follows:
Finally, the compound of formula I₂ as shown in Scheme II above can be prepared by the following method.
SCHEME IX

Examples of suitable oxygen protecting groups are benzyl, t-butyldimethylsilyl, ethoxyethyl, and the like. Protection of an N-H containing moiety is necessary for some of the processes described herein for the preparation of compounds of this invention. Suitable nitrogen protecting groups are benzyl, triphenylmethyl, trialkylsilyl, trichloroethylcarbamate, trichloroethoxy carbonyl, vinylloxy carbamate, and the like.

Under certain circumstances it is necessary to protect two different oxygens with dissimilar protecting groups such that one can be selectively removed while leaving the other in place. The benzyl and t-butyldimethylsilyl groups are used in this way; either is removable in the presence of the other, benzyl being removed by catalytic hydrogenolysis, and t-butyldimethylsilyl being removed by reaction with, for example, tetra-n-buty lammonium fluoride.

In the process described herein for the preparation of compounds of this invention the requirements for protective groups are generally well recognized by one skilled in the art of organic chemistry, and accordingly the use of appropriate protecting groups is necessarily implied by the processes of the chart herein, although not expressly illustrated.

The products of the reactions described herein are isolated by conventional means such as extraction, distillation, chromatography, and the like.

Starting materials not described herein are available commercially, are known, or can be prepared by methods known in the art.

The salts of the compounds of formula I described above are prepared by reacting the appropriate base or acid with a stoichiometric equivalent of the compounds of formula I, respectively, to obtain pharmaceutically acceptable salts thereof.

The invention is further elaborated by the representative examples as follows. Such examples are not meant to be limiting.
Example 1

3,5-Bis[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl] pyrazole

Curcumin (5.93 g, 16.1 mmoles) (Sigma Co., St. Louis) is dissolved in 100 ml of 50% ethanol in butanol. Hydrazine hydrate (0.81 g, 16.1 mmoles) and 0.5 ml of acetic acid are added. The reaction is warmed in an oil bath at 60 °C for 24 hours. The solvents are removed under vacuum, and the residue is chromatographed on silica gel in ethyl acetate to give a red solid. Recrystallization of the product from methanol/water gives 0.3 g of the product as a hydrate. Analysis for C_{31}H_{26}N_{2}O_{4}•0.1 mole H_{2}O requires C-68.87, H-5.52, N-7.65. Found; C-68.77, H-5.50, N-7.44. mp = 211-214 °C.

Example 2

3,5-Bis[β-(4'-hydroxy-3'-methoxyphenyl)-5-ethyl] pyrazole

According to the procedure of Example 1, 1,7-bis[4'-hydroxy-3'-methoxyphenyl]-3,5-heptadione (Bull. Acad. Polon. Sci. 6, 481-486, 1958) is reacted with hydrazine hydrate to afford 3,5-Bis[β-(4'-hydroxy-3'-methoxyphenyl)ethyl]pyrazole in 65% yield, mp = 125-128 °C.

Example 3

3,5-Bis[β-(4'-hydroxyphenyl)ethyl]pyrazole

According to the procedure of Example 1, 1,7-bis(4'-hydroxyphenyl)-3,5-heptadione is reacted with hydrazine hydrate to afford 3,5-bis[β-(4'-hydroxyphenyl)ethyl]pyrazole in 45% yield, mp = 193-195 °C.

Example 4

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-phenyl pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-methoxyphenyl)-5-phenyl-1-pentene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-phenyl-pyrazole in 9% yield, mp = 132-134 °C.

Example 5

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-methyl pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-methoxyphenyl)-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methyl-pyrazole in 53% yield, mp = 144-146 °C.

Example 6

3-[β-(4'-hydroxy-3'-methoxyphenyl)ethyl]-5-methyl pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-methoxyphenyl)-3,5-hexanedione is reacted
with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methyl-pyrazole in 68% yield, mp = 84-88°C.

Example 7

3-[β-(4'-Hydroxy-3'-chlorophenyl)ethenyl]-5-methyl-pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-chlorophenyl)-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-chlorophenyl)ethenyl]-5-methyl-pyrazole in 61% yield, mp = 183-184°C.

Example 8

3-[β-(4'-Methoxy-3'-hydroxyphenyl)ethenyl]-5-methyl-pyrazole

According to the procedure of Example 1, 1-(4'-methoxy-3'-hydroxyphenyl)-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-methoxy-3'-hydroxyphenyl)ethenyl]-5-methyl-pyrazole in 72% yield, mp = 221-222°C.

Example 9

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-ethyl-pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-methoxyphenyl)-1-heptene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-ethyl-pyrazole in 26% yield, mp = 61-64°C.

Example 10

Ethyl-3-[β-(3-methoxy-4-hydroxyphenyl)ethenyl]-1H-pyrazole-5-carboxylate

According to the procedure of Example 1, ethyl 6-(3-methoxy-4-hydroxyphenyl)-2,4-dioxo-5-hexenoate is reacted with hydrazine hydrate to afford ethyl-3-[β-(3-methoxy-4-hydroxyphenyl)ethenyl]-1H-pyrazole-5-carboxylate in 51% yield, mp = 99-101°C.

Example 10A

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-trifluoromethyl-pyrazole

According to the procedure of Example 1, 1-(4'-hydroxy-3'-methoxyphenyl)-6,8,8-trifluoro-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-trifluoromethyl-pyrazole in 71% yield, mp = 145-147°C.

Example 10B

3-[β-(4'-Butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-5-methyl-pyrazole
According to the procedure of Example 1, 1-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole in 52% yield, sufficiently pure for further use.

Example 10C

3-[β-(4'-Butyldimethylsilyloxy-3,5-dimethoxyphenyl) ethenyl]-5-methylpyrazole

According to the procedure of Example 1, 1-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)-1-hexene-3,5-dione is reacted with hydrazine hydrate to afford 3-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)ethenyl]-5-methylpyrazole in 32% yield, mp = 133-136 °C.

Example 10D

(E)-5-[β-(4'-Hydroxy-3,5'-dimethoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, ethyl ester

A solution of 1-(4'-hydroxy-3',5'-dimethoxyphenyl)-1-hexene-3,5-dione (1.0 g, 3.8 mmol) in absolute ethanol (100 mL) is added to a solution of ethyl hydrazinocetate in absolute ethanol (100 mL) according to the procedure found in A. Carmi et al, J. Org. Chem., 25, 44 (1960). The reaction mixture is acidified with acetic acid (2 mL) and is stirred for 30 minutes at room temperature. The solvent is evaporated, and the residue is suspended in water (50 mL). The solid which is collected is then purified by flash chromatography (silica gel, 1:1 methylenechloride/ethyl acetate) and subsequent recrystallization (methylenechloride/ethyl acetate 1:1) to afford 0.45 g (34%) of (E)-5-[β-(4'-hydroxy-3,5'-dimethoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, ethyl ester, mp = 159-160 °C. Analysis for C_{13}H_{22}N_{2}O_{5}. Calculated C-62.42, H-6.40, N-8.09. Found C-62.08, H-6.39, N-8.26.

Example 10E

5-[β-(4'-t-Butyldimethylsilyloxy-3'-methoxyphenyl) ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester; and 3-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester

3-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole (2.57 g, 7.5 mmol) is dissolved in DMF (20 mL). Potassium carbonate (10.30 g, 75 mmol) is ground into a fine powder and added to the reaction. The reaction is stirred at room temperature for 10 minutes under argon atmosphere. Methyl bromoacetate is added and the reaction is stirred for 2 hours. The mixture is then poured into water (200 mL) and neutralized with aqueous HCl. The layers are separated, and the aqueous layer is washed with methylenechloride. The combined organic layers are washed with water and brine. Drying over MgSO_{4} followed by evaporation of solvents affords a brown oil. Flash chromatography (10% ethyl ether in methylenechloride) separates two products: 3-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester (RF = 0.31); 1.5 g; and 5-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl) ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester (RF = 0.14), 0.55 g.

Example 10F

3-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxy phenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester and 5-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester

According to the procedure of Example 10E, 3-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)-
ethenyl]-5-methylpyrazole (3.5 g, 9.35 mmol) is reacted with methyl broomoacetate to afford 3-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester, 2.3 g (55%), mp = 139-141°C; and 5-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester, 0.9 g (21%), mp = 150-151°C.

Example 10G

3-[β-(4'-Hydroxy-3',5'-di-t-butylphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester and 5-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester

According to the procedure of Example 10E, 3-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-5-methylpyrazole (3.0 g, 9.6 mmol) is reacted with methyl broomoacetate in DMF, with the exception that sodium acetate is used in place of potassium carbonate. Flash chromatography separates 3-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester, 0.65 g (18%), mp = 170-174°C; and 5-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, methyl ester, (as HCl salt) 0.72 g (17%), mp = 179-180°C. Analysis for C_{23}H_{13}ClIN_{2}O_{3}. Calculated C 65.62, H 7.90, N 6.65, Cl 8.42. Found C 65.53, H 7.99, N 6.46, Cl 8.31.

Example 10G'

3-[β-(4'-Hydroxy-3',5'-di-t-butylphenyl)ethenyl]-1,5-dimethylpyrazole and 5-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-1,3-dimethylpyrazole

According to the procedure of Example 10G, 3-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-5-methylpyrazole is reacted with methyl iodide and sodium acetate to afford two regiosomeric products separated by flash chromatography (chloroform): 3-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-1,5-dimethylpyrazole, mp = 155-157°C; 5-[β-(4'-hydroxy-3',5'-di-t-butylphenyl)ethenyl]-1,3-dimethylpyrazole, mp = 120-122°C.

Example 10H

3-[β-(4'-Hydroxy-3',5'-dimethoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester

To a solution of 3-[β-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester (2.25 g, 5.0 mmol) in dry THF (150 mL) is added tetra-n-butyl-ammonium fluoride (7.5 mL, 1M solution in THF) at 0°C. The reaction mixture is stirred at 0°C for one hour and then quenched by the dropwise addition of brine (100 mL) at 0°C. The layers are separated and the aqueous layer extracted with ethyl acetate. The combined organic layers are evaporated and the residue purified by flash chromatography (ethyl acetate/methylene chloride 1:1) to afford 1.35 g (80%) of 3-[β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester, mp = 112-114°C. Analysis for C_{17}H_{20}N_{2}O_{5}. Calculated C 61.44, H 6.07, N 8.43. Found C 61.23, H 6.08, N 8.44.

Example 10I

5-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester

According to the procedure of Example 10H, 5-[β-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester is reacted with tetra-n-butyl ammonium fluoride to afford 5-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester, in 46% yield, mp = 159-160°C. Analysis for C_{16}H_{15}N_{2}O_{3}. Calculated C 63.55, H 6.01, N 27. Found C 63.88, H 6.05, N 9.20.
Example 10J

3-[(6)-4-Hydroxy-3-methoxypheny]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, methyl ester

According to the procedure of Example 10H, 3-[(6)-4-butyldimethylsiloxy-3-methoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester is reacted with tetrabutyl ammonium fluoride to afford 3-[(6)-4-hydroxy-3-methoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester, in 78% yield, mp = 141-143°C. Analysis for C_{16}H_{18}N_{2}O_{4}. Calculated C=63.55, H=6.01, N=9.27. Found C=63.53, H=6.02, N=8.89.

Example 10K

3-[(6)-4-Hydroxy-3-methoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid

A solution of 3-[(6)-4-hydroxy-3-methoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester (1.1 g, 3.6 mmol) in aqueous sodium hydroxide (200 mL, 1N solution) with the minimum amount of hot ethanol needed for dissolution, is heated on a steam bath for 2 hours. The reaction mixture is cooled and neutralized with 4 N HCl. The resulting precipitate is collected by filtration and recrystallized from 2-propanol/water to afford 3-[(6)-4-hydroxy-3-methoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, 0.64 g (62%), mp = 225-232°C. Analysis for C_{15}H_{16}N_{2}O_{4}. Calculated C=62.49, H=5.59, N=9.72. Found C=62.35, H=5.64, N=9.69.

Example 10L

5-[(6)-4-Hydroxy-3-methoxyphenyl]ethenyl]-3-methyl-1H-pyrazole-1-acetic acid

According to the procedure of Example 10K, 5-[(6)-4-hydroxy-3-methoxyphenyl]ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester is saponified to afford 5-[(6)-4-hydroxy-3-methoxyphenyl]ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, in 71% yield. Mp = 285-288°C. Analysis for C_{15}H_{16}N_{2}O_{4}. Calculated C=62.49, H=5.59, N=9.72. Found C=62.26, H=5.58, N=9.56.

Example 10M

5-[(6)-4-Hydroxy-3'-5'-dimethoxyphenyl]ethenyl]-3-methyl-1H-pyrazole-1-acetic acid

According to the procedure of Example 10K, 5-[(6)-4-hydroxy-3',5'-dimethoxyphenyl]ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester is saponified to afford 5-[(6)-4-hydroxy-3',5'-dimethoxyphenyl]-ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, in 90% yield. Mp = 240-243°C. Analysis for C_{16}H_{18}N_{2}O_{5}·0.1 H_{2}O. Calculated C=60.03, H=5.73, N=8.75. Found C=59.90, H=5.50, N=8.66.

Example 10N

3-[(6)-4-Hydroxy-3',5'-dimethoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid

According to the procedure of Example 10K, 3-[(6)-4-hydroxy-3',5'-dimethoxyphenyl]ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester is saponified to afford 3-[(6)-4-hydroxy-3',5'-dimethoxyphenyl]-ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, in 65% yield. Mp = 232-234°C. Analysis for C_{16}H_{18}N_{2}O_{5}. Calculated C=60.37, H=5.70, N=8.80. Found C=60.20, H=5.88, N=8.53.
Example 10P

5-[β-(4’-Hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid

According to the procedure of Example 10K, 5-[β-(4’-hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid methyl ester is saponified to afford 5-[β-(4’-hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-3-methyl-1H-pyrazole-1-acetic acid, in 50% yield. Mp = 220-224°C. Analysis for C_{22}H_{30}N_{2}O_{5}. Calculated C 71.32, H 8.16, N 7.56. Found C 71.14, H 8.16, N 7.48.

Example 10Q

3-[β-(4’-Hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid

According to the procedure of Example 10K, 3-[β-(4’-hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid methyl ester is saponified to afford 3-[β-(4’-hydroxy-3’,5’-di-t-butylphenyl)ethenyl]-5-methyl-1H-pyrazole-1-acetic acid, in 50% yield. Mp = 227-229°C. Analysis for C_{22}H_{30}N_{2}O_{5}. Calculated C 71.32, H 8.16, N 7.56. Found C 71.22, H 8.18, N 7.53.

Example 11

3-[β-(3-Methoxy-4-hydroxyphenyl)ethenyl]-1H-pyrazole-5-carboxylic acid

Ethyl 3-[β-(3-methoxy-4-hydroxyphenyl)ethenyl]-1H-pyrazole-5-carboxylate (0.49 g, 1.7 mmole) is added to a solution of KOH (0.38 g, 6.8 mmole) in 50 ml EtOH. The reaction is warmed to reflux overnight. After cooling to room temperature, the reaction is diluted to 200 ml with H_{2}O, and acidified to pH=4 with HCl. A white precipitate forms, and it is collected by filtration. Drying in vacuum in the presence of P_{2}O_{5} gives 0.3 g (68%) of the desired product, mp = 270-271°C (dec).

Example 12

3,5-Bis[β-(4’-hydroxy-3’-methoxyphenyl)ethenyl]-isoxazole

1,7-Bis(4’-hydroxy-3’-methoxyphenyl)-3,5-heptadione (1.00 g, 2.7 mmole) (Bull. Acad. Polon. Sci. 8, 481-486, 1958), hydroxylamine hydrochloride (0.19 g, 2.7 mmole), and sodium acetate (0.44 g, 5.4 mmole) are dissolved in 50 ml of 95% ethanol. The reaction is stirred at reflux overnight. The solvent is removed, and the residue is taken up in ethyl acetate. The ethyl acetate solution is washed with water and dried over magnesium sulfate. A precipitate forms on standing at room temperature for 2 days, and it is collected by filtration to give a white solid. The solid is taken up in 20 ml of ethanol containing 0.5 ml of 2N hydrochloric acid. The solution is heated to reflux for one hour. After neutralization with sodium bicarbonate, the ethanol is evaporated, and the residue is partitioned between ethyl acetate and water. The organic layer is dried over magnesium sulfate and passed through a silica gel plug which is washed with 1:1 ethyl acetate-hexane. Evaporation of the solvent gives 0.2 g of the product obtained as a hydrate. mp = 106-107°C. Analysis for C_{21}H_{23}NO_{5}•0.4 mole H_{2}O. Calculated C 66.97, H 6.38, N 3.72. Found C 67.13, H 6.41, N 3.47.

Example 13

5-[β-(4’-Acetoxy-3’-methoxyphenyl)ethenyl]-3-trifluoromethylisoxazole

To a solution of isoxazole-3-trifluoromethyl-5-methyltriphenylphosphonium chloride (350 mg, 0.78 mmol)
in dimethylsulfoxide (5 ml) is added potassium tert-butoxide (120 mg, 1.10 mmol). The mixture is stirred at room temperature for 45 minutes under an inert atmosphere. Acetylvannilin (170 mg, 0.89 mmol) is then added and the reaction stirred an additional one hour. The mixture is poured into saturated aqueous ammonium chloride and extracted into ethyl acetate. The organic layer is washed with water and dried over magnesium sulfate. Concentration and flash chromatography (hexane/ethyl acetate 3:1) afforded 150 mg of 5-[(4'-acetoxy-3'-methoxyphenyl)ethenyl]-3-trifluoromethylisoxazole, of sufficient purity for subsequent reaction.

Example 13A

(E)-5-[(4'-Hydroxy-3',5'-bis(1,1-dimethylethyl) phenyl)ethenyl]-3-trifluoromethylisoxazole

According to the procedure of Example 13, potassium tert-butoxide (284 mg), isoxazole-3-trifluoromethyl-5-methyl triphenylphosphonium chloride (1.054 g), and 3,5-di-t-butyl-4-hydroxybenzaldehyde (250 mg) are reacted in DMSO for 24 hr at room temperature to afford a cis/trans mixture of two olefinic products. Refluxing a mixture of this isomeric mixture in HCl/methanol (12 hrs) affords pure (E)-5-[(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-3-trifluoromethylisoxazole (350 mg); mp = 132-134 °C. Analysis for C_{20}H_{24}NO_{2}F_{3}. Calculated C 65.38, H 6.58, N 3.81. Found C 65.58, H 6.68, N 3.92.

Example 14

5-[(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-3-trifluoromethylisoxazole

A solution of 5-[(4'-acetoxy-3'-methoxyphenyl)ethenyl]-3-trifluoromethylisoxazole (120 mg, 0.34 mmol) in methanol (3 ml) is cooled to 0 °C. Sodium methoxide (40 mg, 0.68 mmol) is added and the mixture stirred for 30 minutes. The mixture is diluted with ethyl acetate and washed with water. The organic layer is dried (magnesium sulfate) and concentrated. Recrystallization from hexane/ethyl acetate affords 80 mg of pure 5-[(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-trifluoromethylisoxazole; yield 82%; mp = 83-87 °C.

Example 15

1,7-Bis-(4'-hydroxyphenyl)-3,5-heptadione

A solution of 1,7-bis-(4'-hydroxyphenyl)-1,6-heptadiene-3,5-dione (1.99 g, 6.5 mmole) in tetrahydrofuran (100 ml) is hydrogenated over Raney-nickel (0.2 g) under 30.4 psi of H₂. The THF is evaporated, and the residue chromatographed in 5% MeOH/CHCl₃ to give 1.8 g (79%) of the desired product, mp = 108-110 °C.

Example 16

1-(3'-Methoxy-4'-hydroxyphenyl)hexane-3,5-dione

According to the procedure of Example 15, 1-(3'-methoxy-4'-hydroxyphenyl)-1-hexene-3,5-dione is hydrogenated to afford in 80% yield 1-(3'-methoxy-4'-hydroxyphenyl)hexane-3,5-dione as an oil.

