Wood preservative compositions and a process for their production.

Priority: 07.06.86 GB 8611094

Date of publication of application:
11.11.87 Bulletin 87/46

Publication of the grant of the patent:
14.03.90 Bulletin 90/11

Designated Contracting States:
BE DE ES FR GB NL SE

References cited:
DE-C-631 459
US-A-4 103 000

CHEMICAL ABSTRACTS, vol. 87, no. 18, 1977, page 84, abstract no. 137553y, Columbus, Ohio, US; & SA-A-76 01 621 (KOPPERS CO., INC.) 02-02-1977
CHEMICAL ABSTRACTS, vol. 100, no. 12, March 1984, page 135, abstract no. 88105e, Columbus, Ohio, US; & SU-A-1 058 888 (TBILISI STATE UNIVERSITY) 07-12-1983

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to wood preservative compositions containing copper arsenate and to a method for their production.

Compositions containing, as active ingredients, compounds of copper, of chromium and or arsenic, hereafter called copper/chrome/arsenic compositions, are in widespread use as wood preservatives. Such compositions are required to be water-soluble and are generally made available as pastes, as slurries of solid and solution, or as concentrated solutions, each for dissolution and/or dilution in water before use.

The British Standards Institution has published British Standard No. 4072 relating to the composition of copper/chrome/arsenic compositions and their use in the treatment of wood. This Standard specifies two formulations identified as Type 1 and Type 2 having overall weight compositions as follows:

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper sulphate</td>
<td>32.6%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Dichromate</td>
<td>41.0%</td>
<td>45.0%</td>
</tr>
<tr>
<td>Arsenic</td>
<td>26.4%</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Similar compositions have been Standardised by the American Wood Preservers Association as Types A, B and C having overall weight compositions as follows:

<table>
<thead>
<tr>
<th></th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper sulphate</td>
<td>18.1</td>
<td>19.6</td>
<td>18.5</td>
</tr>
<tr>
<td>Sodium dichromate</td>
<td>65.5</td>
<td>35.3</td>
<td>47.5</td>
</tr>
<tr>
<td>Arsenic</td>
<td>16.4</td>
<td>45.1</td>
<td>34.0</td>
</tr>
</tbody>
</table>

The above Standards illustrate the range of copper:chromium:arsenic ratios commonly used for wood preservative purposes. The ingredients used to attain such ratios are varied somewhat subject to constraints arising from the avoidance or reduction of the content of undesired impurities, for example the sulphate and/or nitrate anions, in the compositions or arising from the need for water solubility in the composition at least at the final treatment concentration.

United States Patent No. 4103000 describes the production of copper/chrome/arsenic wood preservative compositions corresponding to Types A, B and C identified above from copper arsenate and chromic acid and also describes a process for the production of slurries of copper arsenate suitable for such use. The last mentioned process comprises reacting copper metal with arsenic acid at a temperature of 100°C in the presence of an oxidising agent and of an acid catalyst selected from the group consisting of nitric acid, hydrochloric acid and sulphuric acid. Oxygen is sparged into the reaction mixture, preferably under pressure, as the oxidising agent, although if nitric acid is selected as the catalyst oxygen need not essentially be used.

The present invention provides the production of copper arsenate by a new or improved process and the conversion of the copper arsenate so produced into copper/chrome/arsenic wood preservative compositions.

A basis of the present invention is the selection of hydrogen peroxide as an oxidising agent together with the realisation that if this oxidising agent is utilised within suitably controlled process parameters a catalyst for the production of copper arsenate may be omitted.

According to one aspect thereof the present invention therefore provides a process for the production of copper arsenate suitable for conversion into a copper/chrome/arsenic wood preservative composition by reacting copper metal with a source of 5-valent arsenic in an aqueous phase in the presence of an oxidising agent characterised in that the oxidising agent consists essentially of hydrogen peroxide. In the practice of this invention contamination of wood preservative compositions made from copper arsenate so produced by acid anions derived from the catalysts described in United States Patent No. 4103000 may be avoided.

The copper metal utilised in the practice of this Invention may be in any convenient particulate form which provides a sufficient surface area for reaction. The copper may be in powdered form although larger particles, for example turnings or even scrap copper, may alternatively be used. Preferably the copper is in reactive form and it may, advantageously, be mildly etched, for example with a dilute mineral acid/hydrogen peroxide mixture to ensure this.

The source of 5-valent arsenic is preferably arsenic acid. Sodium arsenate may alternatively be used although the consequent inclusion of sodium ions into the composition may not be preferred. Arsenic trioxide may also, alternatively, be used. Suitably, the arsenic compound is used in the form of an aqueous solution or suspension, preferably an aqueous solution of at least 50% by weight concentration but
particularly preferably of at least 65% by weight concentration for example, suitably, from about 75% to about 80% by weight concentration and preferably not more than about 95% by weight concentration.

