Methods for regulating the growth of plants and growth regulant compositions.
Description

Technical Field

This invention relates to methods of regulating the growth of plants and, in particular, it relates to methods useful for stimulating the growth and/or fruit production of plants, to methods of inhibiting the growth of undesired vegetation, and to compositions useful for regulating plant growth.

Background

Plant growth regulators can be defined as compounds and/or preparations which, in minute amounts, alter the behavior of ornamental and/or crop plants and/or the produce of such plants through physiological (hormonal) rather than physical action. They may either accelerate or retard growth, prolong or break a dormant condition, promote rooting, fruit-set, or increase fruit size or quantity, or affect the growth and/or productivity of plants in other ways. Plant growth regulators are currently classified into one or more of six categories: auxins, gibberellins, cytokinins, ethylene generators, inhibitors, and retardants. Illustrative of known auxins are indole acetic acid, 2,4-D (2,4-dichlorophenoxyacetic acid), MCPA (4-chloro-2-methyl phenoxyacetic acid), MCPP (4-(4-chloro-0-tolyloxy) butyric acid) which susceptible plants oxidize to MCPA, and BNOA (beta-naphthoxyacetic acid). Gibberellins include gibberellic acid and its derivatives, while cytokinins include compositions such as zeatin, kinetin, and benzyl adenine. Presently known ethylene generators include ethylene and Ethephon ([2-chloroethyl] phosphoric acid). Presently known inhibitors include benzoic acid, gallic acid, and cinnamic acid, while retardants, a recently developed class of plant growth regulators, include compositions which are especially useful in plant height control, particularly in commercial greenhouse-grown floricultural crops.

Lactic acid (alpha-hydroxypropionic acid) is well known and is widely employed in industry as a chemical intermediate. It is usually present in the form of the racemic mixture which is an equal molar mixture of the two possible optical isomers of alpha-hydroxypropionic acid - the levorotatory and dextrorotatory isomers. Levorotatory (1) isomers are isomers of an optically active compound which rotate a beam of polarized light to the left; the dextrorotatory (d) isomers are isomers of the same compound which rotate a beam of polarized light to the right. A second convention employed to define the configurational relationships of dissimilar functional groups bonded to an asymmetric carbon atom, the Fischer method, is based on the geometric arrangement of functional groups relative to each other rather than on the direction (left or right) in which a standard solution of the compound rotates a beam of polarized light. In accordance with the Fischer method, any compound which contains an asymmetric carbon atom of the same configuration as the asymmetric carbon in the arbitrary standard dextrorotatory gyceraldehyde is classified in the D series while compounds in which the asymmetric carbon atom has the opposite configuration are classified in the L series. Although the Fischer D and L classifications do not correlate with dextrorotatory (d) and levorotatory (1) optical activity for all compounds, those classifications can be used in combination with the optical activity classifications D and L to define both the geometric arrangement and specific optical activity of any optically active isomer. Thus, the L-isomer of lactic acid, which is dextrorotatory, is defined as L-(d)-lactic acid, and the D isomer is defined as D-(l)-lactic acid. However, both of these characteristics of relatively simple compounds such as lactic acid can be adequately defined by reference to only one classification system. L-lactic acid is known to be dextrorotatory and l-lactic acid is known to have the D configuration according to Fischer. For this reason, the D and L isomers of lactic acid are usually identified only by the D and L designations and without explicit reference to their optical activity. The Fischer classification method is well known in the art and is discussed in more detail in "Introduction to Organic Chemistry", Fieser and Fieser, D. C. Health and Co., Boston, Mass., (1957) at pages 209-215.

Lactic acid is prevalent in a variety of synthetic and naturally occurring products such as dairy products and fermentation products in which it occurs primarily as the racemic mixture. Specialized fermentation processes can be employed to selectively manufacture either the levorotatory or dextrorotatory isomers. Although some commercially available agricultural products contain fermentation products and lactic acid and are marketed for various applications in the agricultural industry, it has not been observed or suggested that L-(d)-lactic acid is an active plant growth regulator. Furthermore, the lactic acid-containing compositions which are marketed in the agricultural industry usually contain the racemic mixture of both optical isomers in addition to cations such as sodium, potassium, ammonium, etc., and/or other compounds such as surfactants, pesticides, etc., which can react with L-lactic acid and destroy its growth regulating activity.

It has been suggested that alpha-hydroxy carboxylic acids of higher molecular weight than lactic acid exhibit specific growth regulating activity regardless of the configuration or optical activity of the carboxylic acid employed. U.S. Patent 3,712,804, Mueller et al., discloses that certain alpha-substituted carboxylic acids increase the yield of certain crops by improving the ability of the plant to assimilate water from its environment. The acids have 7 to 10 carbon atoms per molecule, and the alpha carbon atom is substituted with one or more functional groups including oxy, hydroxy, amine, and carboxyl groups. The acids are applied to very young plants, and the salts and lower alkylation esters and amines have growth regulating activity similar to that of the free acid. The compositions can also contain wetting agents.

Trent`ev et al., Effect of Low-Molecular-Weight Organic Acids of Peat Soil on the Growth of Barley Plants, Chemical Abstracts, Vol. 66, 1967, 54801c, studied the effect of succinic, glycolic, fumaric and
lactic acids on barley plants grown in aqueous nutrient media and found that lactic acid, added to the nutrient media at concentrations of 0.25–0.50 mg/l, had a retarding effect on plant development. Since Trent'ev et al. do not identify any of the acids as isomers, it must be assumed that the lactic acid employed was the racemic mixture of the L and D isomers.

Stewart discloses, in US-A 2 535 875, that beta-oxy and beta-thio propionic acids and their hydrolyzable derivatives, such as salts, esters and amides, alter the growth characteristics of many plant types. The acids disclosed by Stewart do not form optically active isomers.

The plant growth regulators referred to above and otherwise known in the art, including those discussed in U.S. 3,712,804, all suffer from certain disadvantages that make their use, at least in some applications, less desirable than would be the use of L-lactic acid. Many growth regulator compositions, particularly those which exhibit herbicidal activity at higher dosage rates, are toxic to plants, the environment, and/or animals, including humans. Many are not readily available and are relatively expensive to manufacture as compared to L-lactic acid. Also, many of the known growth regulators such as the alpha-functional carboxylic acids, salts, esters and amines discussed in U.S. 3,712,804, require plant treatment at a time that may not be opportune for the grower in all instances. Furthermore, many known regulators exhibit a limited spectrum of growth regulator activity, are not useful with many plant varieties, and/or do not adequately regulate crop productivity.

Accordingly, a need exists for improved methods for regulating the growth of plants and for improved compositions useful in such methods. In particular, a need exists for improved methods and compositions for stimulating the desired growth of plants, inhibiting the growth of undesired vegetation, reducing the toxic effects of such methods and compositions on the environment and animals, including humans, and reducing the expense of so regulating plant growth.

It is therefore a principal object of this invention to provide novel methods for regulating the growth of plants.

Another object of this invention is the provision of novel plant growth regulator compositions.

Yet another object of this invention is the provision of methods and compositions for stimulating the growth and productivity of agricultural and ornamental plants.

Yet another object is the provision of improved methods and compositions for inhibiting the growth of undesired vegetation.

Another object of this invention is the provision of plant growth regulator compositions which are non-toxic to animals and to the environment.

Another object of this invention is the provision of relatively inexpensive methods for regulating this growth of plants which do not require exposure of applicators, other personnel, or the environment to either toxic or corrosive materials.