Example 17

1-(4'-Hydroxy-3'-methoxyphenyl)-1-hexene-3,5-dione
Boric anhydride (16.32 g, 237.2 mmole) and acetylacetone are stirred at room temperature under nitrogen for 12 hours. 4-Hydroxy-3-methoxybenzaldehyde (18.06 g, 118.8 mmole) and tributyl borate (364 g, 3.16 mmole) are combined with the acetyl acetone/boric anhydride complex in 100 ml of ethyl acetate. The reaction is stirred at room temperature for one hour, at which time n-butylamine (4.34 g, 59.4 mmole) is added in 4 equal portions over 8 hours. The reaction is allowed to stir for 12 hours. 300 ml of water containing 20 ml of concentrated hydrochloric acid is added to the reaction and stirred for 2 hours. The solid which forms is removed by filtration through celite, and the layers of filtrate are separated. The ethyl acetate layer is washed with 2 x 100 ml of saturated sodium bicarbonate, followed by 100 ml of brine. Drying over magnesium sulfate followed by evaporation of the solvent gives a red solid. Chromatography in 5% ethyl acetate/chloroform gives 11.06 g (40%) of a yellow solid. mp = 146-147°C. Analysis for C_{13}H_{10}O_4 requires C-66.85, H-6.04. Found C-66.88, H-6.18.

The following compounds were made by the above procedure:

\[
\begin{array}{cccccc}
\text{Ex.} & R & R_1 & Z & \text{Melting Point} & \text{Yield} \\
18 & HO & Cl & Me & 155-157°C & 14\% \\
19 & MeO & HO & Me & 160-162°C & 13\% \\
20 & HO & MeO & 1 & 155-157°C & 75\% \\
21 & HO & MeO & Et & 101-102°C & 21\% \\
\end{array}
\]

1From

2From

Example 22

Ethyl 6-(3'-methoxy-4'-hydroxyphenyl)-2,4-dioxo-6- hexanoate

Sodium metal (1.8 g, 0.078 mole) is dissolved in absolute ethanol (50 ml) under an inert atmosphere. An ethanolic solution of 1-(3'-methoxy-4'-hydroxyphenyl)-1-buten-3-one (5.00 g, 0.028 mole) is then added slowly to the sodium ethoxide solution. The mixture is stirred for 10 minutes, after which diethyl oxalate (3.80 g, 0.026 mole) is added. The reaction is stirred at room temperature for 5 hours and then acidified with concentrated HCl. The mixture is then stirred at 0°C for 1 hour. The precipitate is collected and dried.
to afford 4.8 g of ethyl 6-(3'-methoxy-4'-hydroxyphenyl)-2,4-dioxo-5-hexenoate; 63% yield; mp = 97-98 °C.

Example 22A

1-(4'-t-Butyldimethylsilyloxy-3'-methoxyphenyl)-1-hexene-3,5-dione

A solution of 1-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)-1-butene-3-one (12.8 g, 41.8 mmol) in THF (50 mL) is cooled to -78 °C under an argon atmosphere. Lithium di-isopropyl amide (83.5 mmol, in 50 mL THF) is slowly added to the reaction mixture. The reaction is stirred at -78 °C for 30 minutes. Acetyl chloride (16.4 g, 209 mmol) dissolved in THF (20 mL) is then added to the reaction over a 30 minute period. The reaction is quenched with aqueous HCl. The layers are separated, and the aqueous layer is washed with ethyl acetate. The combined organic layers are washed with saturated aqueous sodium bicarbonate, dried over MgSO₄, and evaporated to give a red oil. Flash chromatography (ethyl ether/hexane 2:8) afford 5.0 g (34%) of 1-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)-1-hexene-3,5-dione, mp = 81-85 °C.

Example 22B

1-(4'-Hydroxy-3'-methoxyphenyl)-6,6,6-trifluoro-1-hexene-3,5-dione

According to the procedure of Example 22A, 1-(4'-hydroxy-3'-methoxyphenyl)-1-butene-3-one is reacted with lithium di-isopropyl amide (3.0 equiv) and trifluoroacetic anhydride (2.0 equiv) to afford 1-(4'-hydroxy-3'-methoxyphenyl)-6,6,6-trifluoro-1-hexene-3,5-dione in 10% yield, mp = 97-100 °C.

Example 22C

1-(4'-t-Butyldimethylsilyloxy-3'-methoxyphenyl)-1-butene-3-one

To a methylene chloride (100 mL) solution of 1-(4'-hydroxy-3'-methoxyphenyl)-1-butene-3-one (10.0 g, 52 mmol) is added triethyl amine (5.8 g, 57.2 mmol) and t-butyldichloromethyl silane (15.7 g, 104 mmol). The reaction is stirred at room temperature for 12 hours under an argon atmosphere. The mixture is washed with water (3 × 100 mL) and brine (100 mL). The organic layer is dried over MgSO₄ and evaporated. Flash chromatography (ethyl ether/hexane 1:1) affords 12.8 g (80%) of the desired 1-(4'-t-butyldimethylsilyloxy-3'-methoxyphenyl)-1-butene-3-one, mp = 65-68 °C.

Example 22D

1-(4'-t-Butyldimethylsilyloxy-3',5'-dimethoxyphenyl)-1-hexene-3,5-dione

According to the procedure of Example 22C, 1-(4'-hydroxy-3',5'-dimethoxyphenyl)-1-hexene-3,5-dione is reacted with t-butyldichloromethyl silane to afford 1-(4'-t-butyldimethylsilyloxy-3',5'-dimethoxyphenyl)-1-hexene-3,5-dione suitably pure for further use.

Example 23

5-Chloromethyl-3-trifluoromethylisoxazole

A solution of 3-trifluoromethyl-5-hydroxymethylisoxazole ([700 mg, 4.2 mmol] See K. Tanaka et al, Bull.)
Chem. Soc. Jpn., 57, 2184 (1984)] and triphenylphosphine (1.43 g, 5.4 mmol) in carbontetrachloride (50 ml) and dichloromethane (20 ml) is heated at reflux for 6 hours. The reaction mixture is then cooled to room temperature and passed through a silica gel plug. Concentration affords in 82% yield the desired 5-chloromethyl-3-trifluoromethylisoxazole of sufficient purity for the following step (Example 24).

Example 24

Isoxazole, 3-trifluoromethyl-5-methyltriphenyl phosphonium chloride

Triphenylphosphine (1.016 g, 3.9 mmol) and 5-chloromethyl-3-trifluoromethylisoxazole (0.72 g, 3.9 mmol) are dissolved in toluene (40 ml) and heated at reflux for 24 hours. Upon cooling, a white precipitate formed and was filtered to afford in 60% yield the desired isoxazole, 3-trifluoromethyl-5-methyltriphenylphosphonium chloride, mp = 245-250 °C.

Example 25

5-Isoxazoleethanol, α-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-methyl-

3,5-Dimethylisoxazole (26 g, 2.7 × 10⁻¹ M) is dissolved in dry THF (100 ml) and cooled to -78 °C with an acetone dry ice bath. n-Butyllithium (2.7 × 10⁻¹ M) is added dropwise via a syringe. The 3,5-dimethylisoxazole, n-butyllithium mixture is stirred at -78 °C for two hours under an argon atmosphere. 3,5-Di-tert-buty1-4-hydroxybenzaldehyde (18 g, 17.68 × 10⁻² M) is dissolved in dry THF (200 ml) and added dropwise via cannula under an argon atmosphere to the 3,5-dimethylisoxazole and n-butyllithium mixture. The reaction mixture is allowed to warm to room temperature and is stirred for an additional eight hours. The reaction mixture is evaporated to near dryness, redissolved in ethyl acetate (500 ml), washed with distilled water, then brine. The organic phase is dried over sodium sulfate, filtered, evaporated to dryness, and chromatographed on flash silica using hexane/ethyl acetate 3:2 to give 16.8 g (70% yield) of the desired 5-isoxazoleethanol, α-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-methyl-; mp = 145-147 °C. Analysis for C₂₀H₂₅O₂N (331.46). Calculated C=72.47, H=8.81, N=4.22. Found C=72.31, H=8.84, N=4.24.

Example 25A

5-Isoxazoleethanol, α-[4-hydroxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[4-hydroxyphenyl]-3-methyl-, pure enough for subsequent use.

Example 25B

5-Isoxazoleethanol, α-[3,5-dimethyl-4-hydroxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 3,5-dimethyl-4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[3,5-dimethyl-4-hydroxyphenyl]-3-methyl-, in 31% yield.

Example 25C

5-Isoxazoleethanol, α-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-phenyl-
According to the procedure of Example 25, 3-phenyl-5-methylisoxazole is reacted with 3,5-bis(1,1-dimethylethyl)-4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-phenyl-, in 33% yield.

Example 25D

5-Isoxazoleethanol, α-[3,5-dimethoxy-4-hydroxy phenyl]-3-phenyl-

According to the procedure of Example 25, 3-phenyl-5-methylisoxazole is reacted with 3,5-dimethoxy-4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[3,5-dimethoxy-4-hydroxyphenyl]-3-phenyl-, in 30% yield.

Example 25E

5-Isoxazoleethanol, α-[3-methoxy-4-hydroxyphenyl]-3-phenyl-

According to the procedure of Example 25, 3-phenyl-5-methylisoxazole is reacted with vanillin to afford 5-isoxazoleethanol, α-[3-methoxy-4-hydroxyphenyl]-3-phenyl-, in 41% yield.

Example 25F

5-Isoxazoleethanol, α-[3,5-dibromo-4-hydroxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 3,5-dibromo-4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[3,5-dibromo-4-hydroxyphenyl]-3-methyl-, in 53% yield. Mp = 139-143 °C.

Example 25G

5-Isoxazoleethanol, α-[3,5-dichloro-4-hydroxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 3,5-dichloro-4-hydroxybenzaldehyde to afford 5-isoxazoleethanol, α-[3,5-dichloro-4-hydroxyphenyl]-3-methyl-, in 61% yield. Mp = 129-131 °C.

Example 25H

5-Isoxazoleethanol, α-[2-hydroxy-3-methoxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 2-hydroxy-3-methoxybenzaldehyde to afford 5-isoxazoleethanol, α-[2-hydroxy-3-methoxyphenyl]-3-methyl-, as an oil in 83% yield.

Example 25J

5-Isoxazoleethanol, α-[2-hydroxy-3,5-dibromophenyl]-3-methyl-
According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 3,5-dibromosalicylaldehyde to afford 5-isoxazoleethanol, α-[2-hydroxy-3,5-dibromophenyl]-3-methyl-, in 47% yield.

Example 25K

5-Isoxazoleethanol, α-[2-hydroxy-3,5-dichlorophenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole is reacted with 3,5-dichlorosalicylaldehyde to afford 5-isoxazoleethanol, α-[2-hydroxy-3,5-dichlorophenyl]-3-methyl-in 74% yield, mp = 151-153 °C.

Example 26

5-Isoxazoleethanol, α-[4-hydroxy-3-methoxyphenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole (10 g, 0.103 mole) is reacted with n-butyllithium (0.103 mole) and vanillin (7.8 g, 0.0615 mole) to afford 5-isoxazoleethanol, α-(4-hydroxy-3-methoxyphenyl)-3-methyl- (10 g, 78%); mp = 128-135 °C.

Example 27

5-Isoxazoleethanol, α-[4-hydroxy-3,5-bis(1-methyl ethyl)phenyl]-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole (11.5 g, 0.049 mole) is reacted with n-butyllithium (0.049 mole) and 3,5-bis(1-methyl ethyl)-4-hydroxybenzaldehyde (5 g, 0.0243 mole) to afford 5-isoxazoleethanol, α-(4-hydroxy-3,5-bis(1-methyl ethyl)phenyl)-3-methyl-(4.0 g, 56%); mp = 79 °C.

Example 28

5-Isoxazoleethanol, α-(4-hydroxy-3,5-dimethoxy phenyl)-3-methyl-

According to the procedure of Example 25, 3,5-dimethylisoxazole (4.28 g, 0.044 mole) is reacted with n-butyllithium (0.044 mole) and 4-hydroxy-3,5-dimethoxybenzaldehyde (4.00 g, 0.022 mole) to afford 5-isoxazoleethanol, α-(4-hydroxy-3,5-dimethoxyphenyl)-3-methyl-(3.82 g, 63%); mp = 142 °C.

Example 29

5-[β-(4'-Hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl) ethenyl]-3-methylisoxazole

A solution of 5-isoxazoleethanol, α-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-methyl-(16.8 g, 0.0507 mole) in HCl-saturated methanol (300 mL) is refluxed for 24 hr. The reaction mixture is evaporated to dryness, redissolved in ethyl acetate (400 mL), neutralized with 15% aqueous sodium bicarbonate and washed with brine. The residual organics are then dried (sodium sulfate) and concentrated to give a residue. Flash chromatography (hexane/ethyl acetate 3:1) affords 11.0 g of 5-[β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-3-methylisoxazole; mp = 174-175 °C. Calculated C-78.64, H, 8.88, N, 4.47. Found C-78.60; H, 8.82; N, 4.33.
Example 30

5-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-3-methyl isoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-(4-hydroxy-3-methoxyphenyl)-3-methyl-(10 g, 0.04 mole) is reacted with HCl-methanol to afford 5-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole (7.5 g, 80%); mp = 123-127 °C. Calculated C-67.52, H-5.67, N-6.06. Found C-67.14, H-5.68, N-5.96.

Example 31

5-[β-(4'-Hydroxy-3’,5’-bis(1-methylethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-(4-hydroxy-3,5-bis(1-methylethyl)phenyl)-3-methyl-(4.0 g, 0.013 mole) is reacted with HCl-methanol to afford 5-[β-(4'-hydroxy-3’,5’-bis(1-methylethyl)phenyl)ethenyl]-3-methylisoxazole (3.9 g, 98%); mp = 119-120 °C. Calculated C-75.76, H-8.12, N-4.91. Found C-75.68, H-8.16, N-4.96.

Example 32

5-[β-(4'-Hydroxy-3’,5’-dimethoxyphenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-(4-hydroxy-3,5-dimethoxyphenyl)-3-methyl-(3.00 g, 10.7 mmole) is reacted with HCl-methanol to afford 5-[β-(4'-hydroxy-3’,5’-dimethoxyphenyl)ethenyl]-3-methylisoxazole (1.92 g, 69%); mp = 152-157 °C. Calculated C-64.36, H-5.79, N-5.36. Found C-64.30, H-5.74, N-5.34.

Example 32A

5-[β-(4'-Hydroxyphenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-(4-hydroxyphenyl)-3-methyl- is reacted with HCl-methanol to afford 5-[β-(4'-hydroxyphenyl)ethenyl]-3-methylisoxazole (6.74 g, 14%); mp = 117-119 °C.

Example 32B

5-[β-(4'-Hydroxy-3’,5’-dimethylphenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-[3,5-dimethyl-4-hydroxyphenyl]-3-methyl- is reacted with HCl-methanol to afford 5-[β-(4'-hydroxy-3’,5’-dimethylphenyl)ethenyl]-3-methylisoxazole (0.62 g, 85%); mp = 158-161 °C. Analysis for C_{14}H_{13}NO_{2}. Calculated C-73.34, H-6.59, N-6.10. Found C-73.35, H-6.44, N-6.05.

Example 32C

5-[β-(4'-Hydroxy-3’,5’-bis(1,1-dimethylethyl)phenyl)ethenyl]-3-phenylisoxazole
According to the procedure of Example 29, 5-isoxazoleethanol, α-[3,5-bis(1,1-dimethyllethyl)-4-hydroxyphenyl]-3-phenyl-is reacted with HCl-methanol to afford 5-α-[4'-hydroxy-3',5'-bis(1,1-dimethyllethyl)-phenyl] ethenyl]-3-phenylisoxazole (0.35 g, 90%); mp = 157-181 °C. analysis for C26H29NO2. Calculated C= 79.86, H= 7.76, N= 3.73. Found C=79.78, H= 7.74, N= 3.71.

Example 32D

5-α-[4'-Hydroxy-3',5'-dimethoxyphenyl]ethenyl]-3-phenylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-[3,5-dimethoxy-4-hydroxyphenyl]-3-phenyl-is reacted with HCl-methanol to afford 5-α-[4'-hydroxy-3',5'-dimethoxyphenyl] ethenyl]-3-phenylisoxazole (1.1 g, 95%); mp = 135-140 °C. Analysis for C18H17NO2. Calculated C= 70.58, H= 5.30, N= 4.33. Found C= 70.70, H= 5.17, N= 4.25.

Example 32E

5-α-[4'-Hydroxy-3'-methoxyphenyl]ethenyl]-3-phenyl isoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-[3-methoxy-4-hydroxyphenyl]-3-phenyl-is reacted with HCl-methanol to afford 5-α-[4'-hydroxy-3'-methoxyphenyl]ethenyl]-3-phenylisoxazole (1.0 g, 95%) mp = 148-152 °C. Analysis for C18H15NO2. Calculated C= 73.71, H= 5.15, N= 4.77. Found C= 73.33, H= 5.13, N= 4.69.

Example 32F

5-α-[2'-Hydroxy-3'-methoxyphenyl]ethenyl]-3-methyl isoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-[2-hydroxy-3-methoxyphenyl]-3-methyl-is reacted with HCl-methanol to afford 5-α-[2'-hydroxy-3'-methoxyphenyl]ethenyl]-3-methylisoxazole (31%); mp = 129-131 °C. Analysis for C15H13NO2. Calculated C= 67.51, H= 5.68, N= 6.06. Found C= 67.51, H= 5.70, N= 5.95.

Example 32G

5-α-[4'-Hydroxy-3',5'-dibromophenyl]ethenyl]-3-methylisoxazole

According to the procedure of Example 29, 5-isoxazoleethanol, α-[3,5-dibromo-4-hydroxyphenyl]-3-methyl-is reacted with HCl-methanol to afford 5-α-[4'-hydroxy-3',5'-dibromophenyl]ethenyl]-3-methylisoxazole (15%), mp = 167-169 °C. Analysis for C21H20Br2NO2. Calculated C= 40.12, H= 2.53, N= 3.90, Br= 44.49. Found C= 40.18, H= 2.48, N= 3.64, Br= 44.88.

Example 32H

5-α-[4'-Hydroxy-3',5'-dichlorophenyl]ethenyl]-3-methylisoxazole

A toluene (100 mL) solution of 5-isoxazoleethanol, α-[3,5-dichloro-4-hydroxyphenyl]-3-methyl-(5.5 g, 19.1 mmol) containing a catalytic amount of p-toluenesulfonic acid is warmed to reflux for 3 hours, with azototropic removal of water. The solvent is evaporated, and the residue is chromatographed (ethyl
acetate/chloroform, 1:9) to afford 5-[β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-3-methylisoxazole (2.3 g, 45%). mp = 184-186 °C. Analysis for C_{12}H_{8}Cl_{2}NO_{2}. Calculated C=53.35, H=3.37, N=5.19. Found C=52.98, H=3.22, N=5.28.

Example 32J

5-[β-(2'-Hydroxy-3',5'-dibromophenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 32H, 5-isoxazoleethanol, α-[2-hydroxy-3,5-dibromophenyl]-3-methylis reacted with p-toluenesulfonic acid/toluene to afford 5-[β-(2'-hydroxy-3',5'-dibromophenyl)ethenyl]-3-methylisoxazole in 70% yield, mp = 150-157 °C. Analysis for C_{12}H_{8}NO_{2}Br_{2}. Calculated C=40.15, H=2.53, N=3.90. Found C=39.85, H=2.47, N=3.75.

