Device for supplying a weft thread to a main blower for weaving looms.

Priority: 13.12.85 NL 8503439

Date of publication of application: 16.06.87 Bulletin 87/25

Publication of the grant of the patent: 24.05.88 Bulletin 89/21

Designated Contracting States:
BE CH DE ES FR GB IT LI LU NL

References cited:
DE-A-3 203 876
DE-A-3 204 007

Proprietor: Picanol N.V.
Polenlaan 3-7
B-8900 Ieper (BE)

Inventor: Van Bogaert, Philippe
E. Cambierlaan 97
B-1030 Bruxelles (BE)

Representative: Donné, Eddy
M.F.J. Bockstael Arenbergstraat 13
B-2000 Anvers (BE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention concerns a device for supplying a weft thread to a main blower for weaving looms, whereby it is mainly designed for applications in weaving processes, whereby several colours are woven and whereby various different yarns must be supplied to the main blower.

It is already known, in the case of multi-colour weaving, that each of the used yarns is equipped with a main blower on their supply side, whereby these main blowers are moved according to a specific pattern, in order to permit the introduction of a weft thread having a specific colour into the shed. Quite obviously, such movable main blowers are unsuitable for high-speed weaving operations because the mechanical parts are causing, in such cases, too difficult inertia problems.

It is also known, in the case of multi-colour weaving, to use stationary main blowers having each their outlets before the opening of the shed. This construction is exclusively suitable in the case of two main blowers.

In order to propose a solution to this problem, this invention concerns a device for supplying a weft thread to a main blower, whereby no main blowers must be moved and whereby the inertia forces of the movable parts remain quite limited. To this end, the invention consists in a device mainly composed by two or more supply channels for weaving threads; one main blower for introducing the weft thread into the shed; an adjustable selection block comprising one or several through channels, which is mounted between, at one hand, the end of the supply channel and on the other hand, the inlet of the main blower, whereby the through channels are able to create a connection, by displacement of the selection block, between one of the supply channels and the inlet of the main blower; and means for displacing the selector block.

According to the preferable embodiment, the selector block is able to rotate around the symmetry axis of the main blower.

The present invention is also concerning a method for introducing weft threads into a shed whereby the device reported hereabove is preferably used.

In order to achieve better understanding of the characteristics of the invention, a few preferable embodiments of the invention are described hereafter by way of examples, but without any limitation, whereby reference is made to the figures in appendix, which are, respectively:

figure 1, an illustration of the device for supplying the weft thread, whereby the selector block is rotatable;
figures 2 and 3. alternative illustrations of the invention, according to figure 1;
figure 4, an illustration of a device, whereby the selector block is sliding;
figure 5, an illustration of a device, whereby the selector is rotating;
figure 6, an illustration of an alternative embodiment of the invention, according to figure 5.

As illustrated by figure 1, the device is composed of two supply channels, 1 and 2 for the weft threads, respectively 3 and 4; a main blower 5 and an adjustable selector block 6 with a through channel 7. The selector block 6 is able to rotate about the symmetry axis 8 of the main blower 5 and is designed in such a way that it can rotate between, on one hand, the ends 9 and 10 of the supply channels 1 and 2 and, on the other hand, the inlet 11 of the main blower 5. The through channel 7 is mounted in the selector block 6 in such a way that the rotation of this block 6 can achieve quick connection between respectively the ends 9 and 10 and the inlet 11.

Although not illustrated in the figure, means are provided in order to adjust the selector block 6 or, in other words, to rotate it in the case of this embodiment. These means may be of various kind and are compared, for instance, of a transmission on a shaft end 12 which is mounted on the selector block 6. According to an alternative solution, the transmission may also occur by means of a driving mechanism located on the outside wall 13. The driving system, as such, may be either electrical, electromagnetical, pneumatic or mechanical.

Figure 2 shows another embodiment, whereby the supply channel, respectively 1 or 2, which is not connected to the inlet 11 of the main blower 5, is in connection with the surrounding atmosphere by means of a venting channel 14. This way, it is permanently possible to convey an air jet or similar in the supply channels 1 and 2, in such a way that the free end 15 of the waiting weft thread, i.e. 3 or 4, is kept in drawn condition. The air stream used to keep the weft thread in drawn condition may be much smaller than the air stream which is existing during transport of the thread.

Figure 3 illustrates still another embodiment, whereby several channels 16 and 17 are provided in the selector block 6 which all discharge before the inlet 11 of the main blower 5. This construction is advantageous because, if the yarn supply must be modified, the selector block has to be rotated only by a small angle A and such unlike the embodiment according to figure 1, whereby the selector block 6 must rotate by 180 degrees. Possibly, the inlets respectively 18 and 19 of the channels 16 and 17, when they are not connected to one of the supply channels 1 or 2, may be closed by means not illustrated on the figure. This solution, illustrated for instance by figure 3, avoids the pressure loss in the channel 17 created by the discharge of air along channel 16 and inlet 18.

Figure 4 illustrates still another embodiment, whereby the selector block 6 is mounted with a possible sliding movement. The sliding direction is preferably in cross direction towards the symmetry axis 8 of the main blower 5. In this case also, several through channels 20 to 22 are used.

