A seat belt tensioning arrangement for automotive vehicles.

Priority: 10.02.86 SE 8600573

Date of publication of application: 16.09.87 Bulletin 87/38

Publication of the grant of the patent: 04.04.90 Bulletin 90/14

Designated Contracting States: DE FR GB IT SE

References cited:
DE-A-3 331 696
FR-A-2 292 493
FR-A-2 491 340

Proprietor: AB VOLVO, Torslanda, S-405 08 Göteborg(SE)

Inventor: Salomonsson, Ove, Vinlandsgatan 10 A, S-41729 Göteborg(SE)
Inventor: Alm, Sture, Gibsons väg 19, S-43361 Partille(SE)

Representative: Hellbom, Lars Olof et al, H. Alihns Patentbyra AB Box 3137, S-103 62 Stockholm(SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to an arrangement for tensioning a seat belt in an automotive vehicle, the arrangement comprising a displacably and rotatably mounted reeling element which is provided with drive means and so arranged relative to a belt strap forming part of the seat belt arrangement that in a starting position of the reeling element the strap is able to slide axially in relation to the element and, upon activation of the drive means, is reeled onto the reeling element with subsequent shortening of the effective length of the belt strap, and which arrangement further comprises latching means which, subsequent to movement of the reeling element from said starting position, are operative in preventing the reeling element from rotating in a direction opposite to that in which the belt strap is reeled-in.

Seat-belt safety arrangement for automotive vehicles have been constructed with a fundamental view to the comfort of the wearer and also with a view to a number of technical problems, such as the appreciable amount of slack that occurs between the body of the wearer and the safety belt itself. This slack delays retardation of the wearer in the case of an abrupt deceleration of the vehicle, and in the event of more serious collisions may permit the wearer, before being restrained by the belt strand, to move forward in the seating compartment of the vehicle to such an extent as to strike the steering wheel or the instrument panel, or dashboard, of the vehicle.

Part of this slack is created by the clothes of the person wearing the seat belt, and also by the inherent suppleness of his or her body. Further factor that contributes towards the creation of excessive slack, however, and therewith to the extent to which the wearer of a seat belt may be thrown forward before being restrained, resides in the fact that the hip supporting part of the seat belt arrangement is redistributed to the diagonal, chest supporting part thereof, when the seat belt is pressed down into his or her seat.

Another problem encountered with seat belt arrangements relates to the belt take-up reel, which when in its starting or neutral position has about 600 mm of belt reeled thereon, thereby enabling the wearer to move in his or her seat during a journey. This length of belt, however, is liable to be packed on the belt take-up reel in the event of a collision, due to the large forces exerted on the belt by the wearer under such an occasion. As a result hereof, the effective belt length can be increased by up to 150 mm in the event of a collision.

In one known solution of the kind described in the introduction, the reeling element comprises a drum which incorporates a slot through which the belt strap is extending. By activating, at the moment of collision, a drive means which rotates the drum, it is possible to reduce the effective length of the belt by up to about 100 mm. This is not sufficient, however, and the belt reel should preferably be fully disengaged from the seat belt system because of residual slack due to the film spool effect.

Efforts have been made to eliminate the film spool effect, by locking the belt strap independently of the belt reel with the aid of various eccentric functions, although without particular success.

The object of the present invention is to provide an effective tensioning mechanism which will also lock a length of retracted belt strap and thereby disengage the belt reel from the effective length of said strap.

This is achieved in accordance with the invention with the aid of a flexible, elongated tensioning element which is connected to the reeling element and also to an attachment fitting located on the chassis of the vehicle, in a manner such that rotation of the reeling element will also result in the reeling of the tensioning element, with subsequent displacement of the reeling element towards the attachment fitting. In accordance with one embodiment of the invention, the reeling element is forced to roll downwards on the tension element, therewith doubling the length of belt strap reeled-in, in relation to the rotation effected.

The length of belt strap that is reeled-in is locked against withdrawal through the action of the latching means, and the forces in the belt are transmitted to the vehicle chassis, independently of the belt reel.