Example 33

4-Acetoxy-3-methoxyoxininaldehyde

Acetoxy vanillin (5.0 g, 2.6×10^{-2} M) is dissolved in dry THF (300 ml) with formyl methylenetriphenyln-phosphorane (78 g, 2.6×10^{-2} M) and refluxed under an atmosphere of argon for 80 hours. The reaction mixture is concentrated to dryness and chromatographed on flash silica to afford 4-acetoxy-3-methoxyoaxininaldehyde (3 g, 54% yield); mp=83-86 °C.

Example 34

4-Acetoxy-3-methoxyoxininaldehyde oxime

4-Acetoxy-3-methoxyoxininaldehyde (2.0 g, 9.1×10^{-3} M) is dissolved in methanol (100 ml) and cooled to 0 °C with an ice/water bath. Hydroxylamine hydrochloride (0.8 g, 1.2×10^{-2} M) is added with sodium acetate (0.97 g, 1.2×10^{-2} M) and stirred for one hour. The reaction mixture is concentrated to near dryness, and redissolved in ethyl acetate (150 ml). The residual organics are washed twice with water dried over sodium sulfate, filtered, evaporated to dryness, and chromatographed on flash silica using hexane:ethyl acetate 3:1 to afford 1.45 g of 4-acetoxy-3-methoxyoxininaldehyde oxime in 68% yield; mp=72-74 °C.

Example 35

3-[β-(4'-Acetoxy-3'-methoxyphenyl)ethenyl]-5-phenyl isoxazole

4-Acetoxy-3-methoxyoxininaldehyde oxime (0.6, 2.5×10^{-3} M) is dissolved in dry DMF (15 ml) at 0 °C under an atmosphere of argon. N-chlorosuccinimide (0.4 g, 3.0×10^{-3} M) is dissolved in dry DMF (10 ml)
and transferred to the 4-acetoxycinnamaldehyde/DMF solution via cannula under an atmosphere of argon. The reaction is stirred at 0 °C for nearly two hours. Phenylacetylene (1.3 g, 1.3 × 10⁻² M) is mixed with triethylamine (0.38 g, 3.8 × 10⁻³ M) and dry DMF (5 ml). This mixture is then added via syringe to the cinnamaldehyde/NCS mixture. The entire mixture is allowed to reach room temperature and is stirred overnight. The reaction mixture is redissolved in ethyl acetate (150 ml), washed first with water, then with brine. The organics are dried over sodium sulfate, filtered, and evaporated to dryness. The residue is chromatographed on flash silica using hexane/ethyl acetate 3:2 to afford 0.45 g of 3-[β-(4-acetoxyl-3-methoxyphenyl)ethenyl]-5-phenylisoxazole in 54% yield; mp = 139-144 °C.

Example 35A

3-[α-(4-Acetoxy-3-methoxyphenyl)ethenyl]-5-(2-hydroxyethyl)isoxazole

According to the procedure of Example 35, 4-acetoxyl-3-methoxycinnamaldehyde oxime is reacted with N-chlorosuccinimide and 3-butyln-1-ol to afford 3-[α-(4-acetoxyl-3-methoxyphenyl)ethenyl]-5-(2-hydroxyethyl)isoxazole (2.0 g, 50%); mp = 62-64 °C.

Example 35B

3-[β-(4-Acetoxy-3-methoxyphenyl)ethenyl]-5-hydroxy methylisoxazole

According to the procedure of Example 35, 4-acetoxyl-3-methoxycinnamaldehyde oxime is reacted with N-chlorosuccinimide and propargyl alcohol to afford 3-[β-(4-acetoxyl-3-methoxyphenyl)ethenyl]-5-hydroxymethylisoxazole (2.5 g, 67%); sufficiently pure for further use.

Example 35C

3-Phenyl-5-methylisoxazole

Benzaldehyde oxime (20.0 g, 0.165 mole) is dissolved in DMF (250 ml) and cooled to 4 °C in an ice bath. N-chlorosuccinimide (33.1 g, 0.248 mole) is added to the reaction mixture, and the mixture is stirred for one hour. Isopropenyl acetate (41.3 g, 0.41 mole) and triethyl amine (24.8 g, 0.247 mole) are added via an equal-pressure addition funnel to the solution of benzaldehyde hydroxamic chloride. The ice bath is removed and the mixture is stirred for 24 hours. The mixture is then taken up into ethyl acetate (1 L) and washed with water (2 × 1 L). The organic layer is dried over sodium sulfate and evaporated to give a residue. Flash chromatography (hexane/ethyl acetate 9:1) affords 12.0 g of 3-phenyl-5-methylisoxazole as a yellow oil.

Example 36

3-[β-(4-Hydroxy-3-methoxyphenyl)ethenyl]-5-phenyl isoxazole

3-[β-(4-Acetoxy-3-methoxyphenyl)ethenyl]-5-phenyl isoxazole (0.3 g, 8.9 × 10⁻⁴ M) is dissolved in MeOH (20 ml) and stirred with sodium methoxide (0.1 g, 1.8 × 10⁻³ M) for one hour. The reaction mixture is concentrated to dryness, redissolved in ethyl acetate (75 ml), and washed twice with water. The organics are dried over sodium sulfate, filtered, evaporated to dryness, and chromatographed on flash silica using hexane/ethyl acetate to afford 0.25 g of 3-[β-(4-hydroxy-3-methoxyphenyl)ethenyl]-5-phenyl isoxazole in 97% yield; mp = 135-138 °C. Calculated C=73.71, H=5.15, N=4.77. Found C=73.35, H=5.35, N=4.77.
Example 36A

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-(2'-hydroxyethyl)isoxazole

According to the procedure of Example 36, 3-[β-(4'-acetoxy-3'-methoxyphenyl)ethenyl]-5-(2'-hydroxyethyl)isoxazole is reacted with sodium methoxide/methanol to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-(2'-hydroxyethyl)isoxazole (0.24 g, 93%); mp = 127-131 °C. Analysis for C14H15NO2. Calculated C=64.35, H=5.99, N=5.36. Found C=64.40, H=5.78, N=5.15.

Example 36B

3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-hydroxy methylisoxazole

According to the procedure of Example 36, 3-[β-(4'-acetoxy-3'-methoxyphenyl)ethenyl]-5-hydroxy methylisoxazole is reacted with sodium methoxide/methanol to afford 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-hydroxy methylisoxazole (0.6 g, 79%); mp = 139-143 °C. Analysis for C13H13NO4·0.4 H2O. Calculated C=63.36, H=5.46, N=5.50. Found C=63.34, H=5.53, N=5.30.

Example 37

3-[β-(4'-Acetoxy-3'-methoxyphenyl)ethenyl]-5-methyl pyrazole

To a solution of 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole (2.50 g, 10.9 mmoles) in pyridine (30 mL) is added acetic anhydride (5.54 g, 54.3 mmoles). The reaction is stirred at room temperature for 12 hr. After this time, the reaction mixture is added dropwise to vigorously stirred ice-water (500 mL). The resulting suspension is allowed to stand for 90 minutes and the crude diacetyl product (3.2 g) is collected by filtration. The crude diacetyl product is dissolved in acetone (300 mL), water (30 mL) and methanol (30 mL). Basic alumina (100 g, Woelm basic, tlc grade) is added and the reaction mixture refluxed for 4.5 hr. The alumina is filtered and rinsed with acetone (100 mL). The combined filtrate is evaporated and the residue partitioned between water and ethyl acetate. The organic layer is dried (MgSO4) and concentrated to afford, after flash chromatography [chloroform:ethyl acetate 3:1], 1.71 g of pure 3-[β-(4'-acetoxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole; mp = 131-136 °C. Analysis for C15H14N2O3. Calculated C=66.16, H=5.92, N=10.29. Found C=66.49, H=5.92, N=10.29.

Example 38

3-[β-(4'-Hydroxy-3',5'-bis(1,1-dimethyl)phenyl) ethenyl]-5-methylpyrazole

A solution of 5-[β-(4'-hydroxy-3',5'-bis(1,1-dimethyl)phenyl)ethenyl]-3-methylisoxazole (2.00 g, 6.4 mmoles), water (0.115 g, 6.4 mmoles) and molybdenum hexacarbonyl (1.27 g, 48 mmoles) in acetonitrile (75 mL) is refluxed for 12 hr under a nitrogen atmosphere. The reaction mixture is cooled and evaporated to dryness. The residue is dissolved in methanol (250 mL) and acidified to pH = 1 with 4 N HCl. After stirring for 4 hr at room temperature, the methanol is evaporated. The resulting aqueous solution is neutralized with 1 N NaOH and the organic material is extracted into ethyl acetate. The organic solution is passed through a pad of silica gel (150 g) and further eluted with chloroform (400 mL). The combined filtrate is evaporated to dryness, taken up in a minimal amount of ethyl acetate, and passed through a silica gel pad again. The resulting crude diketone (1.25 g) is then suspended in a mixture of acetic acid (100 mL) and 87% hydrazine (1.0 mL). The reaction mixture is stirred for 12 hr at room temperature. Evaporation affords a gummy residue which solidifies on stirring in water (100 mL) for 30 minutes. The solid is purified by flash chromatography [methylenechloride/ethyl acetate 1:1] to afford 1.10 g of 3-[β-(4'-hydroxy-3',5'-bis(1,1-dimethyl)phenyl)ethenyl]-5-methylpyrazole; mp = 218-223 °C. Analysis for C21H23N2O. Calculated C-
Example 38A

3-[(β-(4'-Hydroxy-3',5'-bis(1-methylethyl)phenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 38, 5-[(β-(4'-hydroxy-3',5'-bis(1-methylethyl)phenyl)ethenyl]-3-methylisoxazole is reacted with molybdenum hexacarbonyl to afford 3-[(β-(4'-hydroxy-3',5'-bis(1,1-dimethylmethyl)phenyl)ethenyl]-5-methylpyrazole in 53% yield, mp = 183-184° C. Analysis for C_{18}H_{24}N_{2}O\cdot0.1H_{2}O. Calculated C-75.54, H-8.52, N-8.79. Found C-75.33, H-8.72, N-8.48.

Example 38B

3-[(β-(4'-Hydroxy-3',5'-dimethoxyphenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 38, 5-[(β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole is reacted with molybdenum hexacarbonyl to afford 3-[(β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-5-methylpyrazole in 56% yield, mp = 153-155° C. Analysis for C_{14}H_{14}N_{2}O_2. Calculated C-64.60, H-6.19, N-10.76. Found C-64.36, H-6.24, N-10.61.

Example 38C

3-[(β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 38, 5-[(β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole is reacted with molybdenum hexacarbonyl to afford 3-[(β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole in 65% yield, mp = 145-147° C. Analysis for C_{13}H_{14}N_{2}O_2. Calculated C-67.81, H-6.13, N-12.17. Found C-67.62, H-6.18, N-11.93.

Example 38D

3-[(β-(2'-Hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 38, 5-[(β-(2'-hydroxy-3',5'-dibromophenyl)ethenyl]-3-methylisoxazole is reacted with molybdenum hexacarbonyl to afford 3-[(β-(2'-hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole in 30% yield, mp = 191-200° C. Analysis for C_{14}H_{10}O_2Br_2. Calculated C-40.26, H-2.82, N-7.82, Br-44.64. Found C-40.02, H-2.82, N-7.71, Br-44.35.

Example 39

5-[(β-(4'-Hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole

A solution of 3-methyl-5-isoxazoleacetic acid (10.0 g, 71 mmol) [see reference R. G. Miettich, Canadian J. Chem., 48, (2006) 1970], syringaldehyde (12.9 g, 71 mmol), piperidine (0.6 g, 7 mmol), and acetic acid (0.42 g, 7 mmol) in toluene (500 mL) is refluxed with azotropic removal of water for 3 hours. The mixture is cooled, and the solid is collected by filtration. The solid is dissolved in pyridine (100 mL) and refluxed for 4 hours. The solvent is evaporated, and the residue purified by flash chromatography (methanol/chloroform 1:9) and recrystallization (ethyl acetate) to afford 5-[(β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-
methylisoxazole (7.73 g, 42%); mp = 152-155°C. Analysis for C_{14}H_{15}NO_{3}. Calculated C=64.36, H=5.79, N=5.36. Found C=64.16, H=5.68, N=5.28.

Example 39A

5-[β-(3'-Methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 39, 5-bromovanillin is reacted with 3-methyl-5-isoxazoleacetic acid to afford 5-[β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-3-methylisoxazole in 55% yield, mp = 178-180°C. Analysis for C_{15}H_{12}NO_{3}Br. Calculated C=50.33, H=3.90, N=4.54. Found C=50.35, H=3.88, N=4.44.

Example 40

5-[α-Carbomethoxy-β-(4'-hydroxy-3',5'-dimethoxy phenyl)ethenyl]-3-methylisoxazole

A solution of 3-methyl-5-isoxazoleacetic acid methyl ester (7.75 g, 50 mmol), syringaldehyde (9.1 g, 50 mmol), piperidine (0.42 g, 5 mmol), and acetic acid (0.3 g, 5 mmol) in toluene (250 mL) is refluxed for 12 hours with azetric removal of water. Concentration affords a residue which is taken up in ethyl acetate and adsorbed onto dry silica gel pad. The pad is washed with ethyl acetate, and the filtrate is then evaporated. Recrystallization from ethyl acetate/hexane gives 5-[α-carbomethoxy-β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole (7.9 g, 50%). mp = 130-132°C. Analysis for C_{15}H_{17}NO_{3}. Calculated C=60.17, H=5.38, N=4.39. Found C=60.17, H=5.53, N=4.34.

Example 41

5-[α-Carbomethoxy-β-(4'-hydroxy-3,5-dichlorophenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 3,5-dichloro-4-hydroxybenzaldehyde to afford 5-[α-carbomethoxy-β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-3-methylisoxazole (37%), mp = 198-200°C. Analysis for C_{16}H_{13}Cl_{2}NO_{3}. Calculated C=51.24, H=3.39, N=4.27, Cl=21.61. Found C=50.99, H=3.28, N=4.37, Cl=20.88.

Example 42

5-[α-Carbomethoxy-β-(4'-hydroxy-3',5'-bis(1-methyl ethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-bis(1-methyl ethyl)benzaldehyde to afford 5-[α-carbomethoxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethylmethyl)phenyl)ethenyl]-3-methylisoxazole (41%), mp = 126-128°C. Analysis for C_{20}H_{25}NO_{3}. Calculated C=69.94, H=7.35, N=4.08. Found C=69.88, H=7.29, N=3.72.

Example 43

5-[α-Carbomethoxy-β-(4'-hydroxy-3',5'-dimethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-dimethylbenzaldehyde to afford 5-[α-carbomethoxy-β-(4'-hydroxy-3',5'-dimethylphenyl)ethenyl]-3-methylisoxazole (45%), mp = 178-178°C. Analysis for C_{15}H_{17}NO_{3}. Calculated C=66.88, H=5.88,
N-4.88, found C-66.46, H-6.01, N-4.85.

Example 44

5-([α-Carbomethoxy-β-(4'-hydroxy-3',5'-dibromophenyl) ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-dibromobenzoaldehyde to afford 5-([α-carbomethoxy-β-(4'-hydroxy-3',5'-dibromophenyl) ethenyl]-3-methylisoxazole (48%), mp = 164-166 °C. Analysis for C_{14}H_{11}Br_{2}NO_{2}. Calculated C-40.32, H-2.66, N-3.36, Br-38.32. Found C-40.34, H-2.61, N-3.30, Br-38.38.

Example 45

5-([α-Carbomethoxy-β-(4'-hydroxy-3'-methoxyphenyl) ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with vanillin to afford 5-([α-carbomethoxy-β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole (51%), mp = 117-119 °C. Analysis for C_{15}H_{15}NO_{5}. Calculated C-60.17, H-5.38, N-4.39. Found C-60.17, H-5.53, N-4.34.

Example 46

5-([α-Carbomethoxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-bis(1,1-dimethylethyl) benzaldehyde (with the exception of a longer reaction time of 6 days) to afford 5-([α-carbomethoxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl) ethenyl]-3-methylisoxazole (25%), mp = 131-136 °C. Analysis for C_{28}H_{28}NO_{5}. Calculated C-71.13, H-7.87, N-3.77. Found C-71.41, H-7.99, N-3.75.

Example 46A

5-([α-Carbomethoxy-β-(3'-methoxy-4'-hydroxy-5'-bromo phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 5-bromovanillin to afford 5-([α-carbomethoxy-β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-3-methylisoxazole in 38% yield, mp = 138-140 °C. Analysis for C_{15}H_{14}NO_{5}Br. Calculated C-48.93, H-3.84, N-3.80, Br-21.70. Found C-48.10, H-3.88, N-3.96, Br-21.35.

Example 47

5-([α-Carboxy-β-(4'-hydroxy-3',5'-dimethoxyphenyl) ethenyl]-3-methylisoxazole

A solution of 5-([α-carbomethoxy-β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole (3.0 g, 9.4 mmol) in 1 N aqueous KOH (100 mL) is stirred at room temperature for 18 hours. The solution is acidified with aqueous HCl and the precipitate formed is collected by filtration. Recrystallization from methanol/water 1:9 affords 5-([α-carboxy-β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methyl-isoxazole (2.17 g, 76%); mp = 217-219 °C. Analysis for C_{15}H_{13}NO_{5}. Calculated C-59.01, H-4.98, N-4.58. Found C-58.96, H-4.90, N-4.51.
Example 48

5-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl) ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl) ethenyl]-3-methylisoxazole is saponified to afford 5-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl) ethenyl]-3-methylisoxazole (84%), mp = 229-230°C. Analysis for C_{13}H_{13}NO_{6}. Calculated C 49.70, H 2.65, N 4.46, Cl 22.57. Found C 49.46, H 2.65, N 4.17, Cl 22.54.

Example 49

5-[α-carboxy-β-(4'-hydroxy-3',5'-bis(1-methyl ethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[α-carboxymethoxy-β-(4'-hydroxy-3',5'-bis(1-methyl ethyl)phenyl)ethenyl]-3-methylisoxazole is saponified to afford 5-[α-carboxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethyl methyl)phenyl)ethenyl]-3-methylisoxazole (83%), mp = 192-194°C. Analysis for C_{19}H_{23}NO_{6}. Calculated C 69.27, H 7.05, N 4.25. Found C 69.51, H 7.06, N 4.18.

Example 50

5-[α-carboxy-β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[α-carboxymethoxy-β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole is saponified to afford 5-[α-carboxy-β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-3-methylisoxazole (73%), mp = 198-199°C. Analysis for C_{16}H_{13}NO_{5}. Calculated C 61.08, H 4.77, N 5.09. Found C 60.74, H 4.72, N 4.85.

Example 51

5-[α-carboxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethyl ethyl)phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[α-carboxymethoxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethyl ethyl)phenyl)ethenyl]-3-methylisoxazole is saponified to afford 5-[α-carboxy-β-(4'-hydroxy-3',5'-bis(1,1-dimethyl ethyl)phenyl)ethenyl]-3-methylisoxazole (85%), mp = 219-221°C. Analysis for C_{21}H_{27}NO_{6}. Calculated C 70.55, H 7.63, N 3.92. Found C 70.48, H 7.64, N 3.84.

Example 52

5-[α-carboxy-β-(4'-hydroxy-3',5'-dimethylphenyl) ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[α-carboxymethoxy-β-(4'-hydroxy-3',5'-dimethylphenyl)ethenyl]-3-methylisoxazole is saponified to afford 5-[α-carboxy-β-(4'-hydroxy-3',5'-dimethylphenyl)ethenyl]-3-methylisoxazole (90%), mp 222-223°C. Analysis for C_{18}H_{15}NO_{6}. Calculated C 68.81, H 5.54, N 5.13. Found C 68.30, H 5.62, N 5.06.

Example 53
5-[[α-carboxy-β-(4'-hydroxy-3',5'-di-bromophenyl) ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[[α-carboxy-β-(4'-hydroxy-3',5'-di-bromophenyl) ethenyl]-3-methylisoxazole is saponified to afford 5-[[α-carboxy-β-(4'-hydroxy-3',5'-di-bromophenyl) ethenyl]-3-methylisoxazole (77%), mp = 229-230 °C. Analysis for C₁₇H₉Br₂NO₄. Calculated C=38.74, H=2.02, N=3.48, Br=39.65. Found C=38.75, H=2.20, N=3.45, Br=39.93.