Other objects, aspects and advantages of this invention will be apparent to one skilled in the art in view of the following disclosure, the drawings, and the appended claims.

Summary

Briefly, the invention provides novel methods for regulating the growth of plants and compositions useful in such methods. The methods of this invention involve regulating the growth of plants by contacting the plants with a growth regulating amount of a composition which contains the dextrorotatory L-(d)-isomer of lactic acid, its anhydride or the corresponding polylactides. The L-(d)-lactic acid constitutes at least 60 percent of the lactic acid present in the applied composition. These methods can be employed either to stimulate the growth and/or fruit production of crop plants and ornamental plants or to inhibit the growth of undesired vegetation.

The novel compositions of this invention exhibit plant growth regulator activity and contain said lactic acid of which at least 60 percent is the L-(d)-isomer of lactic acid. These compositions also contain a preservative which is nonreactive with the lactic acid such as a sufficient amount of an acid other that lactic acid to maintain the pH of the composition within the range of about 5 or less and/or a sterilant which is sufficient to inhibit the bacterial decomposition of the lactic acid.

The methods of this invention which employ relatively low concentrations and dosage rates of the growth-active L-(d)-isomer of the lactic acid are useful for increasing the growth and/or fruit production of essentially all plant varieties. On flowering plants, the methods of this invention can be employed to increase both the size and quantity of the fruit produced. These methods also hasten maturity of fruit thereby shortening the crop cycle, and they increase the growth rate of agricultural and ornamental grasses, such as alfalfa, rye grass, etc. They can be employed to delay the senescence, and thereby extend the fruiting period, of annual fruit plants such as tomatoes and corn and to extend and fruiting period of perennials such as citrus, grapes, etc. These methods have the further advantage that they are non-toxic to environment and to animals, and, at levels employed for stimulating plant growth, the compositions useful in the methods of this invention are non-toxic to the treated plants of the harvested component of fruiting plants such as food products. Furthermore, the compositions useful in the methods of this invention are noncorrosive to storage, transport and application equipment and to animal and vegetable tissue. This, they can be easily and safely handled without damage to equipment, personnel, the crop, or the environment. One active component of the compositions useful in the methods of this invention - L-(d)-lactic acid - is readily available commercially and is relatively inexpensive, particularly in comparison to various other plant growth regulators which are expensive, sophisticated chemical compounds which require relatively sophisticated processes for their manufacture.

By the use of higher dosage rates of the L-lactic acid component, the methods of this invention can
be employed to inhibit the growth of undesired vegetation without the disadvantages attendant to the use of various other herbicidal growth regulators such as toxicity to the environment and animals and corrosivity toward application, storage or shipping equipment and personnel.

All of the benefits associated with the use of the methods of this invention discussed above also result from the use of the novel compositions of this invention in such methods, whether those novel compositions are employed to stimulate or to inhibit vegetative growth.

Brief Description of the Drawings

The methods and compositions of this invention will be better understood by reference to the drawings of which:

Figure 1 is a graphic presentation of Cress Test results illustrating the root growth stimulating and inhibiting activity of L-(d)-lactic acid and of indoleacetic acid; and

Figure 2 is a similar graphic presentation of data illustrating the root growth regulating activity of L-lactic acid and of D-(l)-lactic acid.

Detailed Description

This invention provides novel methods for regulating the growth of plants and novel growth regulant compositions useful in such methods. The methods of this invention involve either stimulation or retarding the growth of plants (depending upon the dosage rate of the growth regulating composition employed) by contacting the plants with a composition comprising the dextrorotatory isomer of lactic acid, its anhydride or the corresponding poly lactides. The novel compositions of this invention comprise said lactic acid of which at least 60 percent is the L-(d)-isomer of lactic acid and a preservative which is nonreactive with the lactic acid and which is sufficient to reduce or prevent the hydrolytic and/or bacterial decomposition of the lactic acid. The methods of this invention can be employed to increase vegetative growth and to increase the fruit production of fruit-producing plants. They can also be employed to hasten the maturity of plant fruit, delay the senescence (and thereby extend the fruiting period) of annual plants, and to extend the fruiting period of perennial plants.

The compositions useful in the methods of this invention are broad spectrum plant growth regulators; thus they can be employed to stimulate the growth and/or fruit-producing capacity or to inhibit the growth of all plant varieties, including fruiting and principally vegetative plants. Fruiting plants, for the purposes of this invention, include plants that bear any variety of produce other than vegetative growth such as annual and perennial vegetables, fruits, nuts, grains, fiber crops, and the flowering plants. Plants grown primarily for their vegetative productivity (the principal illustration being the wide variety of grasses grown for animal feeds and decorative purposes) can also be treated in accordance with the methods of this invention. Thus, the methods of this invention can be employed to stimulate the growth and fruit-bearing capacity (where relevant) of vegetables, fruits, nuts, grains, grasses, fiber crops, wood crops, and flowering plants.

All varieties of vegetables can be treated in accordance with these methods including lettuce, broccoli, asparagus, onions, tuberous crops such as potatoes, sugar beets and peanuts, tomatoes, beans, etc. Illustrative of fruits that can be treated in accordance with the methods of this invention are peaches, apples, citrus, avocados, cherries, grapes (varietal and table), bananas, etc. Treatable nut crops include walnuts, pecans, almonds, cashews, etc. Essentially all grains can be treated including corn, wheat, sorghum, maize, rice, barley oats, etc. Illustrative grasses include alfalfa, Bermuda rye, and bluegrass, while illustrative fiber crops include cotton and flax. All wood crops can be stimulated by the methods of this invention including both hardwoods and conifers, such as oak, elm, maple, walnut, spruce, hemlock, alder, loblolly pine, redwood, mahogany, cypress, cedar, Douglas fir, and white pine. Flowering plants which can be treated in accordance with the methods of this invention include all varieties of domestic and commercially grown flowers, such as orchids, roses, chrysanthemums, azaleas, camellias, carnations, pansies, snapdragons, etc.