The hydrogen peroxide utilised in the practice of this invention is suitably used as an aqueous solution having a concentration of about 30% by weight to about 95% by weight although it is preferred to use hydrogen peroxide having a concentration of from about 50% to about 75% by weight.

The overall stoichiometry of the reaction between copper metal and arsenic acid in the presence of hydrogen peroxide may be stated by the formula

$$3\text{Cu} + 2\text{H}_2\text{AsO}_4 + 3\text{H}_2\text{O}_2 \rightarrow \text{Cu}_2(\text{AsO}_4)_2 + 6\text{H}_2\text{O}$$

Reference hereafter to stoichiometry is with reference to the quantities expressed in the above formula. The arsenic:copper ratio stated in the above equation corresponds to that required in the copper/chrome/arsenic composition Type A identified above. As it is seen from the other Standards quoted above, compositions containing more arsenic in relation to copper may be required for certain timber preservation applications. Preferably, according to this invention, the entire content of arsenic required in the final wood preservative composition, or at least the majority of it, for example at least 75% of it, or more suitably at least 90% of it, is supplied as the source of 5-valent arsenic specified above. The quantity of the source of 5-valent arsenic relative to the quantity of copper is preferably therefore from about 90% stoichiometric to about 500% stoichiometric or more i.e. up to about 1000% stoichiometric if required. It has been found to be beneficial to conduct the reaction in an aqueous liquid medium having a substantial volume in relation to the quantity of copper metal and the inclusion of the entire or substantially entire arsenic content of the desired wood preservative composition in the reaction medium as above taught assists in this by increasing the volume of the reaction mixture without entailing undue dilution with water which would act to decrease reaction efficiency and also assists in pH control. Preferably the initial pH of the reaction medium is less than 1.0 particularly preferably less than 0.8.

It is a feature of the present invention that the hydrogen peroxide may advantageously be used in an excess over the stoichiometric quantity in order to increase the reaction efficiency. The excess is preferably at least 20% and particularly preferably at least 40% although it may be found to be beneficial to utilise a molar excess of hydrogen peroxide of from, for example, up to 200%.

The reaction according to the present invention is preferably carried out by establishing a body of an aqueous phase containing the source of 5-valent arsenic and the copper metal and lastly introducing the hydrogen peroxide. Preferably the addition of the hydrogen peroxide is carried out slowly, for example over a period of at least 4 hours for example from 4 hours to 24 hours. This apparently reduces the proportion of hydrogen peroxide lost through decomposition and increases the reaction efficiency. The reaction is preferably conducted under slightly elevated temperature conditions, for example at from 35°C, particularly preferably from 45°C to below reflux temperature, preferably below 100°C and particularly preferably below 95°C, to minimise decomposition of the hydrogen peroxide. It is preferred not to allow reflux to occur since this tends to reduce the efficiency of the process. It is further preferred not to utilise an oxygen or air sparge since this also tends to reduce the efficiency of the process.

The method of achieving efficient contact between the hydrogen peroxide-containing liquid reaction medium and the copper metal will depend to a great extent on the physical form of the copper. When the copper is finely divided or is in relatively small pieces it is preferred to agitate the liquid medium sufficiently to suspend the copper, by for example, mechanical stirring. If the copper is scrap copper which may be in the form of bales comprising quite large pieces, for example plumbers scrap, it may be desired to pass the liquid medium over the surface of the scrap copper in the far of a bed or a packed column. Advantageously the scrap copper is first shredded. The contact between the hydrogen peroxide containing liquid reaction medium may advantageously be continued after the addition of the hydrogen peroxide to the medium has been completed for example for at least 15 minutes and possibly up to 3 hours or more.

The overall reaction between the copper metal, the source of 5-valent arsenic and the hydrogen peroxide is found to be exothermic. On a laboratory scale this was found to be insufficient to maintain the desired temperature, particularly at the upper end of the reaction temperature range envisaged. On a commercial scale, however, external heating may be unnecessary and cooling may even be required.

The direct product of the above reaction is a slurry of copper arsenate. This slurry product may be utilised in the production of copper/chrome/arsenic wood preservative compositions in the same manner as taught in the disclosure of United States Patent No. 4103000 namely the production of such compositions by the mere addition of the required quantity of chromic acid and, if it has not been included as excess reactant, any required further quantity of a source of 5-valent arsenic. Alternatively, the product of this invention may be utilised in the manufacture of copper/chrome/arsenic wood preservative compositions by mixing it with sodium dichromate and a sufficient quantity of an added acid such as a strong mineral acid, to ensure that a water-soluble end-product is obtained in the manner described in our copending United Kingdom Patent Application No. 8601570.