Example 53A

5-[[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromo phenyl)ethenyl]-3-methylisoxazole

According to the procedure of Example 47, 5-[[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromo phenyl)ethenyl]-3-methylisoxazole is saponified to afford 5-[[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromo phenyl)ethenyl]-3-methylisoxazole (98%), mp = 225-227 °C. Analysis for C₁₄H₁₂NO₅Br. Calculated C=47.47, H=3.42, N=3.96, Br=22.56. Found C=47.45, H=3.42, N=4.14, Br=22.84.

Example 54

3-[β-(4'-Hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl) ethenyl]-5-methylisoxazole

According to the procedure of Example 39, 5-methyl-3-isoxazoleacetic acid is reacted with 4-hydroxy-3,5-bis(1,1-dimethylethyl) benzaldehyde to afford 3-[β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-5-methylisoxazole in 44% yield. Mp = 172-174 °C. Analysis for C₂₀H₂₁NO₂. Calculated C=76.64, H=8.88, N=4.47. Found C=76.44, H=8.58, N=4.59.

Example 54A

3-[β-(4'-Hydroxy-3',5'-di-bromophenyl)ethenyl]-5-methylisoxazole

According to the procedure of Example 39, 5-methyl-3-isoxazoleacetic acid is reacted with 4-hydroxy-3,5-dibromobenzaldehyde to afford 3-[β-(4'-hydroxy-3',5'-di-bromophenyl)ethenyl]-5-methylisoxazole in 85% yield, mp = 178-182 °C. Analysis for C₁₃H₁₂NO₂Br₂. Calculated C=40.14, H=2.53, N=3.90. Found C=40.09, H=2.54, N=3.99.

Example 55

3-[β-(4'-Hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl) ethenyl]-5-carboxymethylisoxazole

A solution of 3-[β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-5-methylisoxazole (0.5 g, 1.6 mmol) in THF (15 mL) is cooled to -78 °C. N-butyllithium (2 mL, 3.2 mmol) is added dropwise, and the solution is stirred for an additional 20 minutes. The reaction mixture is then poured onto dry ice and allowed to come to room temperature under a flow of argon gas. Water (100 mL) is added and the mixture is extracted with ethyl acetate (200 mL). The organic layer is washed with saturated aqueous NH₄Cl (1X) and water (2X), then dried over sodium sulfate. Chromatography of the residue on silica (chloroform/methanol 95:5 containing 0.1% acetic acid) affords 3-[β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl]-5-carboxymethylisoxazole (0.4 g, 70%), mp = 205-210 °C. Analysis for C₂₁H₂₁NO₄. Calculated C=70.56, H=7.61, N=3.82. Found C=70.19, H=7.86, N=3.90.

Example 56
3-[(β-(4'-Hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl)-5-methylpyrazole

A solution of 3-methyl-5-pyrazoleacetic acid (20.0 g, 0.14 mol), 4-hydroxy-3,5-bis(1,1-dimethylethyl)benzaldehyde (33.4 g, 0.14 mol), piperidine (1.2 g, 0.014 mol), and acetic acid (0.85 g, 0.014 mol) in toluene (1 L) is refluxed for 24 hours with azeotropic removal of water. The mixture is cooled and evaporated to afford a residue, which is dissolved in methanol/ethyl acetate (1:3) and extracted with water (300 mL). The organic layer is evaporated and recrystallized from hexane/ethyl acetate (5:1) to afford 3-[(β-(4'-hydroxy-3',5'-bis(1,1-dimethylethyl)phenyl)ethenyl)-5-methylpyrazole (27.4 g, 61%). Mp = 220-224 °C. Analysis for C_{20}H_{28}N_{2}O. Calculated C 76.85, H 8.03, N 8.96. Found C 77.15, H 8.14, N 9.09.

Example 57

3-[(β-(4'-Hydroxy-3',5'-dimethylphenyl)ethenyl)-5-methylpyrazole

According to the procedure of Example 56, 3-methyl-5-pyrazoleacetic acid is reacted with 4-hydroxy-3,5-dimethylbenzaldehyde to afford 3-[(β-(4'-hydroxy-3',5'-dimethylphenyl)ethenyl)-5-methylpyrazole in 50% yield. Mp = 185-188 °C. Analysis for C_{14}H_{16}N_{2}O. Calculated C 73.86, H 7.06, N 12.27. Found C 73.68, H 7.13, N 12.26.

Example 58

3-[(β-(4'-Hydroxy-3',5'-dibromophenyl)ethenyl)-5-methylpyrazole

According to the procedure of Example 56, 3-methyl-5-pyrazoleacetic acid is reacted with 4-hydroxy-3,5-dibromobenzaldehyde to afford 3-[(β-(4'-hydroxy-3',5'-dibromophenyl)ethenyl)-5-methylpyrazole in 51% yield. Mp = 101-108 °C. Analysis for C_{12}H_{10}Br_{2}N_{2}O. Calculated C 40.26, H 2.82, N 7.82. Found C 39.92, H 2.83, N 7.70.

Example 58A

3-[(β-(3'-Methoxy-4'-hydroxy-5'-bromophenyl)ethenyl)-5-methylpyrazole

According to the procedure of Example 56, 3-methyl-5-pyrazoleacetic acid is reacted with 3-methoxy-4'-hydroxy-5'-bromobenzaldehyde to afford 3-[(β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-5-methylpyrazole in 20% yield; mp = 158-160 °C. Analysis for C_{13}H_{13}N_{2}O_{2}Br. Calculated C 50.50, H 4.24, N 9.06. Found C 50.84, H 4.37, N 8.88.

Example 59

3-[α-Carbomethoxy-β-(4'-hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 40, 3-methyl-5-pyrazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-dibromobenzaldehyde to afford 3-[α-carbomethoxy-β-(4'-hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole in 40% yield, mp = 182-184 °C.

Example 59A

3-[α-Carbomethoxy-β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-5-methylpyrazole
According to the procedure of Example 40, 3-methyl-5-isoxazoleacetic acid methyl ester is reacted with 4-hydroxy-3,5-dichlorobenzaldehyde to afford 3-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-5-methylpyrazole in 16% yield, mp = 210-212°C. Analysis for C_{14}H_{12}N_{2}O_{3}Cl_{2}. Calculated C 51.39, H 3.70, N 8.56. Found C 51.77, H 3.80, N 8.43.

Example 59B

3-[α-Carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromo phenyl)ethenyl]-5-methylpyrazole

According to the procedure of Example 40, 3-methyl-5-pyrazoleacetic acid methyl ester is reacted with 5-bromovanillin to afford 3-[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-5-methylpyrazole in 17% yield, mp = 200-201°C. Analysis for C_{15}H_{15}N_{2}O_{4}Br. Calculated C 49.08, H 4.13, N 7.63. Found C 49.29, H 4.11, N 7.66.

Example 60

3-Methyl-5-pyrazoleacetic acid methyl ester

A solution of 3-methyl-5-pyrazoleacetic acid (5.0 g, 35.7 mmol) [see C. Ainsworth, J. Amer. Chem. Soc., 78, 3172 (1954)] in methanol (50 mL) is saturated with HCl gas. The mixture is warmed to reflux for 5 hours, after which the solution is concentrated. The solid residue is taken up in chloroform and washed with 0.5 N aqueous sodium bicarbonate, dried over MgSO_{4}, and evaporated to afford 3-methyl-5-pyrazoleacetic acid methyl ester (3.9 g, 70%) sufficiently pure for further use.

Example 61

3-[α-Carboxy-β-(4'-hydroxy-3',5'-dibromophenyl) ethenyl]-5-methylpyrazole

According to the procedure of Example 47, 3-[α-carboxy-β-(4'-hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole is saponified to afford 3-[α-carboxy-β-(4'-hydroxy-3',5'-dibromophenyl)ethenyl]-5-methylpyrazole in 88% yield, mp = 194-197°C. Analysis for C_{13}H_{12}N_{2}O_{3}Br. Calculated C 38.83, H 2.51, N 6.97. Found C 38.80, H 2.51, N 6.98.

Example 62

3-[α-Carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl) ethenyl]-5-methylpyrazole

According to the procedure of Example 47, 3-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-5-methylpyrazole is saponified to afford 3-[α-carboxy-β-(4'-hydroxy-3',5'-dichlorophenyl)ethenyl]-5-methylpyrazole in 71% yield, mp = 223-225°C. Analysis for C_{13}H_{12}N_{2}O_{3}Cl. Calculated C 49.87, H 3.23, N 8.85, Cl 22.64. Found C 49.68, H 3.13, N 8.82, Cl 22.72.

Example 63

3-[α-Carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromophenyl) ethenyl]-5-methylpyrazole

According to the procedure of Example 47, 3-[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)ethenyl]-5-methylpyrazole is saponified to afford 3-[α-carboxy-β-(3'-methoxy-4'-hydroxy-5'-bromophenyl)-
5-[β-(4'-Hydroxy-3'-methoxyphenyl)ethyl]yl-3-methyl isothiazole

To a suspension of 4-acetoxy-3-methoxybenzyltriphenyl phosphonium chloride [L. Lonsky et al., Manaufette für chemie, 107, 685-685 (1976)] (2.24 g, 4.7 mmol) in dry THF (100 mL) and DMSO (4 mL) at 0 °C under an argon atmosphere is added sodium hydride, 60% suspension in oil (0.18 g, 4.7 mmol). The reaction mixture is stirred at room temperature for one hour and then 3-methylisothiazole-5-carboxaldehyde (D. Nutimore et al., JCS, 2063, 1963) (0.8 g, 4.7 mmol) is added. The reaction mixture is stirred at room temperature for 18 hours. The reaction mixture is poured into a saturated solution of ammonium chloride (250 mL) and the product is extracted into ethyl acetate (2 × 200 mL). The crude intermediate 5-[β-(4'-acetoxy-3'-methoxyphenyl)ethyl]-3-methylisothiazole (mixture of cis and trans isomers) is purified by flash chromatography (silica, 25% EtOAc/CH₂Cl₂). The intermediate acetoxy compound (0.72 g) is dissolved in methanol (20 mL) and treated with sodium methoxide (0.28 g) and the reaction mixture is stirred at room temperature for one hour. The reaction mixture is diluted with ethyl acetate (50 mL) and washed with water (50 mL). The organic layer is dried (MgSO₄) and evaporated to give 5-[β-(4'-hydroxy-3'-methoxyphenyl)ethyl]-3-methylisothiazole (0.54 g). Flash chromatography (silica, 5% EtOAc/CH₂Cl₂) gave separation of the trans and cis isomers,

High Rf isomer (0.35 g, 30%), Rf = 0.53 (silica, 8:1/CH₂Cl₂:EtOAc); mp = 187-189 °C.

Low Rf isomer (0.10 g, 9%), Rf = 0.43 (silica, 8:1/CH₂Cl₂:EtOAc); mp = 120-124 °C.

The usefulness of the compounds of the present invention as inhibitors of lipoygenase enzyme or other related biochemical actions is demonstrated by their effectiveness in various standard test procedures. A description of each procedure follows.

5-Lipoygenase Assay Using Isolated Human Leukocytes (5LOA₂)

The formation of 5-HETE in human leukocytes is considered a measure of 5-lipoygenase activity. The protocol is described in the following.

Fresh heparinized or EDTA treated human blood is mixed with 6% dextran-3% dextrose in isotonic saline in the ratio 0.25 ml dextran solution per 1.0 ml blood. After mixing the blood is allowed to sit at room temperature for about 90 minutes while the RBC's settle. During this period, the plasma is removed with a plastic pipette to nalgens tubes.

The plasma is centrifuged at 800 rpm (125 kg) on the Beckman Td-b refrigerated centrifuge to remove the platelets (which remain in the supernatant). The pellet, consisting of leukocytes and erythrocytes, is treated with 10 ml 0.87% ammonium chloride at room temperature for four minutes, lysing the red cells. At the end of four minutes the cells are diluted with a 2x volume of phosphate buffered saline, pH 7.4, and centrifuged for ten minutes. The cells are washed three times with the phosphate buffered saline. Any of the pelleted cell matter which is not easily resuspended is discarded during the washings—the material contains platelets (12-lipoygenase activity).

After washing, the cells are resuspended in phosphate buffered saline containing 1.0 mM calcium and 0.5 mM magnesium. After counting, the cells are diluted to 1.5-2.0 × 10⁷ leukocytes per milliliter.

To each polypropylene reaction tube is added 0.48 ml leukocytes in Ca-Mg phosphate buffered saline, pH 7.4; 1-5 μl test compound dissolved in DMSO and buffer; or DMSO for control tubes.

The tubes preincubate at 37 °C for five minutes.

The reaction is started by adding 20 μl of the following: 0.5 μl, 20 mM arachidonic acid—final concentration = 20 μM; 1 μl, 5 mM calcium ionophore A23187—final concentration = 10 μM; and 18.5 μl buffer.

The reaction proceeds for five minutes, then is stopped by adding 0.5 ml, 0.5 mM ice-cold Tris buffer, pH 8.0. The tubes are chilled on ice for ten minutes and then extracted three times with a total of 3.5 ml ethyl acetate (3.0 ml removed).

The tubes can be stored at this point. For extended storage, the tubes should be filled with nitrogen.

The ethyl acetate is evaporated with a Sorvall Speed-Vac. The residue is dissolved in ethanol. The
tubes can also be stored at this point at -20 °C under nitrogen.

A portion of the ethanol solution is injected into the HPLC system for 5-HETE quantitation.

The HPLC system consists of Hewlett-Packard 1040A UV spectrophotometry system with an HP86 computer. Injections are made automatically with a Waters WISP 710B. The pump is a Spectra Physics SP8700. Peaks are measured with a Hewlett-Packard 3390A integrator. An RP C-18 column is used. The solvent system is isocratic; the solvent is 70% methanol and 30% 0.01M sodium acetate, pH 5.7, pumped at 1.0 ml/min. The flow is monitored at 235 nm for 5-HETE quantitation. Using a 15 cm Alltech Nucleosil C-18 5 μM column provides for a sample turnaround time of about 16 minutes.

IC \textsubscript{50} is calculated as the amount of test agent that causes 50% inhibition of the formation of 5-HETE relative to the control.

Cyclooxygenase Enzyme Assay

Additionally, inhibition of cyclooxygenase is considered a measure of relevance to the pathophysiology of the above noted diseases. For example, see "Inhibition of Immunoglobulin E-Mediated, Antigen-Induced Monkey Asthma and Skin Reactions by \textit{5,8,11,14-Eicosatetraynoic Acid}," by Roy Patterson, M.D. and Kathleen E. Harris, B.S. in, J. Allergy Clin. Immunol., Vol. 67, No. 2, pp. 146-152.

The assay consists of incubating 2 mg bovine seminal vesicle powder with 2 mM epinephrine, 2.5 mM reduced glutathione, 100 μM arachidonic acid, and the test agent for 20 minutes. The reaction mixture is acidified and extracted with ethyl acetate (3 x 1.0 ml) and the pooled extract is evaporated to dryness using a Speed Vac Concentrator or under a stream of nitrogen. The residue is dissolved in ethanol. An aliquot is applied on 20 x 20 cm silica gel plate and developed using water:ethyl acetate:hexane:acetic acid (60:54:25:12.5, upper phase) to separate PGE\textsubscript{2} from arachidonic acid. 14C-PGE\textsubscript{2} formed is identified by co-chromatography with authentic 3H-PGE\textsubscript{2} and the amount of radioactivity is quantitated using an automatic TLC linear scanner (Berthold, Pittsburgh, Pennsylvania) linked to an Apple II-e computer and an IC \textsubscript{50} is calculated as the amount of test compound causing 50% inhibition of cyclooxygenase enzyme relative to the control.

The above defined value for each of tested compounds of the present invention having the noted Example numbers are as found in the following Table 2.

TABLE 2

<table>
<thead>
<tr>
<th>Example #</th>
<th>5-LO(IC \textsubscript{50} in μM)</th>
<th>BSV(IC \textsubscript{50} in μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>66.0</td>
</tr>
<tr>
<td>2</td>
<td>53.0</td>
<td>67.0</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>44.0</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>40.0</td>
</tr>
<tr>
<td>5</td>
<td>7.1</td>
<td>33.0</td>
</tr>
<tr>
<td>6</td>
<td>>20</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>5.5</td>
<td>34.0</td>
</tr>
<tr>
<td>8</td>
<td>>20</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>56.0</td>
</tr>
<tr>
<td>10</td>
<td>18.0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>29.0</td>
<td>31.0</td>
</tr>
<tr>
<td>29</td>
<td>7.8</td>
<td>10.0</td>
</tr>
<tr>
<td>30</td>
<td>6.8</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>1.8</td>
<td>-</td>
</tr>
</tbody>
</table>
ARBL/ARBC Whole Cell 5-Lipoxigenase and Cyclooxygenase Assays

Materials

The rat basophilic leukemia cell line (RBL-1) was obtained from the American Type Culture Collection (Rockville, MD).

Radioimmuno assay (RIA) kits of LTB₄ and PGF₂α were obtained from Amersham (Arlington Heights, IL) and Seragen (Boston, MA) respectively.

All tissue culture media were obtained from GIBCO (Grand Island, NY).

Method

RBL-1 cells were grown in culture (suspension) in Eagle's minimum essential medium supplemented with 12% fetal bovine serum and 1:100 antibiotic-antimycotic mixture at 37° C in an incubator supplied with air-5% carbon dioxide. Cells were harvested by centrifugation. They were washed with cold phosphate buffered saline pH 7.4 (PBS; NaCl, 7.1 g; Na₂HPO₄, 1.15 g; KH₂PO₄, 0.2 g; and KCl, 0.2 g/L). Cells were finally suspended in PBS containing 0.88 μM calcium at a density of 2.4×10⁶ cells/ml. Cells were incubated with and without test agent (in DMSO) (1% DMSO was without effect on arachidonic acid metabolism) for ten minutes at room temperature. Calcium ionophore A23187 (5 μM) was added and cells were incubated for seven minutes at 37° C. The reaction was stopped by chilling the tubes in ice for ten minutes. Cells were separated by centrifugation and the supernatant was stored at -20°. Aliquots (100 μl) were analyzed for LTB₄ and PGF₂α using radioimmuno assay kits as provided by the supplier.