All plant varieties, including all of the annual and perennial, fruiting and vegetative plants referred to above can be inhibited and eliminated by the methods of this invention. However, it is usually preferable to inhibit the growth only of undesired vegetation such as weeds, brush and grasses that occupy vacant land and which can infiltrate commercial crops and domestic plantings. Illustrative of vegetation which is usually desirable to inhibit or eliminate are black mustard (Brassica nigra), curly dock (Rumex crispus), common groundsel (Senecio vulgaris), pineapple weed (Matricaria matricarioides), swamp smartweed (Kelp, Polygonum coccineum), prickly lettuce (Lactuca scariola), lance-leaved groundcherry (Physalis lancelolia), annual sowthistle (Sonchus oleraceus), London rocket (Erysimum irio), common field dandelion (Taraxacum intermedium), hairy nightshade (Solanum sessiliflorus), shepherd's purse (Capsella bursa-pastoris), sunflower (Helianthus annuus), common knotweed (Polygonum aviculare), green amaranth (Amaranthus hybridus), mare's tail (Conyza canadensis), henbit (Lamium amplexicaule), cocklebur (Xanthium strumarium), cheesesew (Malva parviflora), lamb's quarters (Chenopodium album), puncture vine (Tribe of Terrestrial), common purslane (Portulaca oleracea), prostrate spurge (Euphorbia supina), telegraph plant (Heterotheca grandiflora), carpetweed (Mollugo verticillata), yellow starthistle (Centaura solstitialis), milk thistle (Allybrium marianum), mayweed (Anthemis cotula), burning nettle (Urtica urens), fat hen (Atriplex patula), chickweed (Stellaria media), scarlet pimpernel (Anagalis arvensis), redroot pigweed (Amaranthus retroflexus), pinwrenetute (Montia perfoliata), turkey mullein (Eremocarpus...
settigenus), nettleleaf goosefoot (chenopodium murale), prostrate pigweed (amaranthus bitoides), silverleaf nightshade (solanum elaegnifolium), hoary cress (cardaria draba), largeseed dodder (cucuita inedocora), California burclover (medicago polymorpha), horse purslane (trianthema portulacastrum), field bindweed (convolvulus arvensis), Russian knapweed (centaurea repens), flax-leaved fleabane (conyza bonariensis), wild radish (raphanus sativus), tumble pigweed (amaranthus albus), stephanomeria (stephanomeria exigua), wild turnip (brassica campestris), buffalo gourd (cucurbita foetidissima), common mullen (verbacum thapsus), dandelion (taraxacum officinale), spanish thistle (xanthium spinosum), chicory (cichorium intybus), sweet anise (foeniculum vulgare), annual yellow sweetclover (mellotus indicus), poison hemlock (conium maculatum), broadleaf filaree (erodium botrys), whitestem filaree (erodium moschatum), red stem filaree (erodium cicutarium), ivyleaf morning-glory (ipomea hederacea) shortpod mustard (brassica geniculata), buckhorn plantain (plantago lanceolata), sticky chickweed (cerastium viscosum), himalaya blackberry (rubus procerus), purslane speedwell (veronica peregrina), mexican tea (chenopodium ambrosioides), Spanish clover (lotus purshianus), Australian brassbuttons (catula aus-tralia), goldenrod (solidago californica), citron (citrusus lanatus), hedge mustard (sisymbrium orientale), black nightshade (solanum nodiflorum), chinese thornapple (datura ferox), bristly ox tongue (picris echioides), bull thistle (cirsium vulgare), spiny sowthistle (sonchus asper), tasmanian goosefoot (chenopodium pumillo), goosefoot (chenopodium botrys), wright groundcherry (physalis acuti-folia), tomato plant (physalis philadelphia), pretty spurge (euphorbia peplus), bitter apple (cucumis myriocarpus), indian tobacco (nicotiana bigelovii), common morning-glory (ipomoea purpu-ras), waterplantain (alisma triviale), smartweed (polygonum lapathifolium), mature sowthistle (son-chus asper), yellow natsedge (cyperus esculentus), purple natsedge (cyperus rotundus), lupine (lupinus fornosus), and grasses of the family Gramineae such as annual rye grass, blue grass, water grass, barnyard grass, bermuda grass, rescuse, mat grass, johnson grass, and the like.

The compositions useful in the methods of this invention comprise a growth regulating amount of the L-(d)-lactic acid; i.e., the dextrorotatory isomer. The effectiveness of such compositions to stimulate the growth and/or fruit-bearing capability of vegetation and to inhibit the growth of or kill vegetation (depending on dosage rate) is apparently attributable to the plant growth regulant activity of the uncomplesed, monomolecular, L-(d)-isomer of lactic acid. The D-(l)-isomer of lactic acid not only does not promote vegetative growth or fruit productivity, it appears to inhibit the activity of the L-isomer to the point that the racemic mixture, i.e., the 50-50 blend of the levorotatory and dextrorotatory isomers, has only marginal growth regulant activity, if any. As in the case with all compounds which are applied to plants as solutes, the D-lactic acid does exhibit phytotoxicity if sufficient quantities of that ma-
of the neat material or concentrated solutions also complicates the distribution of the active component to the treated crop. Accordingly, the compositions useful in the methods of this invention usually constitute solutions of the L-(d)-isomer in a suitable solvent such as water, lower molecular weight mono- and polyhydric alcohols, ethers, carbon disulfide, and similar solvents, which do not react with the L-(d)-isomer (and thereby negate its activity) under normal handling, storage and application conditions. Aqueous solutions of the L-isomer are very active growth regulators and are presently preferred. The L-isomer will usually be present in the applied solution at a concentration of at least 10⁻⁶ to 10⁻⁸ molar. Although L-lactic acid remains active in solution at even lower concentrations, it is difficult to apply sufficient amounts of the compound to the treated plants when using solutions of lower concentration due to run-off of the applied solution from the plant foliage. Accordingly, solutions useful in the methods of this invention will usually have L-(d)-lactic acid concentrations within the range of 10⁻¹⁰ to 10⁻⁷ molar, normally 10⁻⁹ to 2 molar. Dilute solutions within these ranges are usually preferred to stimulate growth and promote fruit production. Thus, when plant stimulation is desired, the L-(d)-isomer should be present in the applied solution at a concentration within the range of 10⁻¹⁰ to 10⁻⁻² molar, generally 10⁻² to 10⁻⁻² molar, and preferably, 10⁻⁻ to 10⁻² molar. Solutions containing higher concentrations of the active L-(d)-isomer can be conveniently employed to inhibit the growth of undesired vegetation. Concentrated solutions facilitate the application of dosage rates sufficient to inhibit plant growth as discussed hereinaf. Thus, the solutions employed to effect growth-inhibiting response will usually contain the L-(d)-isomer in concentrations of at least about 10⁻⁻ molar, generally at least 10⁻⁻ to 2 molar.

It has also been found that metallic salts of L-lactic acid and esters of L-lactic acid with either alcohols or acids other than L-lactic acid are less active as growth regulators than L-lactic acid itself. The salts of lactic acid can form in solutions of the L-isomer which contain significant amounts of metal cations such as calcium, nickel, cobalt, magnesium, manganese, zinc, sodium, potassium, etc. In fact, the concentration of such metal cations in many irrigation waters, such as Colorado River water, is sufficient to significantly reduce the activity of the L-isomer as compared to L-lactic acid. Solutions of the L-isomer prepared from such waters, and which also contain active acid and/or alcohol groups can react with lactic acid to form inactive esters at pH levels below about 3 or above 10, and that such esters also can form at pH levels within the range of 3 to about 10, albeit at a slower rate. Thus, the activity of the L-isomer for regulating the growth of plants can be reduced or lost due to the formation of esters with other compounds containing active acid and/or alcohol groups. Compounds containing such functional groups are preferably excluded from the compositions used in the methods of this invention.

While the L-(d)-lactic acid-containing compositions described immediately above are active plant growth regulators and thus can be employed in the methods of this invention, they are hydrolytically unstable under certain conditions and are subject to bacterial attack. Bacteria can convert the active L-isomer to inactive species within a relatively short period of time at temperatures as low as 27°C (80°F). Thus, while the L-lactic acid solution can be sterilized during its manufacture, there remains a significant risk of bacterial contamination during storage, transportation, mixing, and application.

Accordingly, the novel compositions of this invention which are stabilized against hydrolytic decomposition and bacterial attack are presently preferred for use to regulate the growth of plants in accordance with the methods of this invention. These novel compositions comprise lactic acid and the corresponding polyalkalides of which 60 percent is the dextrorotatory L-(d)-isomer of said lactic acid and a preservative which is nonreactive with the lactic acid which is sufficient to prevent conversion of the L-(d)-isomer to an inactive form by bacterial attack. Suitable preservatives include sufficient acid concentrations to maintain a pH of about 5 or less and/or stearins which inhibit bacteria growth.