The invention will now be illustrated by reference to the following specific examples thereof.

Examples 1 to 9

A series of experiments were conducted which varied specific process conditions from a standard
process. According to the standard process arsenic acid (80% wt concn.) and new copper wire which had been etched with a dilute acid/hydrogen peroxide mixture and water washed (0.91 mm diameter, 10 mm lengths) were placed in a reaction vessel fitted with stirring means and thermostatically controlled heating means and 50% wt concentration aqueous hydrogen peroxide was added slowly over a period of 4 hours with stirring at 500 revolutions per minute (rpm). The reactants were used in a stoichiometry relative to the copper, the hydrogen peroxide being in a 150% stoichiometry arsenic acid in a 190% stoichiometry. This gives a copper arsenate product having a copper to arsenic ratio as specified in the Type C copper/chrome/arsenic Standard referred to above. The reaction temperature was maintained at 90°C. After the addition of the hydrogen peroxide had been completed stirring was continued for a further 2 hours. The copper arsenate precipitate was filtered off and dissolved to allow the determination of the weight of any residual copper and the calculated reaction efficiency was based on the weight of copper found to have reacted. The Standard process gave an efficiency, so calculated, of 89.1%.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Condition varied from standard</th>
<th>Reaction efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>89.1</td>
</tr>
<tr>
<td>2</td>
<td>H_2O_2 Stoichiometry 100%</td>
<td>77.6</td>
</tr>
<tr>
<td>3</td>
<td>Reaction temperature 50°C</td>
<td>62.9</td>
</tr>
<tr>
<td>4</td>
<td>Reaction temperature 50°C addition+stirring times 2+1 hours</td>
<td>41.3</td>
</tr>
<tr>
<td>5</td>
<td>Reaction temperature 50°C and addition+stirring times 8+2 hours</td>
<td>85.5</td>
</tr>
<tr>
<td>6</td>
<td>Arsenic acid 900% stoichiometry</td>
<td>93.3</td>
</tr>
<tr>
<td>7</td>
<td>Arsenic acid 100% stoichiometry but diluted to 25% wt concentration</td>
<td>40.6</td>
</tr>
<tr>
<td>8</td>
<td>Air sparge added to supplement agitation and arsenic acid 272% stoichiometry</td>
<td>18.1</td>
</tr>
<tr>
<td>9</td>
<td>Speed of stirrer reduced to 250 rpm (no sparge)</td>
<td>54.9</td>
</tr>
</tbody>
</table>

Claims

1. A process for the production of copper arsenate suitable for conversion into a copper/chromate/arsenic wood preservative composition by reacting copper metal with a source of 5-valent arsenic in an aqueous phase in the presence of an oxidising agent characterised in that the oxidising agent consists essentially of hydrogen peroxide.
2. A process as claimed in claim 1 wherein the source of 5-valent arsenic is selected from arsenic acid, sodium arsenate and arsenic trioxide.
3. A process as claimed in claim 1 or 2 wherein the source of 5-valent arsenic has a concentration of at least 50% by weight.
4. A process as claimed in claim 3 wherein the source of 5-valent arsenic has a concentration of at least 65% by weight.
5. A process as claimed in any one of claims 1 to 4 wherein the source of 5-valent arsenic is present in a stoichiometric excess relative to the copper.
6. A process as claimed in any one of claims 1 to 5 wherein the hydrogen peroxide is in the form of an aqueous solution having a concentration of from 30% to 85% by weight.
7. A process as claimed in claim 6 wherein the hydrogen peroxide solution has a concentration of at least 50% by weight.
8. A process as claimed in any one of claims 1 to 7 wherein the hydrogen peroxide is in a stoichiometric excess of at least 20%.
9. A process as claimed in any one of claims 1 to 8 wherein an aqueous solution of hydrogen peroxide

4
is added to an agitated aqueous phase containing particles of the copper and the source of 5-valent arsenic in the solution being conducted over a period of at least 4 hours.

10. A process as claimed in claim 9 wherein the aqueous phase is maintained in agitation and at a temperature of from 35°C to below reflux temperature until reaction of the copper has ceased.

11. A process for the production of copper arsenate suitable for conversion into a copper/chrome/arsenic wood preservative composition by reacting particles of copper metal with a source of 5-valent arsenic in the presence of an oxidising agent characterised by the establishment of a mixture of particles of copper metal with a source of 5-valent arsenic in an aqueous phase, the source of 5-valent arsenic being in at least a stoichiometric quantity relative to the copper and being in a concentration of at least 50% by weight, the addition to the mixture over a period of at least 4 hours of an oxidising agent consisting essentially of hydrogen peroxide in a stoichiometric excess and in the form of an aqueous solution having a concentration of from 30% to 85% by weight, the maintenance of the mixture in agitation during the addition of the hydrogen peroxide and thereafter until the particles of copper metal have been consumed by the reaction, and at a temperature of from 35°C to below reflux temperature and if necessary dewatering the resulting copper arsenate product.