The invention will now be described in more detail with reference to exemplifying embodiments thereof illustrated in the accompanying drawings, in which

Figs. 1a-1c are side views which illustrate schematically the operating principle of an arrangement according to the invention in three different operating states of the arrangement;

Fig. 2 illustrates schematically an embodiment of an arrangement according to the invention driven by means of a pressure medium;

Fig. 3 is a schematic view in perspective of a preferred embodiment of the invention; and

Fig. 4 is a view taken in the direction of the arrow "A" in Fig. 3.

In the Figures the reference 1 designates a belt strap, or safety strap, of a seat belt assembly, the strap being connected to a reel mechanism 1 anchored to the chassis of the vehicle in a conventional manner. The belt strap 1 passes through a slot 3 located in a rotatable cylindrical drum 4, which is journaled for displacement in the vehicle chassis in a manner described hereinafter with reference to Figs. 2-4. In the position illustrated in Fig. 1a, the belt strap 1 is able to slide freely in the slot, and the seat belt can therefore be put-on, taken-off and able to accompany the movements of the wearer without being influenced by the belt tensioning or take-up drum.

The slot 3 has a part 5 which widens outwardly to provide a V-shape configuration, in which a wedge 6 is mounted. One end of the wedge 6 is connected to a tensioning strap 7 which extends into the slot 3. The other end of the tensioning strap 7 is connected to an attachment fitting 8 anchored to the chassis of the vehicle, e.g. in the bottom region of the "B-pillar" thereof.

The drum 4 in Figs. 1a-1c is connected to a drive means (not shown) for rotating the drum in the direc-
tion of the arrow \(g \). The drive means is, in turn, controlled by a conventional device which responds to retardation forces and which in the initial stage of a collision is operative in causing the drive means to rotate the drum 4.

The various components are shown in Fig. 1 in their respective normal, neutral positions. In the event of a collision, the drum 4 begins to rotate (Fig. 1b), whereupon a tension force is applied to the tensioning strap 7, thereby causing the wedge 6, in this initial stage, to be pulled into the V-shaped part of the slot, so as to pinch the belt strap firmly in the slot 3. The wedge 6 has a part thereon which extends beyond the peripheral surface of the drum 4, such that the tensioning strap is pressed against the outer surface of the wedge subsequent to the drum rotating through as little as one quarter of a revolution, thereby further amplifying the locking force. As the drum rotates, it takes up both the tensioning strap 7 and the belt strap 1. As a result hereof, the drum 4 will "climb" down the tensioning strap 7 at the same time as the belt strap 1 is wound onto the drum. Consequently, rotation of the drum through one half of a revolution will result in the effective length of the belt strap being shortened by an extent commensurate with the full circumference of the drum. Overlapping between the tensioning strap 7 and the belt strap 1 will provide frictional locking between the drum and the belt strap, which complements the locking effect afforded by the wedge 6 and which increases proportionally with the force exerted by the wearer on the belt strap. At this stage, subsequent to tensioning the belt strap, the real mechanism 2 is disconnected from the effective length of belt strap.

The collision can be detected by a retardation-responsive sensor which is operative in activating a drive arrangement that includes an explosive charge, a gas generator or some corresponding device. Alternatively the inertia masses which are set into motion by a collision may be permitted to act directly on the belt tensioning arrangement. An example of this latter solution is illustrated in Fig. 2, in which the reference 10 indicates generally a seat base comprising a part 11, which is firmly anchored to the vehicle chassis, and a part 12, which is able to move axially relative to the part 11. The parts 11 and 12 are interlinked by arms 13 and have mounted theretbetween a piston-cylinder device 14. The device 14 communicates with a further piston-cylinder device 15 securely mounted on the vehicle chassis, e.g. on the "B-pillar", connected to the piston 16 of the device 15 is a wire 17 which is reeled onto a part 18 of the drum 4, said drum being rotatably mounted on two end walls 19 (only one is shown) which are displaceably mounted in vertical guides 20, e.g. provided on the "B-pillar". The drum 4 has provided thereto a toothed annulus 21 which co-acts with two latching paws 22.