The hydrolytic stability of the L-(d)-isomer can be maintained in aqueous solutions by maintaining solution pH within the range of 3 to 10, preferably within the range of 4 to 8, and most preferably within the range of 4 to 6. Lactic acid will react with water at relatively mild temperatures as low as 27°C (80°F) under either basic or acidic conditions outside the preferred ranges. The rate of hydrolytic conversion of the L-(d)-isomer is also relatively low at pH levels of about 3 and about 10, and increases dramatically as pH drops below 3 or is increased to levels above 10. The rate of hydrolysis can also be reduced by reducing the water concentration in the composition, i.e., increasing the lactic acid concentration. However, the hydrolytic conversion of L-(d)-lactic acid can increase dramatically upon dilution of the concentrated acid prior to application if the solution pH is not maintained within the prescribed ranges. Accordingly, the preferred aqueous solutions of this invention contain sufficient acid and/or base to maintain the pH of the solution within the ranges described above. pH buffers are also particularly convenient for this purpose and should have buffer points within the range of about pH 3 to about pH 10, preferably about pH 4 to about pH 6. The buffers also should be nonreactive with the L-lactic acid. Suitable pH buffers include H₂PO₄·xH₂PO₄, citric acid - x-citrate (wherein x connotes a monovalent cation such as sodium, potassium, and ammonium), and other buffer pairs which have buffer points within the prescribed ranges. The salt cation contained in the buffer pair should not be present in a concentration sufficient to deactivate a significant portion of the lactic acid.

For the same reason, the ammonium form of the buffer salt is presently preferred since it does not produce insoluble lactates which causes precipitation of the active component from the aqueous solution.
Essentially any acid, including lactic acid, can be employed to maintain a pH of about 5 or less in the compositions of this invention and thereby minimize the bacterial deactivation of the L-isomer. However, concentrations of lactic acid which are sufficient to maintain pH levels of about 5 or less are often above the concentration desired in the applied solution. Accordingly, other acids are added. Illustrative of suitable acids are phosphoric, sulfuric, nitric, hydrochloric, and similar acids which do not form stable esters or salts with the L-isomer component.

Bacterial decomposition of the L-isomer can also be inhibited, or negated altogether, by any one of various known sterilants, such as the bacteriolytic and bacteriostatic compositions. As is the case with other components of the novel compositions of this invention, the sterilant should not react with lactic acid to form stable salts or esters under normal handling conditions. Illustrative of sterilants that can be employed in the novel compositions of this invention are ethanol, formaldehyde, xylene, toluene, phenylmercuric nitrate, phenylmercuric acetate, copper sulfate, sodium azide, hydrogen peroxide, chlorine, dibromomycobutane, etc. Other stable sterilants, i.e., sterilants which do not react with lactic acid, can be identified by blending the sterilant with the desired aqueous solution of L-lactic acid, and monitoring the stability of the lactic acid in the sterilant-containing solution by nuclear magnetic resonance (NMR). NMR can be employed to monitor the frequency and magnitude of spectral peaks characteristic of a selected nucleus e.g., a hydrogen nucleus in the L-lactic acid molecule. Persistent spectral peak magnitude and frequency over a period of five or six hours indicate stability. Diminished magnitude or a shift in peak frequency associated with the selected hydrogen nucleus indicate instability, i.e., that the arrangement of functional groups in the lactic acid molecule has been modified. Illustrative unstable sterilants are thiophosphate esters such as melatonin, parathion, etc., which should ordinarily not be employed in the compositions of this invention since they react with L-(d)-lactic acid and reduce or eliminate its activity as growth regulator.

Sterilant concentrations within the range of 10 to 4,000 parts per million (ppm) are usually effective for most applications.

In accordance with the methods of this invention, the plants to be regulated are contacted with a growth regulating amount of the compositions useful in this invention. The L-(d)-lactic acid-containing composition can be applied to the foliage and/or to the roots of the treated plants. The timing of application is relatively important when it is desired to increase the fruit production of fruit-bearing plants. In general, the L-lactic acid component should be applied to the plants during the flowering stage or in the early stages of the fruit-bearing cycle, or both.

Ideally, the L-(d)-lactic acid component can be applied to the plants at one or more times between the first bud stage and the fruit-set stage, preferably between the first-bud stage and the petal-drop stage for both annual and perennial varieties. Significant increases, e.g., 10 percent and more, in fruit production can be achieved by treatment at essentially any time within these stages of plant development. However, it is presently preferred that at least one application of the L-lactic acid component be made within several days of the first-bud stage of development.

Significant improvements in foliage development on non-fruit bearing plants, such as grasses and timber crops, can be accomplished at any time during the growth stage, usually between the spring and fall when the crop is at its active growing cycle.

Application timing is not critical with respect to the herbicidal activity of the L-(d)-lactic acid compositions useful for the methods of this invention. Thus, such compositions can be employed to control the growth of vegetation at any time during the growth cycle. However, it is presently preferred that the undesired vegetation be treated during the early stages of its development.

Significant increases in the growth of non-fruit bearing crops and in the growth of fruit production of fruit-bearing crops can be realized by foliar application of the L-(d)-lactic acid component at dosage rates within the range of 140g to 7kg, usually 280g to 3.5kg, and preferably 280 to 1750g of L-lactic acid per hectare (i.e., 2 to 100, usually 4 to 50, and preferably 4 to 25 ounces per acre). The lower dosage rate range of 280 to 1750g per hectare (4 to 25 ounces per acre) is ideally suited to most agricultural row crops and flowering nursery crops. Crops which have a larger abundance of foliage such as wood crops and some grain and fiber crops such as wheat, corn, and cotton, benefit more by contact with higher dosages within the broader range of 140g to 7kg per hectare (2 to 100 ounces per acre) of L-lactic acid. Significant growth stimulation can also be achieved by applying the L-(d)-lactic acid to the soil in the vicinity of the plant roots. Suitable dosage rates for this mode of application are usually within the range of 550g to 28kg per hectare (8 to 400 ounces per acre), preferably 700g to 14kg (10 to 200 ounces per acre) of lactic acid.

The enhancement in vegetative growth and the increase in fruit production is dose-sensitive to some extent for each crop. As a rule, crops having a greater abundance of vegetative growth, such as cotton and wood crops, are treated with higher dosage rates of L-(d)-lactic acid than are physically smaller plants such as vegetables and tuberous crops which have lesser amounts of vegetative growth.

Undesired vegetation can be eliminated by treating the foliage or soil in the vicinity of the plant roots with the L-(d)-lactic acid component at herbicidally effective dosage rates. Herbicidally effective dosage rates usually correspond to at least 3.5kg, generally at least 5.6kg and preferably at least 7kg per hectare (at least 50, generally at least 80, and preferably at least 100 ounces per acre) of L-(d)-lactic acid. Adequate control of most plants can generally be achieved at dosage rates within the range of 5.6kg to 1400kg, preferably 7kg to 1400kg per hectare (90 to 2,000, preferably 100 to 2,000, ounces per acre) when foliarly applied.

The concentration and dosage rate of the L-(d)-
lactic acid component should be correlated to provide adequate spray volume to contact a significant portion of the treated foliage and enable adequate distribution of the applied solutions as a spray with available equipment. Spray volumes in the range of about 47 to about 1870 litres per hectare (about 5 to about 200 gallons per acre) are sufficient to afford adequate coverage and spray distribution for essentially all plant types. Spray volumes of 47 to 935 litres per hectare (5 to 100 gallons per acre) are usually adequate for most agricultural crops, and spray volumes within the range of about 94 to 560 litres per hectare (10 to 60 gallons per acre) are presently preferred for the treatment of agricultural row crops and nursery plants. As in the case of dosage rate, the optimum spray volume will vary depending upon crop type, and primarily as a function of the amount of vegetative growth presented by the treated plants. Thus, relatively higher spray volumes are better suited for the treatment of larger crops such as cotton and corn and tree crops, while lower spray volumes are better suited for the treatment of vegetables and tuberous plants. When the L-(d)-lactic acid is injected into the plant root zone, the volume of L-(d)-lactic acid solution injected per acre should be sufficient to afford adequate distribution of the L-(d)-lactic acid throughout the root zone of the treated plants. Dosage rates suitable for this purpose will usually be within the range of 94 to 3740, generally 187 to 3740, and preferably 280 to 2800, litres per hectare (10 to 400, generally 20 to 400, and preferably 30 to 300, gallons per acre).