Table 3 contains biochemical data obtained from this RBL-1 whole cell assay.
<table>
<thead>
<tr>
<th>Example #</th>
<th>ARBL (IC<sub>50</sub>, μM)<sup>a</sup></th>
<th>ARBC (IC<sub>50</sub>, μM)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>13.0</td>
</tr>
<tr>
<td>7</td>
<td>9.5</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>5.2</td>
<td>11.0</td>
</tr>
<tr>
<td>10A</td>
<td>3.8</td>
<td>4.5</td>
</tr>
<tr>
<td>10D</td>
<td>0.3</td>
<td>>30</td>
</tr>
<tr>
<td>10G-1</td>
<td>4.5</td>
<td>>30</td>
</tr>
<tr>
<td>10G-2</td>
<td>4.1</td>
<td>>30</td>
</tr>
<tr>
<td>10H</td>
<td>9.5</td>
<td>>30</td>
</tr>
<tr>
<td>10I</td>
<td>>10</td>
<td>>25</td>
</tr>
<tr>
<td>10J</td>
<td>>10</td>
<td>30.0</td>
</tr>
<tr>
<td>10K</td>
<td>>20</td>
<td>-</td>
</tr>
<tr>
<td>10L</td>
<td>>20</td>
<td>-</td>
</tr>
<tr>
<td>10M</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>10N</td>
<td>>20</td>
<td>>30</td>
</tr>
<tr>
<td>10P</td>
<td>12.0</td>
<td>>30</td>
</tr>
<tr>
<td>10Q</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>29</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>30</td>
<td>5.5</td>
<td>12.0</td>
</tr>
<tr>
<td>31</td>
<td>1.0</td>
<td>10.0</td>
</tr>
<tr>
<td>32</td>
<td>1.4</td>
<td>22.0</td>
</tr>
<tr>
<td>32B</td>
<td>4.5</td>
<td>1.2</td>
</tr>
<tr>
<td>32D</td>
<td><1.0</td>
<td>5.4</td>
</tr>
<tr>
<td>32E</td>
<td>4.5</td>
<td>2.8</td>
</tr>
<tr>
<td>32F</td>
<td>12.0</td>
<td>30.0</td>
</tr>
<tr>
<td>32G</td>
<td>11.0</td>
<td>16.0</td>
</tr>
<tr>
<td>32H</td>
<td>21.0</td>
<td>13.8</td>
</tr>
<tr>
<td>32J</td>
<td>4.7</td>
<td>>30</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36A</td>
<td>21.5</td>
<td>N</td>
</tr>
<tr>
<td>37</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>3.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Example #</td>
<td>ARBL (IC<sub>50</sub>, μM)<sup>a</sup></td>
<td>ARBC (IC<sub>50</sub>, μM)<sup>b</sup></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>38A</td>
<td>3.6</td>
<td>14.0</td>
</tr>
<tr>
<td>38B</td>
<td>2.6</td>
<td>>30</td>
</tr>
<tr>
<td>39A</td>
<td>4.0</td>
<td>9.3</td>
</tr>
<tr>
<td>40</td>
<td>>10</td>
<td>>25</td>
</tr>
<tr>
<td>41</td>
<td>>30</td>
<td>5.0</td>
</tr>
<tr>
<td>43</td>
<td>17.0</td>
<td>2.2</td>
</tr>
<tr>
<td>44</td>
<td>12.0</td>
<td>5.2</td>
</tr>
<tr>
<td>46</td>
<td>10.0</td>
<td>2.0</td>
</tr>
<tr>
<td>46A</td>
<td>>30</td>
<td>12.0</td>
</tr>
<tr>
<td>51</td>
<td>20.0</td>
<td>2.5</td>
</tr>
<tr>
<td>52</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>54</td>
<td>2.7</td>
<td>=0.3</td>
</tr>
<tr>
<td>54B</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>55</td>
<td>17.0</td>
<td>>30</td>
</tr>
<tr>
<td>57</td>
<td>0.82</td>
<td>4.6</td>
</tr>
<tr>
<td>58</td>
<td>5.7</td>
<td>14.5</td>
</tr>
</tbody>
</table>

^aARBL-1 intact cell 5-lipoxygenase IC₅₀ values (μM)

^bARBL-1 intact cell cyclooxygenase IC₅₀ values (μM)

Accordingly, the present invention also includes a pharmaceutical composition for treating one of the above diseases or conditions comprising an anti-inflammatory or anticondition effective amount of a compound of the formula I as defined above together with a pharmaceutically acceptable carrier.

The present invention further includes a method of use of a compound of the formula I for the manufacturing of pharmaceutical compositions for the treatment of the above named diseases.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets, and suppositories. A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders or tablet disintegrating agents; it can also be encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active compound. In the tablet the active compound is mixed with carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from 5 or 10 to about 70 percent of the active ingredient. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as carrier providing a capsule in which the active component (with or without other carriers) is surrounded by carrier, which is thus in association with it. Similarly, cachets are included. Tablets, powders, cachets, and capsules can be used as solid dosage forms suitable for oral administration.

For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa
butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby to solidify.

Liquid form preparations include solutions, suspensions, and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection. Liquid preparations can also be formulated in solution in aqueous polyethylene glycol solution. Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing and thickening agents as desired. Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, i.e., natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions, and emulsions. These particular solid form preparations are most conveniently provided in unit dose form and as such are used to provide a single liquid dosage unit. Alternately, sufficient solid may be provided so that conversion to liquid form, multiple individual liquid doses may be obtained by measuring predetermined volumes of the liquid form preparation as with a syringe, teaspoon, or other volumetric container. When multiple liquid doses are so prepared, it is preferred to maintain the unused portion of said liquid doses at low temperature (i.e., under refrigeration) in order to retard possible decomposition. The solid form preparations intended to be converted to liquid form may contain, in addition to the active material, flavorants, colorants, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like. The liquid utilized for preparing the liquid form preparation may be water, isotonic water, ethanol, glycerine, propylene glycol, and the like as well as mixtures thereof. Naturally, the liquid utilized will be chosen with regard to the route of administration, for example, liquid preparations containing large amounts of ethanol are not suitable for parenteral use.

Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, for example, packeted tablets, capsules, and powders in vials or ampoules. The unit dosage form can also be a capsule, cachet, or tablet itself or it can be the appropriate number of any of these in packaged form.

The quantity of active compound in a unit dose of preparation may be varied or adjusted from 1 mg to 500 mg preferably to 1 to 50 mg according to the particular application and the potency of the active ingredient. The composition can, if desired, also contain other compatible therapeutic agents.

In therapeutic use as described above, the dosages may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with the smaller dosages which are less than the optimum dose of the compound. Thereafter the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.

As used herein cardiovascular diseases or conditions particularly include 1) reductions of the extent of infarct damage in a myocardial infarction, 2) prevention of recurrent myocardial infarction, 3) stroke, 4) anaphylactic shock, and 5) vasospastic disease.

An additional advantageous benefit of the cytoprotective property of the compounds of formula I are for use, for example to protect against damage from various gastro-intestinal tract conditions.

Various assays that are generally accepted can be used to measure cytoprotective ability.

The magnitude of a prophylactic or therapeutic dose of a compound of formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of formula I and its route of administration. In general, the daily dose range for anti-asthmatic, anti-allergic or anti-inflammatory use and, generally uses other than cytoprotection, lies within the range of from about 10 μg to about 20 mg per kg body weight of a mammal, preferably from about 50 μg to about 20 mg per kg of body weight of a mammal, and most preferably from about 100 μg to about 10 mg per kg of body weight of a mammal.

The exact amount of a compound of the formula I to be used as a cytoprotective agent will depend on, inter alia, whether it is being administered to heal damaged cells or to avoid future damage, on the nature of the damaged cells (e.g., gastro-intestinal ulcers vs. nephrotic necrosis), and on the nature of the causative agent. An example of the use of a compound of the formula I in avoiding future damage would be co-administration of a compound of the formula I with a non-steroidal anti-inflammatory drug (for example, indomethacin) that might otherwise cause such damage. For such use, the compound of formula I is administered from 30 minutes prior up to 30 minutes after administration of the NSAID. Preferably, it is
administered prior to or simultaneously with the NSAID (e.g., as a combination dosage form).

The effective daily dosage level for compounds of formula I inducing cytoprotection in mammals, especially humans, will generally range from about 0.002 mg/kg to about 100 mg/kg, preferably from about 0.02 mg/kg to about 30 mg/kg. The dosage may be administered in single or divided individual doses.

Thus, in addition to the compounds of formula I, the pharmaceutical compositions can also contain other active ingredients, such as cyclooxygenase inhibitors, leukotriene antagonist non-steroidal anti-inflammatory drugs (NSAIDs), peripheral analgesic agents such as zomepirac, diflunisal and the like. The weight ratio of the compound of the formula I to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the formula I is combined with an NSAID, the weight ratio of the compound of the formula I to the NSAID will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.

Combinations of a compound of the formula I and other active ingredients will generally be in the aforementioned ratios.

NSAIDs can be characterized into five groups:

(1) the propionic acid derivatives;
(2) the acetic acid derivatives;
(3) the fenamic acid derivatives;
(4) the biphenylcarboxylic acid derivatives;
and
(5) the oxicams
or a pharmaceutically acceptable salt thereof.

The propionic acid derivatives which may be used comprise: ibuprofen, ibuprofen aluminum, indoprofen, ketoprofen, naproxen, benoxaprofen, flurbiprofen, fenoprofen, fenbufen, pirprofen, carprofen, oxaprozin, pranoprofen, metoprofen, tiaprofen, suprofen, alminofen, tiaprofen, fluprofen and bucloxic acid. Structurally related propionic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be included in this group.

Thus, "propionic acid derivatives" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs having a free -CH(CH₃)COOH or -CH₂CH₂COOH group (which optionally can be in the form of a pharmaceutically acceptable salt group, e.g., -CH(CH₃)COO⁻Na⁺ or -CH₂CH₂COO⁻Na⁺), typically attached directly or via a carbonyl function to a ring system, preferably to an aromatic ring system.

The acetic acid derivatives which may be used comprise: indomethacin, which is a preferred NSAID, sulindac, tolmetin, zomepirac, diclofenac, fenclofenac, alclofenac, ibufenac, isoxepac, furofenac, tlopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, and fencloxic acid. Structurally related acetic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "acetic acid derivatives" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs having a free -CH₂COOH group (which optionally can be in the form of a pharmaceutically acceptable salt group, e.g., -CH₂COO⁻Na⁺), typically attached directly to a ring system, preferably to an aromatic or heteroaromatic ring system.

The fenamic acid derivatives which may be used comprise: mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid and tolfenamic acid. Structurally related fenamic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "fenamic acid derivative" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs which contain the basic structure:

![Diagram](image)

which can bear a variety of substituents and in which the free -COOH group can be in the form of a
pharmacologically acceptable salt group, e.g., -COO⁻Na⁺.

The biphenylcarboxylic acid derivatives which can be used comprise: diflunisal and flufenisal. Structurally related biphenylcarboxylic acid derivatives having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "biphenylcarboxylic acid derivatives" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs which contain the basic structure:

\[\text{COOH} \]

which can bear a variety of substituents and in which the free -COOH group can be in the form of a pharmacologically acceptable salt group, e.g., -COO⁻Na⁺.

The oximacs which can be used in the present invention comprise: piroxicam, sudoxicam, isoxicam and 4-hydroxy-1,2-benzothiazine 1,1-dioxide 4-(N-phenyl)-carboxamide. Structurally related oximacs having similar analgesic and anti-inflammatory properties are also intended to be encompassed by this group.

Thus, "oximacs" as defined herein are non-narcotic analgesics/non-steroidal anti-inflammatory drugs which have the general formula:

\[\text{OH} \quad \text{O} \quad \text{C-NH-R} \]

wherein R is an aryl or heteroaryl ring system.

The following NSAIDs may also be used: acemetacin, alminoprofen, amfenac sodium, aminoprofen, anitrazafen, antrafenine, aurafon, bendazac lysinate, benzydamine, beprofir, broparomol, bufexamac, caprofen, cinmetacin, ciproquazone, clidanac, clonidine, dexamfetamine, delmetacin, dextrometorphan, dexindopropen, diacepin, di-fisalamine, difenpyramide, emorafzone, enfenamic acid, enolicam, epidixole, estersalate, etodolac, etofenamate, fentizole mesylate, fenclofenac, fenclorac, fentonal, fenflurimizole, feniniac, feprazone, floctafenine, fluinin, fluoxaprofen, fluroquazone, fopiridone, fosfosal, furicloprofen, furifenac, glucaminac, guimesal, ibuprofox, isofezolac, isonixim, isofrofen, isoxepac, isoxicam, lafentamine HCl, lefunormide, lofemizole, lonazolac calcium, lotifazone, loxoprofen, lysin, clonixinlate, meclofenamid sodium, meseclazone, microprofen, nabumetone, nictinol, nimesulide, orpanoxin, oxametacin, oxapadol, oxaprozin, perisoxal citrate, pimeprofen, pimeetacin, piprofen, pizozac, pirfenidone, pirprofen, pronoprofen, proglumetacin maleate, proquazone, pyridoxiprofen, sudoxicam, suprofen, telmetacin, talniflumate, tenoxicam, thiazolinoacetazone, thielavin B, tiaprofenic acid, tiaramide HCl, tifalminizole, timegadine, tioxaprofen, tolentamin, tolpadol, tryptamid, ufenamate, and zidometacin.

Finally, NSAIDs which may also be used include the salicylates, specifically aspirin, and the phenylbutazones, and pharmaceutically acceptable salts thereof.

Pharmaceutical compositions comprising the formula I compounds may also contain as the second active ingredient, antihistaminic agents such as benadryl, dramamine, histadyl, phenergan and the like. Alternatively, they may include prostaglandin antagonists such as those disclosed in European Patent Application 11,067 or thromboxane antagonists such as those disclosed in U.S. 4,237,160. They may also contain histidine decarboxylase inhibitors such as α-fluoromethylhistidine, described in U.S. 4,325,961. The compounds of the formula I may also be advantageously combined with an H⁺ or H₂-receptor antagonist, such as for instance cimetidine, ranitidine, terfenadine, famotidine, temelastine, acrivastine, loratadine, cetizine, tazifline, azelastine, aminothiadizoles disclosed in EP 81102976.8 and like compounds, such as
those disclosed in U.S. Patent Nos. 4,283,408; 4,362,736; 4,394,508 and European Patent Application No. 40,696. The pharmaceutical compositions may also contain a K\(^{+}\)H\(^{+}\) ATPase inhibitor such as omeprazole, disclosed in U.S. Pat. 4,255,431, and the like. Each of the references referred to in this paragraph is hereby incorporated herein by reference.

Claims

1. A compound of the formula (I)

\[
\begin{align*}
R_1 & \quad \text{and pharmaceutically acceptable salts thereof; wherein (1) --- is a single or double bond;} \\
R_2 & \quad (2) R, R_1, \text{ and } R_2 \text{ may be the same or different and are selected from the group consisting of hydrogen, } C_1-C_4-\text{alkyl, hydroxy, } OR_3 \text{ wherein } R_3 \text{ is } C_1-C_4-\text{alkyl, } C(O)OR_4 \text{ wherein } R_4 \text{ is hydrogen or } C_1-C_4-\text{alkyl, } OC(O)R_5 \text{ wherein } R_5 \text{ is independently as defined above, } C(O)R_6 \text{ wherein } R_6 \text{ is independently as defined above, } NR_7R_8 \text{ wherein } R_7 \text{ and } R_8 \text{ may be the same or different and are hydrogen or } C_1-C_4-\text{alkyl, } NHCONHR_9 \text{ wherein } R_9 \text{ is independently as defined above, NHCHO, } NHCO_2R_3 \text{ wherein } R_3 \text{ is independently as defined above, hydroxymethyl, halogen, trifluoromethyl, } SR_4 \text{ wherein } R_4 \text{ is independently as defined above, or nitro;} \\
Q & \quad (3) Q \text{ is } CH=CH \text{ or } CH=C-CO_2R_4 \\
\text{wherein } R_4 \text{ is independently as defined above;} \\
X & \quad (4) X \text{ and } Y \text{ are } (i) =NR, (ii) NR_5 \text{ wherein } R_5 \text{ is hydrogen, } C_1-C_4-\text{alkyl,} \\
& \quad \text{wherein } R_1 \text{ and } R_2 \text{ may be the same or different and are hydrogen or } C_1-C_4-\text{alkyl, } C(O)R_4 \text{ wherein } R_4 \text{ is independently as defined above, cycloalkyl of from three to twenty carbons having of from three to eight ring carbons, phenyl unsubstituted or substituted by one, two or three substituents of one or more of each of } C_1-C_4-\text{alkyl, } OR_4 \text{ wherein } R_4 \text{ is independently as defined above, SR_4 \text{ wherein } R_4 \text{ is independently as defined above, } R_4=COO \text{ wherein } R_4 \text{ is independently as defined above, C(O)OR_4} \text{ wherein } R_4 \text{ is independently as defined above, hydroxymethyl, } NR_5R_7 \text{ wherein } R_5 \text{ and } R_7 \text{ are each independently as defined above, or nitro, halogen, or said phenyl may be attached through an methylenyl, ethylenyl, propylenyl, butylenyl or isomers thereof, (iii) } O, (iv) S; with the proviso that } X \text{ and } Y \text{ cannot both be } O \text{ and } S \text{ at once and with the proviso that one of } X \text{ and } Y \text{ cannot be } O \text{ at the same time the other of } X \text{ and } Y \text{ is } S \text{ or } NR_5 \text{ and that one of } X \text{ and } Y \text{ cannot be } S \text{ at the same time the other of } X \text{ and } Y \text{ is } NR_5 \text{ and that if } X \text{ and } Y \text{ are both nitrogen one of } X \text{ and } Y \text{ must be } NR_5 \text{ at the same time the other of } X \text{ and } Y \text{ is } =NR; \\
Z & \quad (5) Z \text{ is } H, C_1-C_4-\text{alkyl, phenyl unsubstituted or substituted by one, two or three substituents of one or more of each of } C_1-C_4-\text{alkyl, } OR_4 \text{ wherein } R_4 \text{ is independently as defined above, } SR_4 \text{ wherein } R_4 \text{ is independently as defined above, } R_4=CO(O)O \text{ wherein } R_4 \text{ is independently as defined above, } C(O)OR_4 \text{ wherein } R_4 \text{ is independently as defined above, hydroxymethyl, } NR_5R_7 \text{ wherein } R_6 \text{ and } R_7 \text{ are each independently as defined above, or nitro, halogen, or said phenyl may be attached through an methylenyl, ethylenyl, propylenyl, butylenyl or isomers thereof, } OC(O)R_3 \text{ wherein } R_3 \text{ is independently as defined above, } C(O)OR_3 \text{ wherein } R_4 \text{ is independently as defined above, } C(O)R_3 \text{ wherein } R_3 \text{ is independently as defined above, } CH(R'_1)CO_2R'_2 \text{ wherein } R'_1 \text{ and } R'_2 \text{ are independently as defined}
\end{align*}
\]
above, halogen, trifluoromethyl,

wherein R, R₁, and R₂ are independently as defined above; with the overall proviso that when one of R, R₁, and R₂ is 2-hydroxy, X is O, Y is N and Q is CH=CH, then Z cannot be H, alkyl; and also with the overall proviso that when R, R₁, and R₂ are hydroxy or C₁-C₄-alkyl, Y and X are \(_H \) or NH, n is zero then Z cannot be furyl or phenyl unsubstituted or substituted with halogen, trifluoromethyl, alkyl, alkoxy or NO₂.

2. A compound of Claim 1 wherein Q is CH=CH or

\[
\text{CH} = \text{CH} \quad \text{CO}_2 \text{R}_4
\]

wherein R₄ is independently as defined above, and wherein X and Y are \(_H \) and NR₆, with R₅ as defined above, NR₆ and \(_H \), O and \(_H \) or \(_H \), O, S and N or N and S.

3. 3-[\(\beta \)-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole or 3-[\(\beta \)-(4'-acetoxy-3'-methoxyphenyl)]ethenyl]-5-methylpyrazole.

4. 5-[\(\beta \)-(4'-hydroxy-3',5'-bis(1,1-dimethyl)phenyl)ethenyl]-3-methylisoxazole or 5-[\(\beta \)-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole.

5. 3-[\(\beta \)-(4'-hydroxy-3',5'-bis(1,1-dimethyl)phenyl)ethenyl]-5-methylpyrazole.

6. A pharmaceutical composition for use as inhibitors of 5-lipoxygenase or cyclooxygenase comprising a 5-lipoxygenase or cyclooxygenase inhibiting amount of a compound of formula (I) according to claim 1.

7. A sunscreen composition for use as a sunscreen comprising an ultraviolet absorbing amount of a compound of Claim 1 not including the overall proviso and a suitable carrier therefor.

8. A pharmaceutical composition as claimed in Claim 1 additionally comprising an effective amount of a second active ingredient that is a non-steroidal anti-inflammatory drug; a peripheral analgesic agent; a cyclooxygenase inhibitor; a leukotriene antagonist; an antihistaminic agent; a prostaglandin antagonist or a thromboxane antagonist.

9. A method of use of a compound of general formula I according to claim 1 alone or in combination with other pharmaceutically active compounds for the manufacture of pharmaceutical compositions for treating inflammation, arthritis, ulcers, allergies, asthma, psoriasis and cardiovascular conditions in mammals suffering therefrom or for the manufacture of compositions for protection from ultraviolet light.