12. A process for the production of a copper/chrome/arsenic wood preservative composition comprising adding to the copper arsenate product of a process as claimed in any one of claims 1 to 11 a source of chromium.

Patentansprüche

2. Ein Verfahren wie in Anspruch 1 beansprucht, in welchem die Quelle für 5-wertiges Arsen ausgewählt ist aus Arsenisüre, Natriumsulfat und Arsentrioxid.

5. Ein Verfahren wie in irgendeinem der Ansprüche 1 bis 4 beansprucht, in welchem die Quelle für 5-wertiges Arsen in einem stöchiometrischen Überschuß relativ zum Kupfer vorliegt.

8. Ein Verfahren wie in irgendeinem der Ansprüche 1 bis 7 beansprucht, in welchem das Wasserstoffperoxid in einem stöchiometrischen Überschuß von mindestens 20 Prozent vorliegt.

10. Ein Verfahren wie in Anspruch 9 beansprucht, in welchem die wässrige Phase in Bewegung gehalten und auf einer Temperatur von 35°C bis unterhalb der Rückflußtemperatur gehalten wird, bis die Umsetzung des Kupfers aufgehört hat.

Revendications

1. Procédé de préparation d’arséniate de cuivre approprié pour être transformé en une composition de protection du bois à base de cuivre/chrome/arsenic en faisant réagir du cuivre métallique avec une source d’arsenic pentavalent dans une phase aqueuse en présence d’un agent oxydant, caractérisé en ce que l’agent oxydant est constitué essentiellement de peroxyde d’hydrogène.

2. Procédé selon la revendication 1, caractérisé en ce que la source d’arsenic pentavalent est choisie parmi l’acide arsénique, l’arséniate de sodium et le trioxide arsénique.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la source d’arsenic pentavalent a une concentration d’au moins 50% en poids.

4. Procédé selon la revendication 3, caractérisé en ce que la source d’arsenic pentavalent a une concentration d’au moins 65% en poids.

5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la source d’arsenic pentavalent est présente en un excès stœchiométrique par rapport au cuivre.

6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le peroxyde d’hydrogène est sous forme d’une solution aqueuse ayant une concentration de 30 à 85% en poids.

7. Procédé selon la revendication 6, caractérisé en ce que la solution de peroxyde d’hydrogène a une concentration d’au moins 50% en poids.

8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que le peroxyde d’hydrogène est en un excès stœchiométrique d’au moins 20%.

9. Procédé selon l’une quelconque des revendications 1 à 8, caractérisé en ce qu’on ajoute une solution aqueuse de peroxyde d’hydrogène à une phase agitée aqueuse contenant des particules de cuivre et la source d’arsenic pentavalent, l’addition étant effectuée au cours d’une période d’au moins 4 heures.

10. Procédé selon la revendication 9, caractérisé en ce que la phase aqueuse est maintenue sous agitation et à une température se situant entre 35°C et en dessous de la température de reflux jusqu’au terme de la réaction du cuivre.

11. Procédé de préparation d’arséniate de cuivre approprié pour être transformé en une composition de protection du bois à base de cuivre/chrome/arsenic en faisant réagir des particules de cuivre métallique avec une source d’arsenic pentavalent en présence d’un agent oxydant, caractérisé en ce qu’on établit un mélange de particules de cuivre métallique avec une source d’arsenic pentavalent dans une phase aqueuse, la source d’arsenic pentavalent étant au moins en une quantité stœchiométrique par rapport au cuivre, tout en étant en une concentration d’au moins 50% en poids, l’addition au mélange au cours d’une période d’au moins 4 heures d’un agent oxydant consistant essentiellement en peroxyde d’hydrogène en un excès stœchiométrique et sous forme d’une solution aqueuse ayant une concentration de 30 à 85% en poids, le maintien du mélange sous agitation au cours de l’addition du peroxyde d’hydrogène, puis jusqu’à ce que les particules de cuivre métallique aient été consommées par la réaction, ainsi qu’à une température se situant entre 35°C et en dessous de la température de reflux, après qu’on a procédé, au besoin, à une déshydratation de l’arséniate de cuivre formé.

12. Procédé de préparation d’une composition de protection du bois à base de cuivre/chrome/arsenic, caractérisé en ce qu’il consiste à ajouter, à l’arséniate de cuivre d’un procédé selon l’une quelconque des revendications 1 à 11, une source de chrome.