The invention is further described by the following examples which are illustrative of specific modes of practicing the invention and are not intended as limiting the scope of the invention as defined by the appended claims.

EXAMPLE 1

Separate portions of pure L-(d)-lactic acid are diluted with distilled water to produce five different solutions having concentrations of 10⁻¹, 10⁻², 10⁻³, 10⁻⁴, and 10⁻⁵ molar. Three separate 5 ml portions of the 10⁻¹ molar solution are then placed in three separate petri dishes lined with filter paper and each containing approximately 15 garden cress seeds. These separate 5 ml portions of the remaining four solutions are also placed in filter paper-lined petri dishes containing approximately 15 garden cress seeds. A sixth series of three petri dishes containing approximately 15 garden cress seeds is treated only with distilled water. The garden cress seeds are germinated in the dark for three days after which each seed root in each petri dish is measured, and all root lengths for each series of three replicates are averaged to obtain an average root length for that treatment. The average length of each replicate is then divided by the average length of the control (water only) to yield a root length ratio L_{test}/L_{control} (L_{v}/L_{o}). Values below 1 indicate that the root length in the test series is less than that of the control series and that root growth suppression has occurred. Values for the L_{v}/L_{o} ratio greater than 1 indicated root growth enhancement.

These results are presented graphically in Figure 1 and indicated that the root growth suppression-stimulation promoted by a L-(d)-lactic acid solution is characteristic of classical auxin-like activity. Also illustrated graphically in Figure 1 are data published in the literature for indole acetic acid (IAA), a widely studied plant growth regulator.

Significant root growth stimulation occurred with L-(d)-Lactic acid at concentrations approximately 2 orders of magnitude below those at which similar responses were induced by indole acetic acid. Thus, L-(d)-lactic acid is a much more active plant growth regulator than is indole acetic acid, at least so far as that activity is evidenced by the cress seed root elongation test.

EXAMPLE 2

The garden cress seed root elongation-suppression test described in Example 1 is repeated using three replicates each of four different concentrations of L-(d)-lactic acid in distilled water, which concentrations corresponded to 10⁻¹, 10⁻², 10⁻³, and 10⁻⁴ molar. Germinated seed root lengths are measured and averaged as described in Example 1. These results are presented graphically in Figure 2. The portion of the curve in figure 2 which represents the response of the garden cress seed roots to L-lactic acid concentrations below 10⁻⁴ molar is reproduced based on the results of Example 1.

EXAMPLE 3

The garden cress seed root elongation-suppression test described in Example 1 is repeated employing four different concentrations of D-lactic acid (the levorotatory isomer) in distilled water. These concentrations correspond to 10⁻¹, 10⁻², 10⁻³, and 10⁻⁴ molar. Three separate replicates are tested at each concentration and root lengths are measured and averaged as described in Example 1. The results are presented graphically in Figure 2. Comparison of the results of Examples 2 and 3 illustrates that the levorotatory [D-(l)] isomer of lactic acid has little, if any growth regulating activity and that it is a far less active plant growth regulator than is the levorotatory isomer. The results of Example 3 also indicate that the D-lactic acid has little, if any, tendency to stimulate the growth of germinating seed roots even at relatively low concentrations.

EXAMPLE 4

Yellow flowering variety alfalfa seeds are planted in a sandy loam soil after with 20 ml of a 10⁻⁵ molar solution of L-(d)-lactic acid are applied topically to the soil. Four replicates are treated and these are compared to four replicates of the same seed population planted in the same soil but not treated with the L-lactic acid solution. More seeds germinate in the treated plots than in the untreated (control) plots. All plants are harvested after nine
weeks of growth and weighed. The alfalfa treated with L-lactic acid produces 25 percent more vegetative growth than does the untreated control.

EXAMPLE 6

Approximately equal numbers of yellow flowering variety alfalfa seeds are planted in several pots containing a sandy loam soil. Four series of four pots each are treated with 20 ml of a 10⁻⁵ molar solution of L-(d)-lactic acid in distilled water. The solution is applied to the plants by foliar spraying at emergence (5 days after planting), and three weeks, six weeks, and nine weeks after emergence. The plants are harvested twelve weeks after emergence, weighed, and compared to an untreated control. The test series which are treated five days after planting and three weeks and six weeks after emergence all produce approximately 20 to 25 weight percent more vegetative growth than do the control series. The plants treated nine weeks after emergence do not produce an amount of vegetative growth above that produced by the untreated control plants, which could be defined as statistically significant.

EXAMPLE 7

The operation of Example 6 is repeated with the exception that 50 ml of the 10⁻⁵ molar L-(d)-lactic acid solutions is applied to each test series. As in the case of the 20 ml treatments, the plants treated 5 days after planting, and two weeks and six weeks after emergence show approximately 20 to 25 weight percent greater vegetative growth than the control, while the plants treated nine weeks after emergence and harvested twelve weeks after emergence do not evidence a significant gain in vegetative growth over the control. The absence of a statistically significant gain in vegetative growth for the nine week treatment may be due to the relatively short time between treatment and harvest.

EXAMPLE 8

Tiny Tim tomatoes which have already set fruit which is approximately 0.5 to 1.5 centimeters in diameter are treated with an aqueous solution of L-(d)-lactic acid in distilled water having a lactic acid concentration of 10⁻⁵ molar. The solution is applied to the plant foliage at a rate of approximately 4 ml per plant. No significant increase in fruit size or quantity is obtained in comparison to untreated control plants.

EXAMPLE 9

The operation of Example 8 is repeated with the exception that the L-(d)-lactic acid solution foliage applied to the Tiny Tim tomato plants has a lactic acid concentration of 10⁻³ molar. Again no increase in fruit size or quantity is observed as compared to the untreated controls.

EXAMPLE 10

The operation of Example 8 is repeated with the exception that the tomato plants are treated with two separate foliar applications of approximately 4 ml each of the 10⁻³ molar L-(d)-lactic acid solution in distilled water. The first application is made at the full-bloom stage (maximum flowering) and the second application is made two weeks later (after fruit set). The tomatoes are harvested after reaching maturity and the treated tomatoes are approximately 15 percent larger and mature approximately 50 percent faster than do tomatoes on the untreated control plants.

EXAMPLE 11

The operation of Example 10 is repeated with the exception that the L-(d)-lactic acid solution applied to the tomato plants has an L-(d)-lactic acid concentration of 10⁻³ molar. As in the case of the 10⁻³ molar solution, the treated plants yield tomatoes which are approximately 15 percent larger by weight and which mature approximately 50 percent faster than the untreated controls.

EXAMPLE 12

Naval orange trees are treated by foliar application at the first petal-drop stage of 350 g per hectare (five ounces per acre) of L-(d)-lactic acid in 280 litres per hectare (30 gallons per acre) aqueous spray volume. The crop is allowed to set and mature and is harvested and weighted. The untreated control plot produces 2028 boxes of navel oranges per hectare (820 boxes per acre) while the treated plot produces 3010 boxes of the oranges per hectare (1218 boxes per acre).