10. A process for the preparation of a compound of formula I according to Claim 1 by reacting (1) in case of Y and X being O and \(_H \), \(_H \) and O, S and \(_H \), or \(_H \) and S, a compound of the formula
wherein R, R₁, and R₂ are as defined above; and a compound of the formula

wherein ⋯ and Z is as defined above, Y and X are O and N, N and O, S and N, N and S, Ph is phenyl, in the presence of a suitable base; to obtain the compound of formula I wherein Z is as defined above, Y and X are O and O and O and O, and S and S, and S, and R, R₁, and R₂ are as defined above;

(2) in case of X and Y being =N₁ and NH a compound of the formula

wherein R, R₁, R₂, and Z are as defined above and Q is HC=CH; with hydrazine, and optionally hydrogenating the ⋯ bond when it is a double bond; to obtain a compound of formula I wherein X and Y are =N₁ and NH, and R, R₁, R₂, and Z are as defined above;

(3) in case of X and Y being O and =N₁ or =N₁ and NH and Q being CH=C-W, (step a) treating a compound of the formula

wherein R, R₁, and R₂ are as defined above; with a compound of the formula

wherein Li is Lithium, W is H or CO₂R₄ wherein R₄ is as defined above and Z is as defined above; and then (step b) treating the product of the step a with hydrochloric acid in methanol; to obtain a product of formula I wherein X and Y are O and =N₁ and Q is CH=C-W, and R, R₁, R₂, and Z are as defined above;
and, alternatively, further treating the compound obtained in step b with Mo(CO)₆ and then hydrazine to obtain the compound of the formula I wherein X and Y are N and NH and R, R₁, R₂, or Z are as defined above; or

(4) in case of X being \(_N \) and Y being O, Q being HC–CH a compound of the formula

\[
\begin{align*}
\text{HC} &= \text{CZ} \\
\text{OR} \\
\text{H}_2 \text{C} &= \text{CH} \text{CZ}
\end{align*}
\]

wherein R, R₁, and R₂ are as defined above, with N-chlorosuccinimide and base followed by treating with a compound of the formula

\[
\text{HC} = \text{CZ}
\]

or

\[
\text{H}_2 \text{C} = \text{CH} \text{CZ}
\]

under anhydrous conditions in an inert solvent at about the temperature of 0 to 50 °C to obtain the compound of formula I wherein X is N and Y is O, Q is HC–CH and R, R₁, R₂, and Z are as defined above;

(5) in case of X and Y being N a) a compound of the formula I of Claim 1 wherein one of X and Y is oxygen and the other is nitrogen with acetonitrile in the presence of molybdenum hexacarbonyl; and then b) treating with hydrazine to obtain a compound of the formula I of Claim 1 wherein X and Y are nitrogen;

(6) in case of one of X and Y being NH and other being \(_N = \), or one of X and Y being O and the other being N

a) contacting a compound of the formula

\[
\begin{align*}
\text{R} &
\end{align*}
\]

wherein R, R₁ and R₂ are as defined above and a compound of the formula

\[
\begin{align*}
\text{CHO}
\end{align*}
\]

\[
\begin{align*}
\text{R} &
\end{align*}
\]

wherein Z and R₄ are as defined above, and one of X and Y is NH and other is \(_N = \), or one of X and Y is O and the other is \(_N = \), and then in situ either

b) dehydrating and decarboxylating the product of step (a) wherein R₄ is hydrogen to obtain a compound of the formula

\[
\begin{align*}
\text{CO}_2 \text{R}_4
\end{align*}
\]
wherein one of X and Y is NH and the other is \(\equiv \) or one of X and Y is O and the other is \(\equiv \), and R, R1, R2 and Z are as defined above; or

c) dehydrating the product of step (a) (in situ) wherein \(R_4 \) is alkyl to obtain the compound of formula

wherein one of X and Y is NH and the other is \(\equiv \), or one of X and Y is O and the other is \(\equiv \), and R, R1, R2 and R4 are as defined above.

Claims for the following Contracting States: AT ES GR

1. A process for the preparation of a compound of the formula (I)

and pharmaceutically acceptable salts thereof; wherein (1) \(\equiv \) is a single or double bond;

(2) R, R1, and R2 may be the same or different and are selected from the group consisting of hydrogen, C1-C4-alkyl, hydroxy, OR3 wherein R3 is C1-C4-alkyl, C(O)OR4 wherein R4 is hydrogen or C1-C4-alkyl, OC(O)R2 wherein R2 is independently as defined above, C(O)R3 wherein R3 is independently as defined above, NR6R7 wherein R6 and R7 may be the same or different and are hydrogen or C1-C4-alkyl, NHCO(O)R3 wherein R3 is independently as defined above, NHCHO, NHSO2R3 wherein R3 is independently as defined above, NHCONHR4 wherein R4 is as defined above, hydroxymethyl, halogen, trifluoromethyl, SR5 wherein R5 is independently as defined above, or nitro;

(3) Q is CH = CH or CH = C-CO2R6

wherein R6 is independently as defined above;

(4) X and Y are (i) \(\equiv \), (ii) NR5 wherein R5 is hydrogen, C1-C4-alkyl,

\[-\text{CHCO}_2R^1_2 \]

\[R^1_1 \]
wherein \(R'_1 \) and \(R'_2 \) may be the same or different and are hydrogen or \(C_1-C_4 \)-alkyl, \(C(O)R_4 \) wherein \(R_4 \) is independently as defined above, cycloalkyl of from three to twenty carbons having of from three to eight ring carbons, phenyl unsubstituted or substituted by one, two or three substituents of one or more of each of \(C_1-C_4 \)-alkyl, \(OR_4 \) wherein \(R_4 \) is independently as defined above, \(SR_4 \) wherein \(R_4 \) is independently as defined above, \(R_4COO \) wherein \(R_4 \) is independently as defined above, \(C(O)OR_4 \) wherein \(R_4 \) is independently as defined above, hydroxymethyl, \(NR_5R_7 \) wherein \(R_6 \) and \(R_7 \) are each independently as defined above, or nitro, or halogen, or said phenyl may be attached through an methylenyl, ethylenyl, propylenyl, butylenyl or isomers thereof, (iii) \(O \), (iv) \(S \); with the proviso that \(X \) and \(Y \) cannot both be \(O \) and \(S \) at once and with the proviso that one of \(X \) and \(Y \) cannot be \(O \) at the same time the other of \(X \) and \(Y \) is \(S \) or \(NR_5 \) and that one of \(X \) and \(Y \) cannot be \(S \) at the same time the other of \(X \) and \(Y \) is \(NR_5 \) and that if \(X \) and \(Y \) are both nitrogen one of \(X \) and \(Y \) must be \(NR_5 \) at the same time the other of \(X \) and \(Y \) is \(N \).

(5) \(Z \) is \(H \), \(C_1-C_4 \)-alkyl, phenyl unsubstituted or substituted by one, two or three substituents of one or more of each of \(C_1-C_4 \)-alkyl, \(OR_4 \) wherein \(R_4 \) is independently as defined above, \(SR_4 \) wherein \(R_4 \) is independently as defined above, \(R_4C(O)O \) wherein \(R_4 \) is independently as defined above, \(C(O)OR_4 \) wherein \(R_4 \) is independently as defined above, hydroxymethyl, \(NR_5R_7 \) wherein \(R_6 \) and \(R_7 \) are each independently as defined above, or nitro, or halogen, or said phenyl may be attached through an methylenyl, ethylenyl, propylenyl, butylenyl or isomers thereof, \(OC(O)R_5 \) wherein \(R_5 \) is independently as defined above, \(C(O)OR_4 \) wherein \(R_4 \) is independently as defined above, \(C(O)R_5 \) wherein \(R_5 \) is independently as defined above, \(CH(R'_1)CO_2R'_2 \) wherein \(R'_1 \) and \(R'_2 \) are independently as defined above, halogen, trifluoromethyl,

wherein \(R, R_1 \) and \(R_2 \) are independently as defined above; with the overall proviso that when one of \(R, R_1 \) and \(R_2 \) is 2-hydroxy, \(X \) is \(O \), \(Y \) is \(=N_1 \), \(=N_2 \) or \(=N_3 \) and \(O \) is \(CH=CH \), then \(Z \) cannot be \(H, alkyl \); and also with the overall proviso that when \(R, R_1 \) and \(R_2 \) are hydroxy or \(C_1-C_4 \)-alkyl, \(Y \) and \(X \) area \(=N_2 \) or \(NH, n \) is zero then \(Z \) cannot be faryl or phenyl unsubstituted or substituted with halogen, trifluoromethyl, alkyl, alkoxy or \(NO_2 \) which comprises reacting

(1) in case of \(Y \) and \(X \) being \(O \) and \(=N_1 \), \(=N_2 \) and \(O \), \(S \) and \(=N_2 \), or \(=N_1 \) and \(S \), a compound of the formula

wherein \(R, R_1 \) and \(R_2 \) are as defined above; and a compound of the formula

wherein --- and \(Z \) is as defined above, \(Y \) and \(X \) are \(O \) and \(=N_1 \), \(=N_2 \) and \(O \), \(S \) and \(=N_2 \), \(=N_3 \) and \(S \), \(Ph \) is phenyl, in the presence of a suitable base; to obtain the compound of formula \(I \) wherein \(Z \) is as defined above, \(Y \) and \(X \) are \(O \) and \(=N_1 \), \(=N_2 \) and \(O \), \(S \) and \(=N_2 \), \(=N_3 \) and \(S \), and \(R, R_1 \) and \(R_2 \) are as defined above;

(2) in case of \(X \) and \(Y \) being \(N \) and \(NH \) a compound of the formula
wherein \(R, R_1, R_2, \) and \(Z \) are as defined above and \(Q \) is \(\text{HC} = \text{CH} \); with hydrazine, and optionally hydrogenating the \(\equiv \) bond when it is a double bond; to obtain a compound of formula I wherein \(X \) and \(Y \) are \(N \) and \(\text{NH} \), and \(R, R_1, R_2, \) and \(Z \) are as defined above;

(3) in case of \(X \) and \(Y \) being \(O \) and \(=\text{N} \) or \(=\text{NH} \) and \(\text{NH} \) and \(Q \) being \(\text{CH} = \text{C-W} \), (step a) treating a compound of the formula

\[
\text{CHO}
\]

wherein \(R, R_1, \) and \(R_2 \) are as defined above; with a compound of the formula

\[
\text{Li}
\]

wherein \(\text{Li} \) is lithium, \(W \) is \(\text{H} \) or \(\text{CO}_2 \text{R}_4 \), wherein \(R_4 \) is as defined above and \(Z \) is as defined above; and then (step b) treating the product of the step a with hydrochloric acid in methanol; to obtain a product of formula I wherein \(X \) and \(Y \) are \(O \) and \(N \) and \(Q \) is \(\text{CH} = \text{C-W} \), and \(R, R_1, R_2, \) and \(Z \) are as defined above;

and, alternatively, further treating the compound obtained in step b with \(\text{Mo(CO)}_6 \) and then hydrazine to obtain the compound of the formula I wherein \(X \) and \(Y \) are \(=\text{N} \) and \(\text{NH} \) and \(R, R_1, R_2, \) or \(Z \) are as defined above; or

(4) in case of \(X \) being \(N \) and \(Y \) being \(O \), \(Q \) being \(\text{HC} = \text{CH} \) a compound of the formula

\[
\text{NOH}
\]

wherein \(R, R_1, \) and \(R_2 \) are as defined above, with \(\text{N-chlorosuccinimide} \) and base followed by treating with a compound of the formula
under anhydrous conditions in an inert solvent at about the temperature of 0 to 50°C to obtain the compound of formula I wherein \(X = \text{H} \) and \(Y = \text{O} \), \(Q = \text{CH} - \text{CH} \) and \(R, R_1, R_2, \) and \(Z \) are as defined above;

(5) in case of \(X \) and \(Y \) being \(\text{NH} \) a) a compound of the formula I of Claim 1 wherein one of \(X \) and \(Y \) is oxygen and the other is nitrogen with acetonitrile in the presence of molybdenum hexacarbonyl; and then b) treating with hydrazine to obtain a compound of the formula I of Claim 1 wherein \(X \) and \(Y \) are nitrogen;

(6) in case of one of \(X \) and \(Y \) being \(\text{NH} \) and other being \(\text{N} \); or one of \(X \) and \(Y \) being \(\text{O} \) and the other being \(\text{N} \)

a) contacting a compound of the formula

\[
\begin{array}{c}
\text{R} \\
\text{R}_1 \\
\text{CHO} \\
\text{R}_2
\end{array}
\]

wherein \(R, R_1, \) and \(R_2 \) are as defined above and a compound of the formula

\[
\begin{array}{c}
\text{X} \\
\text{Y} \\
\text{CO}_2 \text{R}_4
\end{array}
\]

wherein \(Z \) and \(\text{R}_4 \) are as defined above, and one of \(X \) and \(Y \) is \(\text{NH} \) and other is \(\text{N} \), or one of \(X \) and \(Y \) is \(\text{O} \) and the other is \(\text{N} \), and then in situ either

b) dehydrating and decarboxylating the product of step (a) wherein \(\text{R}_4 \) is hydrogen to obtain a compound of the formula

\[
\begin{array}{c}
\text{R} \\
\text{R}_1 \\
\text{X} \\
\text{Y} \\
\text{Z} \\
\text{R}_2
\end{array}
\]

wherein one of \(X \) and \(Y \) is \(\text{NH} \) and the other is \(\text{N} \) or one of \(X \) and \(Y \) is \(\text{O} \) and the other is \(\text{N} \), and \(R, R_1, R_2, \) and \(Z \) are as defined above; or

c) dehydrating the product of step (a) (in situ) wherein \(\text{R}_4 \) is alkyl to obtain the compound of formula
2. Un process according to Claim 1 for the preparation of a compound of Claim 1 wherein Q is CH = CH or CH = CH-CO₂R₄ wherein R₄ is independently as defined above, and wherein X and Y are =N and NR₅, with R₅ as defined above, NR₅ and N, O and =N or =N and O, S and =N or =S and S.

3. A process according to Claim 1 for the preparation of 3-[β-(4'-hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazole or 3-[β-(4'-acetoxyl-3'-methoxyphenyl)ethenyl]-5-methylpyrazole.

4. A process according to Claim 1 for the preparation of 5-[β-(4'-hydroxy-3',5'-bis(1,1-dimethyl-ethyl)-phenyl)ethenyl]-3-methylisoxazole or 5-[β-(4'-hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazole.

5. A process according to Claim 1 for the preparation of 3-[β-(4'-hydroxy-3',5'-bis(1,1-dimethyl-ethyl)-phenyl)ethenyl]-5-methylpyrazole.

6. A sunscreen composition for use as a sunscreen comprising an ultraviolet absorbing amount of a compound of Claim 1 not including the overall provisos and a suitable carrier therefor.

7. A method of use of a compound of general formula I according to claim 1 alone or in combination with other pharmaceutically active compounds for the manufacture of pharmaceutical compositions for treating inflammation, arthritis, ulcers, allergies, asthma, psoriasis and cardiovascular conditions in mammals suffering therefrom or for the manufacture of compositions for protection from ultraviolet light.

Revisions

1. Un composé de formule (I)

![Image of molecule](image)

et des sels de celui-ci acceptables du point de vue pharmaceutique; dans laquelle:

(1)—— représente une liaison simple ou double;

(2)R₁ et R₂ peuvent être identiques ou différents et sont choisis dans le groupe comprenant un atome d'hydrogène, un groupe alkyle en C₁−₄, hydroxy, OR₃ où R₃ est un groupe alkyle en C₁−₄, C(O)-OR₄ où R₄ est un atome d'hydrogène ou un groupe alkyle en C₁−₄, OC(O)R₅ où R₅ est indépendamment tel que défini plus haut, C(O)R₅ où R₅ est indépendamment tel que défini plus haut, NR₅R₆ où R₆ et R₇ peuvent être identiques ou différents et sont un atome d'hydrogène ou un groupe alkyle en
C₁₋₄, NHC(O)R₃ où R₃ est indépendamment tel que défini plus haut NHCHO, NHSO₂R₃ où R₃ est indépendamment tel que défini plus haut, NHCONHR₄ où R₄ est tel que défini plus haut, hydroxyméthyle, halogène, trifluorométhyle, SR₅ où R₅ est indépendamment tel que défini plus haut, ou nitro;

(3)Q est CH=CH ou CH=C=O₂R₄

où R₄ est indépendamment tel que défini i plus haut;

(4)X et Y sont (i) = N⁺, (ii) NR₅ où R₅ est un atome d’hydrogène, un groupe alkyle en

\[
\text{C₁₋₄, } -\text{CHCO}_₂\text{R’₂}
\]

où R’₁ et R’₂ peuvent être identiques ou différents et sont un atome d’hydrogène ou un groupe alkyle en C₁₋₄, C(O)R₄ où R₄ est indépendamment tel que défini plus haut, cycloalkyle de trois à vingt atomes de carbone ayant de trois à huit atomes de carbone dans le cycle un groupe phényle non substitué ou substitué par un, deux ou trois substituants choisis parmi un ou plusieurs groupes alkyles en C₁₋₄, OR₄ où R₄ est indépendamment tel que défini plus haut, SR₅ où R₅ est indépendamment tel que défini plus haut, R₄C(O)O où R₄ est indépendamment tel que défini plus haut, C(O)OR₄ où R₄ est indépendamment tel que défini plus haut, hydroxyméthyle, halogène, NHCO₂R₅ où R₆ et R₇ sont chacun indépendamment tel que défini plus haut, ou nitro ou un atome d’halogène ou un groupe phényle peut être attaché par l’intermédiaire d’un groupe méthylényle, éthylényle, propylényle, butylényle ou leurs isomères, (iii) O, (iv) S; à condition que X et Y ne soient pas tous deux O ou S à la fois et à condition que l’un des X et Y ne soit pas O lorsque l’autre des X et Y est S ou NR₅, et que l’un des X et Y ne soit pas S lorsque l’autre des X et Y est NR₅ et que dans le cas où X et Y sont tous les deux un atome d’azote, J’un des X et Y soit NR₅ tandis que l’autre des X et Y est = N⁺;

(5) Z est un atome d’hydrogène, un groupe alkyle en C₁₋₄, un groupe phényle non substitué ou substitué par un, deux ou trois substituants choisis parmi un ou plusieurs groupes alkyles en C₁₋₄, OR₄ où R₄ est indépendamment tel que défini plus haut, SR₅ où R₅ est indépendamment tel que défini plus haut, R₄C(O)O où R₄ est indépendamment tel que défini plus haut, C(O)OR₄ où R₄ est indépendamment tel que défini plus haut hydroxyméthyle, halogène, NHCO₂R₅ où R₆ et R₇ sont chacun indépendamment tels que définis plus haut, ou nitro ou un atome d’halogène ou un groupe phényle peut être attaché par l’intermédiaire d’un groupe méthylényle, éthylényle, propylényle, butylényle ou leurs isomères, C(O)R₃ où R₃ est indépendamment tel que défini plus haut C(O)OR₄ où R₄ est indépendamment tel que défini plus haut C(O)R₃ où R₃ est indépendamment tel que défini plus haut, CH(R’₁): CO₂R’₂ où R’₁ et R’₂ sont indépendamment tels que définis plus haut, un atome d’halogène, un groupe trifluorométhyle,

\[
\text{CH} = \text{CH} \quad \text{R₁} \quad \text{R₂}
\]

où R, R₁ et R₂ sont indépendamment tels que définis plus haut; avec la condition globale selon laquelle dans le cas où l’un des R₁ et R₂ est un groupe 2-hydroxy, X est O, Y est = N⁺ et Q est CH=CH, qu’alors Z ne représente pas H ou un groupe alkyle en C₁₋₄; et aussi avec la condition globale selon laquelle dans le cas où R₁ et R₂ sont un groupe hydroxy ou alkyle en C₁₋₄, Y et X sont = N⁺ ou NH et n est égal à zéro qu’alors Z ne représente pas un groupe furyle ou phényle non substitué ou substitué avec un atome d’halogène, un groupe trifluorométhyle, alkyle, alicyloxy ou NO₂.