The described arrangement operates in the following manner: At the moment of collision the seat part 12 moves forwards resulting in a compression stroke of the hydraulic piston-cylinder device 14 and a subsequent flow of hydraulic fluid from the device 14 to the piston-cylinder device 15. The piston rod 16 of the device 15 is therewith urged downwards, causing the wire 17 to be unreeled from the part 18 of the drum 4. During the ensuing rotation of the drum 4, the tensioning strap 7 and the belt strap 1 are wound onto the drum, while moving the end walls 19 downwards in the guides 20. This downward movement of the end walls takes place against the action of springs, as illustrated schematically at 23. Subsequent to taking up the slack, the capturing force in the belt strap increases and strives to rotate the drum 4 in the return direction. This return movement is prevented, however, by the engagement of the pawls in the teeth of the toothed annulus 21, so that the force prevailing in the belt strap is transmitted to the chassis via the non-return latching means and the tensioning strap.

Figs. 3 and 4 illustrate a modified version in which the drum 4 is rotatably mounted in a slide 30 which is displaceably arranged in guides 31 provided on the "B-pillar". Attached to the drum 4 is a wire take-up spool 32 and a toothed annulus 33. The spool 32 has wound thereon a wire 34, which is anchored to an attachment fitting 35. The toothed annulus 33 co-acts with two latching paws 36 (only one of which is shown), which lock the drum 4 against rotation in an ant clockwise direction. The slide 30 is connected to a tensioning wire 37 corresponding to the tensioning wire 17 in Fig. 2. The wire 37 may be connected to a piston-cylinder-system corresponding to the system of the Fig. 2 embodiment, or may be mechanically connected directly to the moveable seat part 12. This arrangement comprising a wire 34 which is anchored directly to the vehicle, and a tensioning wire 37 which acts directly on the slide 30 enables the requisite length of stroke of the applied movement to be reduced by half in comparison with the arrangement illustrated in Fig. 2, in which the movement is applied via a wire 17 drawn around the drum 4.

Claims

1. An arrangement for tensioning a seat belt in an automotive vehicle, comprising a displaceably and rotatably mounted reeling element which is provided with drive means and which is so arranged in relation to a belt strap forming part of the seat belt that in a starting position the reeling element the belt strap is able to slide axially in relation to said element, with subsequent shortening of the effective length of the belt strap, and which further comprises latching means (21, 22) which, subsequent to movement of the reeling element from said starting position, prevent said element from rotating in a direction opposite to the reeling direction, characterized in that a flexible elongated tensioning element (7) is connected to the reeling element (4) and to an attachment fitting (8) located on the chassis of the vehicle, in a manner such that rotation of the reeling element also results in reeling of the tensioning element and subsequent displacement of the reeling element towards said attachment fitting.

2. An arrangement according to Claim 1, characterized in that the reeling element (4) is a drum which incorporates a through-passing slot (3) through
which the belt strap (1) extends; and in that the tensioning element (7) is connected to a wedge (6) which, when a tensioning force is applied thereto by the tensioning element, clamps the belt strap firmly in said slot.

3. An arrangement according to Claim 2, characterized in that the tensioning element (7) is a strap which extends into the slot (3) and is connected to the wedge (6); and in that the wedge is located in a wedge-shaped part (5) of the slot.

4. An arrangement according to Claim 3, characterized in that the wedge (6) is dimensioned in a manner such that the wider part of the wedge will always extend beyond the peripheral surface of the drum (4).

5. An arrangement according to Claim 2 or 3, characterized in that the latching means comprises a toothed annulus (21) connected to the drum (4) and at least one latching pawl (22) which co-acts with the toothed annulus (21) to prevent the drum from rotating in a direction opposite to the reeling direction (a).

6. An arrangement according to any of Claims 2-5, characterized in that the drum is rotatably journalled in a slide (30) which is displaceably mounted in a vertical guide means (31) and is connected to drive means (37) operative in displacing the slide towards said attachment fitting; and in that a second flexible tensioning element (34) is attached to and reeled onto a part of said drum and is also attached at one end to the vehicle chassis, and is intended to cause the drum to rotate in the reeling direction (a) of the first tensioning element (17).