EXAMPLE 13

Cabernet grapes are treated by foliar application of L-(d)-lactic acid at a dosage rate corresponding to 560 g per hectare (8 ounces per acre) of L-(d)-lactic acid dissolved in 280 litres per hectare (30 gallons per acre) spray volume. The foliar application is made at the first berry stage and the grapes are allowed to mature and are harvested. The yield from the treated grape plants is 15 to 20 percent greater than that of untreated control plants in the same population and the sugar content of the treated grapes is approximately 2 percentage points higher than is the sugar content of the untreated grapes.
EXAMPLE 14

Sylvaner Riesling grapes are treated by foliar application of L-(d)-lactic acid at a rate corresponding to 560g per hectare (8 ounces per acre) in 280 litres per hectare (30 gallons per acre) of spray volume at the first berry stage. The grapes are allowed to mature and are harvested and compared to grapes produced by untreated control plants in the same application. The yield from the treated Riesling grape plants is 15 to 20 percent greater than that of the untreated controls.

EXAMPLE 15

Murieta tomatoes are treated by foliar application of a solution of L-(d)-lactic acid at a dosage rate corresponding to 560g per hectare (8 ounces per acre) of L-(d)-lactic acid dissolved in 280 litres per hectare (30 gallons per acre) spray volume. The application is made at peak flowering and the fruit is allowed to set and mature and is harvested and compared to fruit obtained from untreated plants in the same population. The yield of the treated plants is approximately 30 percent higher than that of the untreated plants.

EXAMPLE 16

Pima cotton is treated by foliar application of an aqueous L-(d)-lactic acid solution at a dosage rate corresponding to 1120g per hectare (16 ounces per acre) of L-(d)-lactic acid dispersed in 280 litres per hectare (30 gallons per acre) of spray volume. The application is made at peak flowering and the cotton is allowed to mature and is harvested and compared to cotton obtained from untreated, control plants in the same population. The treated plants yield approximately 20 percent more cotton than the untreated plants.

EXAMPLE 17

Valencia oranges are treated by foliar application of 1120g per hectare (16 ounces per acre) of L-(d)-lactic acid in 280 litres per hectare (30 gallons per acre) of aqueous solution spray. The spray is applied at the first petal-fall stage (peak flowering), and the fruit is allowed to mature and is harvested under normal horticultural conditions. The treated trees produce 940 boxes per hectare (1400 boxes per acre) of Valencia oranges as compared to 1977 boxes per hectare (800 boxes per acre) for untreated control trees in the same population.

EXAMPLE 18

Zinfandel grapes are treated by foliar application of 280g per hectare (4 ounces per acre) of L-(d)-lactic acid in 280 litres per hectare (30 gallons per acre) of aqueous solution spray volume. The spray is applied at the first berry stage, and the grapes are allowed to mature and are harvested under normal horticultural conditions. The yield of the treated Zinfandel grape plants is 12 percent higher than that of untreated plants in the same population.

EXAMPLE 19

Barley plants, approximately 12 inches high, are treated with L-(d)-lactic acid by foliar application of sufficient aqueous solution containing 25 weight percent L-(d)-lactic acid to cover the plant foliage. Control plants were foliarly contacted with an equal quantity of distilled water. Severe damage results to the L-(d)-lactic acid-treated plants within two hours of application. Some minor re-vegetation occurs within two weeks. There is no damage to the control plants which are treated only with water.

EXAMPLE 20

The operation of Example 19 is repeated with the exception that the applied solution contains 6 weight percent L-(d)-lactic acid. Some foliar damage is apparent within 2 hours of application. All plants recover in approximately two weeks.

EXAMPLE 21

Mature, Tiny Tim tomato plants are treated by foliar application of sufficient aqueous solution containing 25 weight percent L-(d)-lactic acid to cover the plant foliage. Control plants of the same population are foliarly treated with water only. Severe foliage damage is apparent within 2 hours and all treated plants ultimately die. There is no damage to the control plants.

EXAMPLE 22

The operation of Example 21 was repeated with the exception that the foliage of the tomato plants is contacted with an aqueous solution containing 6 weight percent lactic acid. Again, severe damage is apparent within 2 hours and results in the complete mortality of the treated plants. There is no damage to control plants which are foliarly treated only with distilled water.

Claims

1. A composition for regulating the growth of plants, comprising a solution or (1) lactic acid, its anhydride or the corresponding polyaldehydes of which at least 60 percent is the dextrorotatory L-(d)-isomer of lactic acid, and (2) a preservative which is non-reactive with the lactic acid comprising (a) sufficient acid, other than lactic acid, to maintain a pH in said composition of about 5 or less, or (b) a sterilant, or (c) a combination of (a) and (b), the concentration of said L-(d)-isomer being within the range of 10^{-10} to 10^{-2} molar, which composition exhibits plant growth stimulant activity.
2. The composition defined in claim 1, having a pH within the range of about 3 to about 10 and such as to maintain the hydrolytic stability of said lactic acid.
3. The composition defined in claim 2, having a pH of 4 to 6.
4. The composition defined in claim 2, having a pH within the range of about 3 to about 8 and which further comprises a sterillant sufficient to inhibit bacte-rial decomposition on said lactic acid.

5. The composition defined in claim 2, 3 or 4, further comprising a pH buffer having a buffering point within the said pH range.

6. The composition defined in claim 5, wherein said pH buffer is H$_3$PO$_4$ - x-H$_2$PO$_4$ - citric acid - x-citrate, or a combination thereof, x being a monova-lent cation other than hydrogen.

7. The composition defined in any preceding claim, wherein said L-(d)-isomer constitutes 80 to 100 percent of said lactic acid.

8. The composition defined in any preceding claim, wherein said lactic acid consists essentially of said dextrotoratory L-isomer of lactic acid.

9. The composition defined in any preceding claim, wherein said composition comprises an aqueous solution of said lactic acid and at least one acid other than lactic acid, and said L-(d)-isomer of the lactic acid is present in said solution at a concentra-tion ranging from 10$^{-10}$ to 10$^{-4}$ molar.

10. The composition defined in any preceding claim, which composition is substantially free of met-al cations and organic and inorganic compounds which react with said lactic acid in said composition to form salts or esters of said lactic acid.

11. A plant growth regulating composition which comprises an aqueous solution comprising lactic ac-id, its anhydride or the corresponding polyacidsides in a concentration ranging from 10$^{-4}$ to 10$^{-2}$ molar, in which composition said lactic acid consists essen-tially of the L-(d)-isomer of lactic acid, and which composition exhibits plant growth stimulant activity.

12. A method for regulating the growth of plants which comprises contacting said plants with a growth regulating amount of a composition which comprises lactic acid, its anhydride or the corre-sponding polyacidsides and wherein the L-(d)-isomer of lactic acid constitutes at least 60 percent of said lactic acid.

13. The method defined in claim 12, wherein said composition further comprises a preservative which is nonreactive with the lactic acid consisting of (a) sufficient acid to maintain a pH in said composi-tion or about 5 or less, or (b) a sterillant, or (c) a combination of (a) and (b).

14. A method for regulating the growth of plants which comprises contacting said plants with a growth regulating amount of a composition as de-fined in any one of claims 1 to 11.

15. The method defined in any one of claims 12 to 14, wherein said composition is applied to said plants at a dosage rate sufficient to stimulate the growth of said plants.