2. Un composé suivant la revendication 1, caractérisé en ce que Q est un radical

\[
\text{CH=CH ou CH=CH} \quad \text{CO₂R₄}
\]

où R₄ est indépendamment tel que défini plus haut, et où X et Y sont = N⁺ et NR₅, R₅ étant tel que
défini plus haut, NR₃ et = N⁺, O et = N⁻ ou bien = N⁻ et O, S et N ou N et S.

3. Composé suivant la revendication 1, caractérisé en ce qu’il s’agit du 3-[β-(4’-hydroxy-3’méthoxyphényl)éthényl]-5-méthylpyrazole ou 3-[β-(4’-acétyloxy-3’-méthoxyphényl)éthényl]-5-méthylpyrazole.

4. Composé suivant la revendication 1, caractérisé en ce qu’il s’agit du 5-[β-(4’-hydroxy-3’,5’-bis[1,1-diméthyléthyl] phényl)éthényl]-3-méthylisoxazole ou du 5-[β-(4’-hydroxy-3’,5’-diméthoxyphényl)-éthényl]-3-méthylisoxazole.

5. Composé suivant la revendication 1, caractérisé en ce qu’il s’agit du 3-[β-4’-hydroxy-3’,5’-bis-(1,1-diméthyléthyl) phényl)éthényl]-5-méthylpyrazole.

6. Une composition pharmaceutique utile en tant qu’inhibiteur de 5-lipoxygénase ou de cyclooxygénase, caractérisée en ce qu’elle comprend une quantité inhbitant une 5-lipoxygénase ou une cyclooxygénase d’un composé de formule (1) suivant la revendication 1.

7. Une composition écran solaire utile en tant qu’écran solaire, caractérisée en ce qu’elle comprend une quantité absorbant la lumière ultraviolette d’un composé suivant la revendication 1 n’inclusant pas les conditions globales et un support approprié pour celui-ci.

8. Une composition pharmaceutique suivant la revendication 6, caractérisée en ce qu’elle comprend de plus une quantité efficace d’un second composant actif qui est un médicamente anti-inflammatoire non stéroïdal; un agent analgésique périphérique; un inhibiteur de cyclooxygénase; un antagoniste de leucotriène; un agent antihistaminique; un antagoniste de prostaglandine ou un antagoniste de thromboxane.

9. Une méthode d’utilisation d’un composé de formule générale (1) suivant la revendication 1, seul ou en association avec d’autres composés pharmaceutiquement actifs pour la fabrication de compositions pharmaceutiques pour le traitement de l’inflammation, de l’arthrite, des ulcères, des allergies, de l’asthme, du psoriasis et d’états cardiovasculaires chez des mammifères en souffrant, ou pour la fabrication de composés pour la protection contre la lumière ultraviolette.

10. Un procédé pour la préparation d’un composé de formule (1) suivant la revendication 1, caractérisé en ce qu’il comprend

 (1) dans le cas où Y et X sont O et = N++, = N⁻ et O, S et = N⁻ ou = N⁻ et S, la réaction d’un composé de formule

 ![Diagram](image)

 dans laquelle R₁ et R₂ sont tels que définis plus haut; avec un composé de formule

 ![Diagram](image)

 dans laquelle --- et Z sont tels que définis plus haut, Y et X sont O et = N++, = N⁻ et O, S et = N⁻ = N⁻ et S, Ph est phényle en présence d’une base convenable; pour obtenir le composé de formule (1) dans
laquelle Z est tel que défini plus haut, Y et X sont O et =N-, =N- et O, S et =N- ou =N- et S et R,R₁ et R₂ sont tels que définis plus haut;

(2) dans le cas où X et Y sont =N- et NH, la réaction d'un composé de formule

\[
\begin{array}{c}
\text{R}_1 \\
\text{O} \\
\text{O} \\
\text{NH} \\
\text{R}_2 \\
\end{array}
\]

dans laquelle R,R₁, R₂ et Z sont tels que définis plus haut et Q est HC=CH, avec de l'hydrazine et éventuellement, l'hydrogénation de la liaison --- lorsqu'il s'agit d'une double liaison; pour obtenir un composé de formule (1) dans laquelle X et Y sont =N- et NH, et R, R₁, R₂ et Z sont tels que définis plus haut;

(3) dans le cas où X et Y sont O et =N- ou =N- et NH et Q est un radical CH=C-W,
- une étape (a), comprenant le traitement d'un composé de formule

\[
\begin{array}{c}
\text{R}_1 \\
\text{CHO} \\
\text{R}_2 \\
\end{array}
\]

dans laquelle R,R₁ et R₂ sont tels que définis plus haut, avec un composé de formule

\[
\begin{array}{c}
\text{Li} \\
\text{W} \\
\text{Z} \\
\end{array}
\]

dans laquelle Li est du lithium, W est H ou CO₂R₄, où R₄ est tel que défini plus haut et Z est tel que défini plus haut, et ensuite
- une étape (b) comprenant le traitement du produit de l'étape (a) avec de l'acide chlorhydrique dans du méthanol; pour obtenir un produit de formule (l) dans laquelle X et Y sont O et =N- et Q est CH=C-W et R,R₁,R₂ et Z sont tels que définis plus haut;
- et, dans une variante, le traitement supplémentaire du composé obtenu dans l'étape (b) avec Mo(CO)₅ et ensuite de l'hydrazine, pour obtenir le composé de formule (l) dans laquelle X et Y sont =N-et NH et R,R₁,R₂ et Z sont tels que définis plus haut; ou

(4) dans le cas où X est =N- et Y est O,O étant HC=CH, la réaction d'un composé de formule

\[
\begin{array}{c}
\text{R}_1 \\
\text{NO} \\
\text{R}_2 \\
\end{array}
\]

dans laquelle R,R₁ et R₂ sont tels que définis plus haut, avec du N-chlorosuccinimide et une base, puis
le traitement avec un composé de formule

\[\text{HC} = \text{CZ ou H}_2\text{C} = \text{CH}-\text{Z} \]

...
EP 0 245 825 B1

dans laquelle l'un des X et Y est NH et l'autre est =N-, ou l'un des X et Y est O et l'autre est =N-.
et R1, R2, R3 et R4 sont tels que définis plus haut.

Reivendications pour les États contractants suivants : AT, ES, GR

1. Un procédé pour la préparation d'un composé représenté par la formule (I)

 ![Image](image)

 (I)

 et de sels de celui-ci acceptables du point de vue pharmaceutique ; dans laquelle ;
 (1) --- représente une liaison simple ou double ;
 (2) R1, R2 et R3 peuvent être identiques ou différents et sont choisis dans le groupe comprenant un
 atome d'hydrogène, un groupe alkyle en C1-4, hydroxy, OR où R3 est un groupe alkyle en C1-4, C(O)·
 OR où R3 est un atome d'hydrogène ou un groupe alkyle en C1-4, OC(O)R où R3 est indépendamment
 tel que défini plus haut, C(O)OR où R3 est indépendamment tel que défini plus haut, NR3R7, où
 R6 et R7 peuvent être identiques ou différents et sont un atome d'hydrogène ou un groupe alkyle en
 C1-4, NHCOOH où R3 est indépendamment tel que défini plus haut, NHCHO, NSO2R3 où R3 est
 indépendamment tel que défini plus haut, NHCONHR où R4 est tel que défini plus haut, hydroxyméthyl-
 hyle, trifluorométhyle, SR où R4 est indépendamment tel que défini plus haut, ou nitro ;
 (3) Q est CH = CH ou CH = C-CO2R3
 où R4 est indépendamment tel que défini plus haut ;
 (4) X et Y sont (i) = N-, (ii) NR3 où R3 est un atome d'hydrogène, un groupe alkyle en

 ![Image](image)

 où R1, R2 peuvent être identiques ou différents et sont un atome d'hydrogène ou un groupe alkyle
 en C1-4, C(O)OR où R4 est indépendamment tel que défini plus haut, cycloalkyle de trois à vingt atomes
 de carbone ayant de trois à huit atomes de carbone dans le cycle, un groupe phényle non substitué ou
 substitué par un, deux ou trois substituants choisis parmi un ou plusieurs groupes alkyles en C1-4, OR où
 R4 est indépendamment tel que défini plus haut, SR3 où R4 est indépendamment tel que défini plus
 haut, R4C(O)R où R4 est indépendamment tel que défini plus haut, C(O)OR où R4 est indépendamment
 tel que défini plus haut, hydroxyméthyle, NR3R7 où R4 et R7 sont chacun indépendamment tels
 que définis plus haut, ou nitro ou un atome d'halogène, ou ce groupe phényle peut être attaché par
 l'intermédiaire d'un groupe méthylényl, éthylényl, propylényl, butylényl ou leurs isomères, (iii) O,
ou (iv) S ; à condition que X et Y ne soient pas tous les deux O ou S à la fois et à condition que l'un
 des X et Y ne soit pas O lorsque l'autre des X et Y est S ou NR3, et que l'un des X et Y ne soit pas S
lorsque l'autre des X et Y est NR₅ et que, dans le cas où X et Y sont tous les deux un atome d'azote, l'un des X et Y soit NR₅ tandis que l'autre des X et Y est =N ;

(5) Z est un atome d'hydrogène, un groupe alkyle en C₁₋₄, un groupe phényle non substitué ou substitué par un, deux ou trois substituants choisis parmi un ou plusieurs groupes alkyles en C₁₋₄, OR₄ où R₄ est indépendamment tel que défini plus haut, SR₄ où R₄ est indépendamment tel que défini plus haut, R₄C(O)O où R₄ est indépendamment tel que défini plus haut, C(O)OR₄ où R₄ est indépendamment tel que défini plus haut, hydroxyméthyle, NR₄₅R₅₆ où R₄ et R₅ sont chacun indépendamment tels que définis plus haut, ou nitro ou un atome d'halogène, ou ce groupe phényle peut être attaché par l'intermédiaire d'un groupe méthylényle, éthylényle, propylényle ou leurs isomères, OC(O)R₂ où R₂ est indépendamment tel que défini plus haut, C(O)OR₂ où R₂ est indépendamment tel que défini plus haut, C(O)R₂ où R₂ est indépendamment tel que défini plus haut, CH(R₁')CO₂R₁' où R₁ et R₂ sont indépendamment tels que définis plus haut, un atome d'halogène, un groupe trifluorométhyle,

\[\text{CH=CH}_2 \]

\[\text{R} \]
\[\text{R}_1 \]
\[\text{R}_2 \]

où R, R₁ et R₂ sont indépendamment tels que définis plus haut; avec la condition globale selon laquelle dans le cas où l'un des R, R₁ et R₂ est un groupe 2-hydroxy, X est O, Y est =N- et Q est CH=CH₁ qu'aux Z ne représente pas H ou un groupe alkyle en C₁₋₄, et aussi avec la condition globale selon laquelle dans le cas où R, R₁ et R₂ sont un groupe hydroxy ou alkyle en C₁₋₄, Y et X sont =N- ou NH et n est égal à zéro, qu'aux Z ne représente pas un groupe furyli ou phényl non substitué ou substitué avec un atome d'halogène, un groupe trifluorométhyle, alkyle, alcoxy ou NO₃, caractérisé en ce qu'il comprend

(1) dans le cas où Y et X sont O et =N- =N- et O, S et =N- ou =N- et S, la réaction d'un composé de formule

\[\text{CHO} \]
\[\text{R} \]
\[\text{R}_1 \]
\[\text{R}_2 \]

dans laquelle R, R₁ et R₂ sont tels que définis plus haut; avec un composé de formule

\[\text{Cl}^- \]
\[\text{Ph}^+ \]
\[\text{CH}_2 \]
\[\text{X} \]
\[\text{Y} \]

dans laquelle --- et Z sont tels que définis plus haut, Y et X sont O et =N- =N- et O, S et =N- =N- et S, Ph est phényle, en présence d'une base convenable; pour obtenir le composé de formule (1) dans laquelle Z est tel que défini plus haut, Y et X sont O et =N- =N- et O, S et =N- ou =N- et S, et R, R₁ et R₂ sont tels que définis plus haut;

(2) dans le cas où X et Y sont =N- et NH, la réaction d'un composé de formule

\[\text{66} \]
dans laquelle R, R₁, R₂ et Z sont tels que défini plus haut et Q est HC=CH, avec de l’hydrazine et
evénuellement, l’hydrogénation de la liaison — lorsqu’il s’agit d’une double liaison; pour obtenir un
composé de formule (l) dans laquelle X et Y sont =N- et NH, et R, R₁, R₂ et Z sont tels que définis
plus haut;
(3) dans le cas où X et Y sont O et =N- ou =NH et Q est un radical CH=C-W,
- une étape (a), comprenant le traitement d’un composé de formule

\[
\begin{align*}
\text{CHO} \\
\text{R}_1 \\
\text{R}_2
\end{align*}
\]

dans laquelle R, R₁ et R₂ sont tels que défini plus haut, avec un composé de formule

\[
\begin{align*}
\text{Li} \\
\text{W} \\
\text{N} \\
\text{Z}
\end{align*}
\]

dans laquelle Li est du lithium, W est H ou CO₂R₄, où R₄ est tel que défini plus haut et Z est tel que
défini plus haut, et ensuite
- une étape (b) comprenant le traitement du produit de l’étape (a) avec de l’acide chlorhydrique dans
du méthanol; pour obtenir un produit de formule (l) dans laquelle X et Y sont O et =N- et Q est
CH=C-W et R, R₁, R₂ et Z sont tels que définis plus haut;
- et, dans une variante, le traitement supplémentaire du composé obtenu dans l’étape (b) avec Mo(CO)₆
et ensuite de l’hydrazine, pour obtenir le composé de formule (l) dans laquelle X et Y sont =N- et NH
et R, R₁, R₂ et Z sont tels que définis plus haut; ou
(4) dans le cas où X est =N- et Y est O, Q étant HC—CH, la réaction d’un composé de formule

\[
\begin{align*}
\text{NO₂B} \\
\text{R}_1 \\
\text{R}_2 \\
\text{H}
\end{align*}
\]

dans laquelle R, R₁ et R₂ sont tels que définis plus haut, avec du N-chlorosuccinimide et une base,
puis le traitement avec un composé de formule

HC=CZ ou H₂C=CH-Z

dans des conditions anhydres dans un solvant inerte à une température de l’ordre de 0 à 50 °C pour
obtenir un composé de formule (I) dans laquelle X est =N- et Y est O, Q est HC—CH et R, R₁, R₂ et Z sont tels que définis plus haut;

(5) dans le cas où X et Y sont =N-
- a) la réaction d'un composé de formule (I) suivant la revendication 1, dans laquelle l'un des X et Y est un atome d'oxygène et l'autre est un atome d'azote, avec de l'acétanilide en présence de molybdène hexacarboxyle; et ensuite
- b) le traitement avec de l'hydrazine pour obtenir un composé de formule (I) suivant la revendication 1, dans laquelle X et Y sont un atome d'azote;

(6) dans le cas où l'un des X et Y est NH et l'autre est =N-, ou l'un des X et Y est O et l'autre est =N-
 - a) la mise en contact d'un composé de formule

![Image](image1)

dans laquelle R, R₁ et R₂ sont tels que définis plus haut, avec un composé de formule

![Image](image2)

dans laquelle Z et R₄ sont tels que définis plus haut, et l'un des X et Y est NH et l'autre est =N-, ou l'un des X et Y est O et l'autre est =N-, et ensuite la réalisation in situ, soit

b) d'une déshydratation et d'une décarboxylation du produit de l'étape (a) dans lequel R₄ est un atome d'hydrogène pour obtenir un composé de formule

![Image](image3)

dans laquelle l'un des X et Y est NH et l'autre est =N-, ou l'un des X et Y est O et l'autre est =N-, et R, R₁, R₂ et Z sont tels que définis plus haut; soit
c) d'une déshydratation du produit de l'étape (a) (in situ) dans lequel R₄ est un groupe alkyle pour obtenir le composé de formule
dans laquelle l'un des X et Y est NH et l'autre est =N- ou l'un des X et Y est O et l'autre est =N- et R₁, R₂ et R₄ sont tels que définis plus haut.

2. Un procédé suivant la revendication 1 pour la préparation d'un composé de formule (I) défini dans la revendication 1 dans laquelle Q est un radical CH=CH ou CH=CH-CO₂R₄ où R₄ est indépendamment tel que défini plus haut, et où X et Y sont =N- et NR₅, R₅ étant tel que défini plus haut, NR₅ et =N-, O et =N- ou bien =N- et O, S et =N- ou =N- et S.

3. Un procédé suivant la revendication 1 pour la préparation du 3-[β-(4'-hydroxy-3'-méthoxyphényl)-éthényl]-5-méthylpyrazole ou du 3-[β-(4'-acétyloxy-3'-méthoxyphényl)éthényl]-5-méthylpyrazole.

4. Un procédé suivant la revendication 1 pour la préparation du 5-[β-(4'-hydroxy-3',5'-bis(1,1-diméthyléthyl)phényl)éthényl]-3-méthylisoxazole ou du 5-[β-(4'-hydroxy-3',5'-diméthoxyphényl)éthényl]-3-méthylisoxazole.

5. Un procédé suivant la revendication 1 pour la préparation du 3-[β-(4'-hydroxy-3',5'-bis-[1,1-diméthyléthyl]-phényl)éthényl]-5-méthylpyrazole.

6. Une composition écran solaire utile en tant qu'écran solaire, comprenant une quantité absorbant la lumière ultraviolette d'un composé suivant la revendication 1 n'incluant pas les conditions générales et un support approprié pour celui-ci.

7. Une méthode d'utilisation d'un composé de formule générale (I) suivant la revendication 1, seul ou en association avec d'autres composés pharmaceutiquement actifs pour la fabrication de compositions pharmaceutiques pour le traitement de l'inflammation, de l'arthrite, des ulcères, des allergies, de l'asthme, du psoriasis et d'états cardiovasculaires chez des mammifères en souffrant, ou pour la fabrication de compositions pour la protection contre la lumière ultraviolette.