Patentansprüche

1. Anordnung zum Spannen eines Sitzgurtes in einem Kraftfahrzeug, mit einem verschiebbar und drehrbar befestigten Auflorlement, das mit einer Antriebsseinrichtung versehen und derart gegen über einem Teil des den Sitzgurt bildenden Gurteiles angeordnet ist, daß in einer Ausgangsposition des Auflorlementes sich der Gurteil relativ zum Auflorlement axial verschieben kann, unter anschließender Verkürzung der Effektivlänge des Gurteiles, und der ferner eine Sperreinrichtung (21, 22) umfaßt, die, anschließend an die Bewegung des Auflorlementes aus der Ausgangsposition, das Auflorlement an einer Drehung in einer Richtung entgegengesetzt zur Auflorrichtung hindert, dadurch gekennzeichnet, daß ein biegsames, langleiches Spannlelement (7) mit dem Auflorlement (4) und mit einer der Fahrzeugachsen festgelegten Montagehalterung (6) derart verbunden ist, daß die Drehung des Auflorlementes auch eine Wickelbewegung des Spannlementes und eine anschließende Bewegung des Auflorlementes gegen die Montagehalterung hin verursacht.

2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß das Auflorlement (4) eine Trommel ist, die einen durchgehenden Schlit (3) aufweist, durch welchen sich der Gurteil (1) erstreckt; und daß das Spannlelement (7) mit einem Keil (6) verbunden ist, der, wenn über das Spannlement auf ihn eingebrachte Spannkraft ausgeübt wird, den Gurteil fest im Schlit festklemt.

4. Anordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Sperreinrichtung einen mit Zähnen ausgestatteten Ring (21) aufweist, der mit der Trommel (4) verbunden ist und daß mindestens eine Sperrklinke (22), die mit dem mit Zähnen versehenen Ring (21) zusammenwirkt, die Trommel daran hindert, sich in einer zur Auflorrichtung (a) entgegengesetzten Richtung zu drehen.

5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Trommel (4) in Auflorrichtung gegen die Wirkung von Federn (23) verschiebbar ist.

Revendications

1. Dispositif de mise en tension d'une ceinture de sécurité pour véhicule automobile, comportant un élément de bobinage monté de manière à être déplaçable et rotatif, qui est pourvu de moyens d'entraînement et qui est agencé par rapport à une bande de ceinture formant une partie de la ceinture de sécurité de façon telle que dans la position de départ de l'élément de bobinage la bande de ceinture est capable de coulisser axialement par rapport audit élément, provoquant un raccourcissement consécutif de la longueur effective de la bande de ceinture, et qui comporte en outre des moyens de verrouillage (21, 22) qui, consécutivement au mouvement de l'élément de bobinage à partir de sa position de départ, empêchent ledit élément de tourner dans une direction opposée à la direction de bobinage, caractérisé en ce qu'un élément de mise en tension allongé et flexible (7) est relié à l'élément de bobinage (4) et à un dispositif de fixation (8) situé sur le châssis du véhicule, de manière telle que la rotation de l'élément de bobinage entraîne également le bobinage de l'élément de mise en tension et le déplacement consécutif de l'élément de bobinage vers le dispositif de fixation.

2. Dispositif selon la revendication 1, caractérisé en ce que l'élément de bobinage (4) est un tambour qui comporte une fente traversante (3) à travers laquelle s'étend la bande de ceinture (1), et en ce que l'élément de mise en tension (7) est relié à un coin (6) qui, lorsqu'une force de mise en tension est appliquée à celui-ci par l'élément de mise en tension, sert de manière la bande de ceinture dans la fente.

3. Dispositif selon la revendication 2, caractérisé en ce que l'élément de mise en tension (7) est une bande qui s'étend dans la fente (3) et qui est reliée au coin (6), et en ce que le coin est situé dans une partie en forme de coin (5) de la fente.

4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que les moyens de verrouillage comportent une couronne dentée (22) à l'intérieur du tambour (4) et au moins un cliquet de verrouillage (22) qui coopère avec la couronne dentée (21) pour empêcher le tambour de tourner dans une direction opposée à la direction de bobinage (a).

5. Dispositif selon l'une quelconque des revendi-
cation 1 à 4, caractérisé en ce que le tambour (4) est déplaçable dans la direction de bobinage à l'encontre de l'action de ressorts (23).