16. The method defined in claim 15, wherein said composition is applied to the plants at a dosage rate corresponding to 140 g to 7 kg of said L-(d)-isomer of the lactic acid per hectare (2 to 100 ounces of said L-(d)-isomer of the lactic acid per acre).

17. The method defined in any one of claims 12 to 14, wherein said composition is applied to said plants at a dosage rate sufficient to inhibit the growth of said plants, and which corresponds to at least 3.5 kg of said L-(d)-isomer of the lactic acid per hectare (50 ounces per acre).

18. The method defined in claim 17, wherein said L-(d)-isomer of the lactic acid is present in said composition at a concentration greater than 10$^{-4}$ molar, and said composition is applied to said plants at a dosage rate corresponding to at least 7 kg of said L-(d)-isomer of the lactic acid per hectare (100 ounces per acre).

19. The method defined in claim 17, wherein said L-(d)-lactic acid is present in said composition at a concentration of at least 10$^{-2}$ molar, and said composition is foliarly applied to said plants at a dosage rate corresponding to at least 7 kg or said L-(d)-iso-mer of the lactic acid per hectare (100 ounces per acre).

20. The method defined in any one of claims 12 to 16, wherein said composition is applied to the foliage of said plants, or to the ground in the vicinity of the roots of said plants, or to both the foliage and the ground in the vicinity of the roots, at a dosage rate corresponding to at least 140 g of said lactic acid per hectare (2 ounces per acre), and said L-(d)-iso-mer constitutes 80 to 100 percent of said lactic acid.

21. The method defined in claim 20, wherein said composition is applied to the ground in the vicinity of the roots of said plants, either before or after the emergence of said plants, and said plants are selected from nonfruiting grasses.

22. The method defined in claim 20, wherein said plants are fruit-bearing and said composition is foliarly applied to said fruit-bearing plants during the fruit-bearing cycle of the plants.

23. The method defined in claim 20, wherein said plants are grains, vegetables, tubers or fruiting plants, and said composition is foliarly applied to said plants at a time between about the first bud stage and the fruit-set stage of said fruit-bearing cycle of said plants.

Patentansprüche

1. Zusammensetzung zur Pflanzenwachstumsregelung, gekennzeichnet durch eine Lösung von (1) Milchsäure, ihrem Anhydrid oder den entsprechenden Polyacidsiden, von denen wenigstens 60% das rechtsdrehende L-(d)-Isomer von Milchsäure sind, und (2) ein Konservierungsmittel, das mit der Milch-säure nichtreaktionsfähig ist, wobei dieses (a) ge-nügend andere Säure als Milchsäure, um einen pH in besagter Zusammensetzung von etwa 5 oder wei-ter zu halten, oder (b) ein Sterilisierungsmittel oder (c) eine Kombination von (a) und (b) umfaßt, wo-bei die Konzentration besagten L-(d)-Isomers im Be-reich von 10$^{-10}$ bis 10$^{-2}$ molar liegt, wobei diese Zu-sammensetzung pflanzenwachstumsanregende Wir- kung zeigt.

2. Zusammensetzung nach Anspruch 1, gekenn-zeichnet durch einen pH im Bereich von etwa 3 bis etwa 10 und so, daß die hydrolytische Stabilität besagter Milchsäure erhalten wird.

4. Zusammensetzung nach Anspruch 2, gekenn-
zeichnet durch einen pH im Bereich von etwa 3 bis etwa 8, welche außerdem ein ausreichendes Sterilisierungsmit herum umfaßt, um bakterielle Zersetzung an besagter Milchsäure zu hemmen.

5. Zusammensetzung nach Anspruch 2, 3 oder 4, weiter gekennzeichnet durch einen pH-Puffer mit einem Pufferpunkt in besagtem pH-Bereich.

7. Zusammensetzung nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß besagtes L-(d)-Isomer 80 bis 100% besagter Milchsäure darstellt.

9. Zusammensetzung nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß besagte Zusammensetzung eine wäßrige Lösung besagter Milchsäure und wenigstens eine andere Säure als Milchsäure umfaßt und daß besagtes L-(d)-Isomer der Milchsäure in besagter Lösung in einer Konzentration, die von 10⁻⁴ bis 10⁻² molar reicht, vorhanden ist.

11. Pflanzenwachstumsregulierende Zusammensetzung, dadurch gekennzeichnet, daß sie eine wäßrige Lösung umfaßt, die Milchsäure, ihr Anhydrid oder die entsprechenden Polylactide in einer Konzentration, die von 10⁻¹ bis 10⁻² molar reicht, umfaßt, wobei in dieser Zusammensetzung besagte Milchsäure im wesentlichen aus dem L-(d)-Isomer von Milchsäure besteht und diese Zusammensetzung pflanzenwachstumsanregende Wirkung zeigt.

12. Verfahren zur Pflanzenwachstumsregelung, dadurch gekennzeichnet, daß besagte Pflanzen mit einer wachstumsregulierenden Menge einer Zusammensetzung in Kontakt gebracht werden, die Milchsäure, ihr Anhydrid oder die entsprechenden Polylactide enthält und in der das L-(d)-Isomer von Milchsäure wenigstens 60% besagter Milchsäure darstellt.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß besagte Zusammensetzung außerdem ein Konservierungsmittel enthält, das mit der Milchsäure nichtreaktionsfähig ist, bestehend aus (a) genügend Säure, um einen pH in besagter Zusammensetzung von etwa 5 oder weniger zu halten, oder (b) einem Sterilisierungsmittel oder (c) einer Kombination von (a) und (b).

14. Verfahren zur Pflanzenwachstumsregelung, dadurch gekennzeichnet, daß besagte Pflanzen mit einer wachstumsregulierenden Menge einer Zusammensetzung in Kontakt gebracht werden, wie sie in einem der Ansprüche 1 bis 11 definiert ist.

15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß besagte Zusammensetzung auf besagte Pflanzen in einer Dosisrate aufgebracht wird, die ausreichet, um das Wachstum besagter Pflanzen anzuregen.

16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß besagte Zusammensetzung auf die Pflanzen in einer Dosisrate aufgebracht wird, die 140 g bis 7 kg besagten L-(d)-Isomers der Milchsäure pro Hektar (2 bis 100 Ounces besagten L-(d)-Isomers der Milchsäure pro Acre) entspricht.

17. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß besagte Zusammensetzung auf besagte Pflanzen in einer Dosisrate aufgebracht wird, die ausreichet, um das Wachstum besagter Pflanzen zu hemmen, und die wenigstens 3,5 kg besagten L-(d)-Isomers der Milchsäure pro Hektar (50 Ounces pro Acre) entspricht.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß besagtes L-(d)-Isomer der Milchsäure in besagter Zusammensetzung in einer Konzentration größer als 10⁻¹ molar vorhanden ist und daß besagte Zusammensetzung auf besagte Pflanzen in einer Dosisrate aufgebracht wird, die wenigstens 6 kg besagten L-(d)-Isomers der Milchsäure pro Hektar (100 Ounces pro Acre) entspricht.

19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß besagte L-Milchsäure in besagter Zusammensetzung in einer Konzentration von wenigstens 10⁻³ molar vorhanden ist und daß besagte Zusammensetzung auf das Blattwerk besagter Pflanzen in einer Dosisrate aufgebracht wird, die wenigstens 140 kg besagter Milchsäure pro Hektar (2 Ounces pro Acre) entspricht, und daß besagtes L-(d)-Isomer 80 bis 100% besagter Milchsäure darstellt.