Ansprüche

1. Verbindung der Formel (I)

und deren pharmaceutisch annehmbaren Salze, worin bedeuten:

(1) --- eine Einfach- oder Doppelbindung;
(2) R, R₁ und R₂, die gleich oder verschieden sein können, ausgewählt aus der aus Wasserstoff, C₁-C₄-Alkyl, Hydroxy, OR₅, wobei R₅ C₁-C₄-Alkyl darstellt, C(O)OR₅, wobei R₅ Wasserstoff oder C₁-C₄-Alkyl, OC(OR₅), wobei R₅ wie oben, jedoch unabhängig davon, definiert ist, C(O)R₅, wobei R₅ wie
oben, jedoch unabhängig davon, definiert ist, NR₅R₇, wobei R₄ und R₇ gleich oder verschieden sein können und Wasserstoff oder C₁-C₄-Alkyl darstellen, NH₂(O)R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, NHCH₂, NHSO₂R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, NHCONH₂R₄, wobei R₄ wie oben definiert ist, Hydroxymethyl, Halogen, Trifluormethyl, SR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, oder Nitro bestehenden Gruppe; (3) Q CH=CH oder CH=CO₂R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist; (4) X und Y (i) = N-; (ii) NR₅R₇, wobei R₅ Wasserstoff oder

\[
C₁-C₄-Alkyl, -CHCO₂R'₁R'₂ ist,
\]

\[
| R'₁
\]

wobei R'₁ und R'₂ gleich oder verschieden sein können und Wasserstoff oder C₁-C₄-Alkyl, C(O)R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, Cycloalkyl mit 3 bis 20 Kohlenstoffatomen, wobei der Ring 3 bis 8 Kohlenstoffatome aufweist, unsubstiftiertes oder durch 1, 2 oder 3 Substituenten aus der Gruppe C₁-C₄-Alkyl, OR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, SR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, R₅CO₂, wobei R₅ jedoch unabhängig davon wie oben definiert ist, C(O)OR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, Hydroxymethyl, NR₅R₇, wobei R₅ und R₇ wie oben, jedoch unabhängig davon, definiert sind, Nitro oder Halogen substituiertes Phenyl, wobei die Phenylgruppe auch durch eine Methylencyl-, Ethenylencyl- oder Butenylencylgruppe oder deren Isomere gebunden sein kann, (iii) O, (iv) S; mit der Massgabe, dass X und Y nicht beide gleichzeitig O und S darstellen können, dass eines der Symbole X und Y nicht O darstellen kann, wenn gleichzeitig das andere der Symbole X und Y NR₅ darstellt und dass eines der Symbole X und Y NR₅ darstellt, dass X und Y beide Stickstoff und, einer der Symbole X und Y NR₅ sein muss, wenn das andere der Symbole X und Y zur gleichen Zeit =N- darstellt; (5) Z Wasserstoff, C₁-C₄-Alkyl, unsubstituiertes oder durch 1, 2 oder 3 Substituenten aus der Gruppe C₁-C₄-Alkyl, OR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, SR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, R₅C(O)O, wobei R₅ wie oben, jedoch unabhängig davon, definiert ist, Hydroxymethyl, NR₅R₇, wobei R₅ und R₇ wie oben, jedoch unabhängig davon, definiert sind, Nitro oder Halogen substituiertes Phenyl, wobei die Phenylgruppe auch durch eine Methylencyl-, Ethenylencyl-, Propenylencyl- oder Butenylencylgruppe oder deren Isomere gebunden sein kann, OR(O)R₂, wobei R₂ wie oben, jedoch unabhängig davon, definiert ist, C(O)OR₅, wobei R₅ wie oben, jedoch unabhängig davon, definiert ist, Q(O)OR₅, wobei R₅ wie oben, jedoch unabhängig davon, definiert ist, CH(R'₁)- CO₂R'₂, wobei R'₁ und R'₂ wie oben, jedoch unabhängig davon, definiert sind, Halogen, Trifluormethyl.

\[
\text{CH=CH} \quad \text{R₁} \quad \text{R₂}
\]

worin R, R₁ und R₂ wie oben, jedoch unabhängig davon, definiert sind; mit der Massgabe, dass, wenn eines der Symbole R, R₁ und R₂ 2-Hydroxy, X O; Y = N- und Q CH = CH darstellen, Z nicht Wasserstoff oder Alkyl sein kann; mit der Massgabe, dass, wenn R, R₁ und R₂ Hydroxy oder C₁-C₄-Alkyl, X und Y = N- oder NH und n Null bedeuten, Z nicht Furl oder unsubstituiertes oder durch Halogen, Trifluormethyl, Alkoxo oder NO₂ substituiertes Phenyl sein kann.

2. Verbindung nach Anspruch 1, worin Q CH=CH oder
CH=CH,
\[
\text{CO}_2 \text{R}_4
\]

worin R₄ wie oben, jedoch unabhängig davon, definiert ist, X und Y = N- und NR₅, wobei R₅ wie oben definiert ist, NR₅ und =N- und O, O und H- oder =N- und O, S und N oder N und S bedeuten.

3. 3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazol oder 3-[β-(4'-Acetoxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazol.

4. 5-[β-(4'-Hydroxy-3',5'-bis[1,1-dimethyl-4'-phenyl]ethenyl]-3-methylisoxazol oder 5-[β-(4'-Hydroxy-3',5'-dimethoxyphenyl)ethenyl]-3-methylisoxazol.

5. 3-[β-(4'-Hydroxy-3',5'-bis[1,1-dimethyl-4'-phenyl]ethenyl]-5-methylpyrazol.

7. Sonnenschutzmittel zur Verwendung als Filter zum Schutz gegen Sonnenstrahlung, enthaltend eine Ultraviolett absorbiierende Menge einer Verbindung nach Anspruch 1, ausgenommen die Ausschlussbedingung, und einen für diesen Verwendungszweck geeigneten Trägerstoff.

10. Verfahren zur Herstellung einer Verbindung der Formel I nach Anspruch 1, dadurch gekennzeichnet, dass man,

 (1) falls Y und X O und =N- =N- und O, S und =N- oder =N- und S bedeuten, eine Verbindung der Formel

worin R, R₁ und R₂ wie oben definiert sind, mit einer Verbindung der Formel

\[
\begin{align*}
\text{Cl}^- & \quad \text{Ph} \quad \text{R} \quad \text{CHO} \\
\text{Ph} & \quad \text{R} \quad \text{CHO} \\
\text{R} & \quad \text{CHO} & \quad \text{Cl}^- & \quad \text{Ph}
\end{align*}
\]
worin --- und Z die oben angegebenen Bedeutungen haben, Y und X O und N, N und O, S und N oder N und S; und Ph Phenyl bedeuten, in Gegenwart einer geeigneten Base umgesetzt, um die Verbindung der Formel I zu erhalten, worin Z wie oben definiert ist, Y und X O und $=N$, $=N$ und O, S und $=N$ oder $=N$ und S bedeuten und R, R_1 und R_2 wie oben definiert sind;
(2) falls X und Y =N- und NH bedeuten, eine Verbindung der Formel

\[\text{Diagram 1} \]

worin R, R_1, R_2 und Z wie oben definiert sind und $O\text{HC}=\text{CH}$ darstellt, mit Hydrazin umsetzt und gegebenenfalls die $=\text{---}$ - Bindung hydriert, sofern diese eine Doppelbindung darstellt, um eine Verbindung der Formel I zu erhalten, worin X und Y =N- und NH darstellen und R, R_1, R_2 und Z wie oben definiert sind;
(3) falls X und Y O und $=N$- oder $=N$- und NH darstellen und $O\text{CH}=\text{C-W}$ ist, in Stufe (a) eine Verbindung der Formel

\[\text{Diagram 2} \]

worin R, R_1 und R_2 die oben angegebenen Bedeutungen haben, mit einer Verbindung der Formel

\[\text{Diagram 3} \]

worin Li Lithium und W Wasserstoff oder CO_2R_4, wobei R_4 wie oben definiert ist, bedeuten und Z die oben angegebene Bedeutung hat, behandelt; und in Stufe (b) das Produkt aus Stufe (a) mit Salzsäure in Methanol behandelt, um eine Verbindung der Formel I zu erhalten, worin X und Y O und $=N$- und $O\text{CH}=\text{C-W}$ bedeuten und R, R_1, R_2 und Z wie oben definiert sind, und alternativ die in Stufe (b) erhaltene Verbindung weiterhin mit Mo(CO_6 und danach mit Hydrazin behandelt, um die Verbindung der Formel I zu erhalten, worin X und Y N und NH bedeuten und R, R_1, R_2 oder Z wie oben definiert sind; oder
(4) falls X =N-, Y O und Q --- bedeuten, eine Verbindung der Formel

\[\text{Diagram 4} \]

worin R, R_1 und R_2 wie oben definiert sind, mit NClorsuccinimid und einer Base und anschliessend mit einer Verbindung der Formel
unter wasserfreien Bedingungen in einem inerten Lösungsmittel und bei Temperaturen annähernd
im Bereich von 0 bis 50 °C behandelt, um die Verbindung der Formel I zu erhalten, worin X = N-, Y
O und Q --- bedeuten und R, R₁, R₂ und Z wie oben definiert sind;
(6) falls X und Y = N- bedeuten,
a) eine Verbindung der Formel I gemäß Anspruch 1, worin eines der Symbole X und Y
Sauerstoff ist und das andere Stickstoff darstellt, mit Acetonitril in Gegenwart von Molybdänhexa-
carbonyl umsetzt und danach
b) mit Hydrazin behandelt, um die Verbindung der Formel I zu erhalten, worin X und Y beide
Stickstoff darstellen;
(6) falls eines der Symbole X und Y für NH steht und das andere = N- ist oder eines der Symbole X
und Y für O steht und das andere = N- darstellt,
a) eine Verbindung der Formel

worin R, R₁ und R₂ die oben angegebenen Bedeutungen haben, mit einer Verbindung der Formel

worin Z und R₄ wie oben definiert sind und eines der Symbole X und Y für NH steht und das
andere = N- darstellt oder eines der Symbole X und Y für O steht und das andere = N- darstellt,
zusammenbringt und in situ entweder
b) das Produkt aus Stufe (a), worin R₄ Wasserstoff bedeutet, dehydratisiert und decarboxyliert,
um eine Verbindung der Formel

worin eines der Symbole X und Y für NH steht und das andere = N- darstellt oder eines der
Symbole X und Y für O steht und das andere = N- darstellt und R, R₁, R₂ und Z die oben
angegebenen Bedeutungen haben; oder
c) das Produkt aus Stufe (a), worin R₄ Alkyl bedeutet, dehydratisiert (in situ), um eine
Verbindung der Formel
wirn eines der Symbole X und Y für NH steht und das andere =N- darstellt, oder eines der Symbole X und Y für O steht und das andere =N- darstellt und R, R₁, R₂ und R₄ wie oben definiert sind, zu erhalten.

Patentsprüche für folgende Vertragsstaaten: AT, ES, GR

1. Verfahren zur Herstellung einer Verbindung der Formel (I)

und deren pharmazeutisch annehmbaren Salze, worin bedeuten:
(1) = eine Einfach- oder Doppelbindung;
(2) R, R₁ und R₂, die gleich oder verschieden sein können, ausgewählt aus der aus Wasserstoff, C₁-C₄- Alkyl, Hydroxy, OR₄, wobei R₄ C₁-C₄-Alkyl darstellt, C(O)OR₄, wobei R₄ Wasserstoff oder C₁-C₄-Alkyl, OC(O)R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, C(O)R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, R₄, R₅ und R₇ gleich oder verschieden sein können und Wasserstoff oder C₁-C₄-Alkyl darstellen, NHCO(R₄), wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, NHCO, NH₂CO₂R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, NHCONHR₄, wobei R₄ wie oben definiert ist, Hydroxymethyl, Halogen, Trifluormethyl, SR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, oder Nitro bestehenden Gruppe;
(3) Q CH = CH oder CH = C-CO₂R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist;
(4) X und Y (i) = N, (ii) NR₄, wobei R₄ Wasserstoff oder

\[C₁-C₄-Alkyl, -CHCO₂R₂'₂ \text{ ist,} \]

wobei R₁' und R₂' gleich oder verschieden sein können und Wasserstoff oder C₁-C₄-Alkyl, C(O)R₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, Cycloalkyl mit 3 bis 20 Kohlenstoffatomen, wobei der Ring 3 bis 8 Kohlenstoffatome aufweist, unsubstituiertes oder durch 1, 2 oder 3 Substituenten aus der Gruppe C₁-C₄-Alkyl, OR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, SR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, R₄COO, worin R₄ jedoch unabhängig davon wie oben definiert ist, C(O)OR₄, wobei R₄ wie oben, jedoch unabhängig davon, definiert ist, Hydroxymethyl, NR₄CO₂, worin R₄ und R₇ wie oben, jedoch unabhängig davon, definiert sind, Nitro oder Halogen substituiertes Phenyl, wobei die Phenygruppe auch durch eine Methylengruppe, Ethylenyl, Propylenyl- oder Butylenylgruppe oder deren Isomere gebunden sein kann,
(iii) O, (iv) S; mit der Massgabe, dass X und Y nicht beide gleichzeitig O und S darstellen können,
dass eines der Symbole X und Y nicht O darstellen kann, wenn gleichzeitig das andere der Symbole
X und Y S oder NR₅ darstellt und dass eines der Symbole X und Y nicht S sein kann, wenn gleichzeitig das andere der Symbole X und Y NR₅ darstellt und dass, wenn X und Y beide Stickstoff bedeuten, eines der Symbole X und Y NR₅ sein muss, wenn das andere der Symbole X und Y zur gleichen Zeit =N-darstellt.

(5) Z Wasserstoff, C₁-C₄-Alkyl, unsubstituiertes oder durch 1, 2 oder 3 Substituenten aus der Gruppe C₁-C₄-Alkyl, OR₆, wobei R₆, wie oben, jedoch unabhängig davon, definiert ist, SR₆, wobei R₆ wie oben, jedoch unabhängig davon, definiert ist, R₆C(O)O₆, worin R₆ wie oben, jedoch unabhängig davon, definiert ist, C(O)OR₆, wobei R₆ wie oben, jedoch unabhängig davon, definiert ist, Hydroxymethyl, NR₆R₇, worin R₆ und R₇ wie oben, jedoch unabhängig davon, definiert sind, Nitro oder Halogen substituiertes Phenyl, wobei die Phenylgruppe auch durch eine Methylengruppe, Ethylengruppe, Propylengruppe oder Butylengruppe oder deren Isomere gebunden sein kann, OC(O)R₆, wobei R₆ wie oben, jedoch unabhängig davon, definiert ist, C(O)OR₆, wobei R₆ wie oben, jedoch unabhängig davon, definiert ist, CO₂R₆R₇, wobei R₆ und R₇ wie oben, jedoch unabhängig davon, definiert sind, Halogen, Trifluormethyl.

![Chemical structure](image)

worin R₁, R₂ und R₃ wie oben, jedoch unabhängig davon, definiert sind; mit der Massgabe, dass, wenn eines der Symbole R, R₁ und R₂ 2-Hydroxy, X O =N- und Q CH=CH darstellen, Z nicht Wasserstoff oder Alkyl sein kann; mit der Massgabe, dass, wenn R, R₁ und R₂ Hydroxy oder C₁-C₄-Alkyl, X und Y =N- oder NH und Null bedeuten, Z nicht Furfuryl oder unsubstituiertes oder durch Halogen, Trifluormethyl, Alkyl, Alkoxy oder NO₂ substituiertes Phenyl sein kann, dadurch gekennzeichnet, dass man,

(1) fällt Y und X O und =N- =N- und O, S und =N- oder =N- und S bedeuten, eine Verbindung der Formel

![Chemical structure](image)

worin R₁, R₂ wie oben definiert sind, mit einer Verbindung der Formel

![Chemical structure](image)

worin --- und Z die oben angegebenen Bedeutungen haben, Y und X O und N, N und O, S und N oder N und S; und Ph Phenyl bedeuten, in Gegenwart einer geeigneten Base umgesetzt, um die Verbindung der Formel 1 zu erhalten, worin Z wie oben definiert ist, Y und X O und =N- =N- und O, S und =N- oder =N- und S bedeuten und R₁, R₂ wie oben definiert sind;

(2) fällt X und Y =N- und NH bedeuten, eine Verbindung der Formel.
worin R, R₁, R₂ und Z wie oben definiert sind und Q HC=CH darstellt, mit Hydrazin umsetzt und gegebenenfalls die =N- - Bindung hydriert, sofern diese eine Doppelbindung darstellt, um eine Verbindung der Formel I zu erhalten, worin X und Y =N- und NH darstellen und R, R₁, R₂ und Z wie oben definiert sind;
(3) falls X und Y O und =N- oder =N- und NH darstellen und Q CH=CH-W ist,
in Stufe (a) eine Verbindung der Formel

worin R₁ und R₂ die oben angegebenen Bedeutungen haben, mit einer Verbindung der Formel

worin Li Lithium und W Wasserstoff oder CO₂R₄, wobei R₄ wie oben definiert ist, bedeuten und Z die oben angegebene Bedeutung hat, behandelt; und in Stufe (b) das Produkt aus Stufe (a) mit Salzsäure in Methanol behandelt, um eine Verbindung der Formel I zu erhalten, worin X und Y O und =N- und Q CH=CH-W bedeuten und R, R₁, R₂ und Z wie oben definiert sind, und alternativ die in Stufe (b) erhaltene Verbindung weiterhin mit Mo(CO)₆ und danach mit Hydrazin behandelt, um die Verbindung der Formel I zu erhalten, worin X und Y N und NH bedeuten und R, R₁, R₂ oder Z wie oben definiert sind; oder
(4) falls X =N-, Y O und Q --- bedeuten, eine Verbindung der Formel

worin R, R₁ und R₂ wie oben definiert sind, mit N-Chlorsuccinimid und einer Base und anschließend mit einer Verbindung der Formel

HC=CH₂ oder H₂C=CH₂

unter wasserfreien Bedingungen in einem inerten Lösungsmittel und bei Temperaturen annähernd
im Bereich von 0 bis 50 °C behandelt, um die Verbindung der Formel 1 zu erhalten, worin X = N-, Y O und Q --- bedeuten und R, R₁, R₂ und Z wie oben definiert sind;
(5) falls X und Y = N- bedeuten,
 a) eine Verbindung der Formel 1 gemäss Anspruch 1, worin eines der Symbole X und Y Sauerstoff ist und das andere Stickstoff darstellt, mit Acetonitril in Gegenwart von Molybdänhexacarbonyl umsetzt und danach
 b) mit Hydrazin behandelt, um die Verbindung der Formel 1 zu erhalten, worin X und Y beide Stickstoff darstellen;
(6) falls eines der Symbole X und Y für NH steht und das andere = N- ist oder eines der Symbole X und Y für O steht und das andere = N- darstellt,
 a) eine Verbindung der Formel

worin R, R₁ und R₂ die oben angegebenen Bedeutungen haben, mit einer Verbindung der Formel

worin Z und R₄ wie oben definiert sind und eines der Symbole X und Y für NH steht und die andere = N- darstellt oder eines der Symbole X und Y für O steht und das andere = N- darstellt, zusammenbringt und \textit{in situ} entweder
b) das Produkt aus Stufe (a), worin R₄ Wasserstoff bedeutet, dehydratisiert und decarboxyliert, um eine Verbindung der Formel

worin eines der Symbole X und Y für NH steht und das andere = N- darstellt oder eines der Symbole X und Y für O steht und das andere = N- darstellt und R, R₁, R₂ und Z die oben angegebenen Bedeutungen haben; oder
c) das Produkt aus Stufe (a), worin R₄ Alkyl bedeutet, dehydratisiert (\textit{in situ}), um eine Verbindung der Formel
worin eines der Symbole X und Y für NH steht und das andere =N- darstellt, oder eines der Symbole X und Y für O steht und das andere =N- darstellt und R, R₁, R₂ und R₄ wie oben definiert sind zu erhalten.

2. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung nach Anspruch 1, worin \(\text{CH}=\text{CH} \)

\[
\text{CH}=\text{CH} \quad \text{CO}_2\text{R}_4
\]

ist,
worin \(\text{R}_4 \) wie oben, jedoch unabhängig davon, definiert ist, X und Y =N- und NR₅, wobei \(\text{R}_5 \) wie oben definiert ist, NR₅ und =N-, O und =N- oder =N- und O, S und N oder N und S bedeuten.

3. Verfahren nach Anspruch 1 zur Herstellung von 3-[β-(4'-Hydroxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazol oder 3-[β-(4'-Acetoxy-3'-methoxyphenyl)ethenyl]-5-methylpyrazol.

4. Verfahren nach Anspruch 1 zur Herstellung von 5-[β-(4'-Hydroxy-3',5'-bis{1,1-dimethylethyl}phenyl)ethenyl]-3-methylisoxazol oder 5-[β-(4'-Hydroxy-3',5'-dimethoxy-phenyl)ethenyl]-3-methylisoxazol.

5. Verfahren nach Anspruch 1 zur Herstellung von 3-[β-(4'-Hydroxy-3',5'-bis{1,1-dimethylethyl}phenyl)ethenyl]-5-methylpyrazol.

6. Sonnenschutzmittel zur Verwendung als Filter zum Schutz gegen Sonnenstrahlung, enthaltend eine Ultraviolett absorbierende Menge einer Verbindung nach Anspruch 1, ausgenommen die Ausschlussbedingung, und einen für diesen Verwendungszweck geeigneten Trägerstoff.