20. Verfahren nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß besagte Zusammensetzung auf das Blattwerk besagter Pflanzen oder auf den Boden in der Umgebung der Wurzeln besagter Pflanzen oder sowohl auf das Blattwerk als auch auf den Boden in der Umgebung der Wurzeln in einer Dosisrate aufgebracht wird, die wenigstens 140 kg besagter Milchsäure pro Hektar (2 Ounces pro Acre) entspricht, und daß besagtes L-(d)-Isomer 80 bis 100% besagter Milchsäure darstellt.

22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß besagte Pflanzen fruchttragend sind und daß besagte Zusammensetzung auf das Blattwerk besagter fruchttragender Pflanzen während des Fruchttragezyklus der Pflanzen aufgebracht wird.

23. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß besagte Pflanzen Getreide, Gemüse, Knollen oder fruchttragende Pflanzen sind und daß besagte Zusammensetzung auf das Blatt-
werk besagter Pflanzen zu einem Zeitpunkt zwischen dem ersten Knospenstadium und dem Fruchtansatzstadium besagten Fruchttragzeyziklus besagter Pflanzen aufgebracht wird.

Revendications

1. Une composition de régulation de la croissance des plantes comprenant une solution de:
(1) d'acide lactique ses anhydride ou les poly lactides correspondants, dont au moins 60% sont constitués de l'isomère L-(d)-dextrogyre de l'acide lactique; et
(2) d'un agent de préservation qui ne réagit pas à l'acide lactique comprenant:
(a) suffisamment d'un acide, autre que l'acide lactique, pour maintenir le pH de cette composition à une valeur égale ou inférieure à environ 5; ou
(b) un agent de stérilisation; ou
(c) une combinaison de (a) et (b).

La concentration dudit isomère L-(d) étant comprise entre 10^{-10} et 10^{-2} molaires, cette composition exerçant une activité de stimulation de la croissance des plantes.

2. La composition selon la revendication 1, présentant un pH compris entre environ 3 et environ 10 et telle qu'elle maintienne la stabilité hydrolytique dudit acide lactique.

3. La composition selon la revendication 2, ayant un pH compris entre 4 et 6.

4. La composition définie dans la revendication 2, dont le pH est compris entre environ 3 et environ 8 et qui comprend, en outre, un agent de stérilisation en une quantité suffisante pour inhiber la décomposition bactérienne dudit acide lactique.

5. La composition selon les revendications 2, 3 ou 4, comprenant en outre un tampon de pH dont le point de tampon est compris dans cet intervalle de pH.

6. La composition selon la revendication 5, dans laquelle ledit tampon de pH consiste en H_{3}PO_{4} - x\cdot H_{2}PO_{4}, acide citrique - x\cdot citrate, ou une combinaison de ces produits, x étant un cation monovalent autre que l'hydrogène.

7. La composition selon l'une quelconque des revendications précédentes, dans laquelle ledit isomère L-(d) constitue de 80 à 100% dudit acide lactique.

8. La composition selon l'une quelconque des revendications précédentes, dans laquelle ledit acide lactique est essentiellement constitué dudit isomère L dextrogyre de l'acide lactique.

9. La composition selon l'une quelconque des revendications précédentes, dans laquelle ledit composition comprend une solution aqueuse dudit acide lactique et au moins un acide autre que l'acide lactique, et ledit isomère L-(d) de l'acide lactique est présent dans ladite solution à une concentration comprise entre 10^{-10} et 10^{-4} molaires.

10. La composition selon l'une quelconque des revendications précédentes, essentiellement exempte de cations métalliques et de dérivés organiques et minéraux qui réagissent avec ledit acide lactique dans ladite composition pour formier des sels ou des esters dudit acide lactique.

11. Une composition de régulation de croissance des plantes qui comprend une solution aqueuse composée d'acide lactique, de son anhydride ou des polylactides correspondants, en concentration comprise entre 10^{-2} et 10^{-5} molaires, composition dans laquelle ledit acide lactique est constitué essentiellement de l'isomère L-(d) d'acide lactique et cette composition présente une activité de stimulation de croissance des plantes.

12. Un procédé de régulation de la croissance des plantes qui consiste à mettre ces plantes au contact d'une quantité régulatrice de croissance d'une composition comprenant de l'acide lactique, son anhydride ou les polylactides correspondants et dans laquelle l'isomère L-(d) de l'acide lactique constitue au moins 60% dudit acide lactique.

13. Le procédé selon la revendication 12, dans lequel cette composition comprend en outre un agent de préservation non-réactif avec l'acide lactique constitué de:
(a) suffisamment d'acide pour maintenir le pH de ladite composition à une valeur égale ou inférieure à environ 5; ou
(b) un agent de stérilisation; ou
(c) une combinaison de (a) et (b).

14. Un procédé de régulation de la croissance des plantes qui consiste à mettre ces plantes au contact d'une quantité régulatrice de croissance d'une composition selon l'une quelconque des revendications 1 à 11.

15. Le procédé selon l'une quelconque des revendications 12 à 14, dans lequel ladite composition est appliquée aux dites plantes selon un dosage suffisant pour stimuler leur croissance.

16. Le procédé selon la revendication 15, dans lequel ladite composition est appliquée aux plantes selon un dosage correspondant de 140 g à 7 kg dudit isomère L-(d) de l'acide lactique par hectare (2 à 100 onces dudit isomère L-(d) de l'acide lactique par acre).

17. Le procédé selon l'une quelconque des revendications 12 à 14, dans lequel ladite composition est appliquée aux dites plantes selon un dosage suffisant pour inhiber leur croissance et qui correspond à au moins 3,5 kg dudit isomère L-(d) de l'acide lactique par hectare (50 onces/acres).

18. Le procédé selon la revendication 17, dans lequel ledit isomère L-(d) de l'acide lactique est présent dans ladite composition à une concentration supérieure à 10^{-4} molaires et ladite composition est appliquée aux dites plantes selon un dosage correspondant au moins à 7 kg dudit isomère L-(d) de l'acide lactique par hectare (100 onces/acres).

19. Le procédé selon la revendication 17, dans lequel ledit acide L-lactique est présent dans ladite composition à une concentration d'au moins 10^{-2} molaires et cette dite composition est appliquée sur le feuillage des plantes selon un dosage correspondant à au moins 7 kg dudit isomère L-(d) de l'acide lactique par hectare (100 onces/acres).

20. Le procédé selon l'une quelconque des revendications 12 à 16, dans lequel ladite composition est appliquée au feuillage des plantes ou au sol, au voisinage des racines des plantes, ou à la fois au feuillage et au sol au voisinage des racines, se-
lion un dosage correspondant au moins à 140 g dudit acide lactique par hectare (2 onces/acre) et, l'édit isomère L-(d) constitue 80 à 100% dudit acide lactique.

21. Le procédé selon la revendication 20, dans lequel ladite composition est appliquée au sol au voisinage des racines desdites plantes soit avant, soit après l'émergence desdites plantes qui sont choisies parmi des herbes non fruitières.

22. Le procédé selon la revendication 20, dans lequel lesdites plantes sont fruitières et ladite composition est appliquée sur le feuillage desdites plantes fruitières pendant le cycle de formation des fruits des plantes.

23. Le procédé selon la revendication 20, dans lequel lesdites plantes sont des graminées, des légumes, des plantes à tubercules ou des plantes fruitières et ladite composition est appliquée sur le feuillage desdites plantes à un moment compris entre environ le premier stade de formation des boutons et le stade de formation des fruits du cycle de production des fruits.