Figure 5 illustrates an embodiment whereby the
selector block 6 can be moved by pivoting, for instance, in the guides 23 and 24. Quite obviously, in this embodiment as well as in the preceding ones, venting openings, respectively 25, 26 and 27 may be provided, which in this case preferably discharge on the side of the selector block 6.

Figure 6 illustrates still another embodiment, whereby the solution illustrated by figure 5 is comprising only one through channel 7.

Quite obviously, the number of supply channels may be also larger than two. In the embodiments illustrated by figures 4 to 7, by way of example three supply channels are provided, respectively 1, 2 and 28.

The supply channels 1, 2 and 28 can preferably consist of the outlets of blowers, respectively 29, 30 and 31.

As indicated by figure 1 thread squeezing devices, respectively 32 and 33, may be mounted in the supply channels 1 and 2, for instance, exactly before or after the blowers involved, 29 and 30. In such a case, it is not necessary that the selector block 6 is equipped with a venting channel because the thread can be kept in drawn condition by adequate actuation of these thread squeezing devices 32 and 33.

Also means may be provided, preferably in the various supply channels of the weft threads 3 and 4, in order to pull back the free end 15 of the waiting weft thread over a determined distance. These means may be of various kinds and are not specifically illustrated by the figures. They offer the advantage that the weft thread, i.e. thread 3 or thread 4 cannot be squeezed between the ends 9 and 10 of the supply channels 1 and 2.

In the case of the use of venting channels in the selector block 6, a small opening may be kept between the ends 9 and 10 of the supply channels 1 and 2 and the selector block 6 such in order to avoid squeezing the weft thread as already described.

The functioning of all devices described hereabove can easily be understood by means of the figures.

The invention is also concerning a method for supplying a weft thread into a shed. This method is mainly comprising the acceleration of the weft thread already reaching the outlet of the main blower 5 and such preferably in order that the free end 15 of the involved weft thread is passing just at the moment of the beginning of the weft phase before the outlet of the main blower 5. The speed should be equal, at this moment, at least to the required injection speed. This way, a really “flying start” of the weft thread is achieved with the advantage that a huge time saving is achieved and that weaving at high speed is made possible. According to the method of the invention, the required speed of the thread can be achieved in the blowers. Actually, an actuating unit 34 is provided in order to cause the weft threads, respectively 3 and 4 starting at the right moments in order that their free ends, for instance the end 15, can reach the outlet of the main blower 5 at the adequate time referred to hereabove. The actuating unit 34 can be coupled, for instance, to this end, with the thread squeezing devices 32 and 33 or with the air supply, respectively 35 and 36, of the blowers 29 and 30 and, possibly, 31, mounted before the selector block 6.

Quite obviously, the blowers which are mounted before and after the selector block 6 may be of any kind.

The present invention is by no means limited to the examples described hereabove and to the embodiments illustrated by the figures, but a device for supplying a weft thread to a main blower of weaving looms may be built with all kind of shapes and dimensions without leaving the scope of the invention.

Claims

1. Device for supplying a weft thread to a main blower for weaving looms, characterised in that it is mainly composed of the combination of two or more supply channels (1, 2) for weft threads (3, 4); one main blower (5) for introducing the weft threads (3, 4) into the shed; one adjustable selector block (6) comprising one or more several through channels (7; 16, 17; 20, 21, 22), which is mounted between, on the one hand, the ends (9, 10) of the supply channels (1, 2) and, on the other hand, the inlet (11) of the main blower (5), whereby, by displacement of the selector block (6), the through channels (7; 16, 17; 20, 21, 22) are able to create a connection between one of the supply channels (1, 2, 28) and the inlet (11) of the main blower (5); and means for displacing the selector block (6).

2. Device according to claim 1, characterised in that the selector block (6) is able to rotate about the symmetry axis (8) of the main blower (5).

3. Device according to claim 1, characterised in that the selector block (5) is able to slide.

4. Device according to claim 1, characterised in that the selector block (6) is able to rotate.

5. Device according to one of the previous claims, characterised in that the selector block (6) is provided with venting channels (14; 25, 26, 27) which can connect the supply channels (1, 2, 28), which are not connected with the inlet (11) of the main blower (5), with the surrounding atmosphere of the wiring block (6).

6. Device according to one of the previous claims, characterised in that the supply channels (1, 2, 28) are composed of the outlets of the blowers (29, 30, 31).

7. Device according to one of the previous claims, characterised in that the supply channels (1, 2, 28) are provided with devices for pulling back the thread.

8. Device according to one of the previous claims, characterised in that the supply channels (1, 2, 28) are equipped with thread squeezing devices (32, 33).

9. Method for supplying a weft thread into the shed of a weaving loom, characterised in that it mainly comprises the acceleration of the weft
thread (3, 4) to the speed which is substantially equal to the injection speed, before reaching the outlet of the main blower (5).

10. Method according to claim 9, characterised in that the weft thread (3, 4) is accelerated to the required speed in such a way that the free thread end (15) is leaving the outlet of the main blower (5) at the beginning of the weft phase and mainly at the injection speed.

11. Method according to claim 9 or 10, characterised in that the speed is given to the weft thread (3, 4) during the travel of this weft thread through the selector block (6) and the main blower (5).

Patentansprüche

1. Vorrichtung um einer Hauptblasdüse einer Webmaschine einen Webfaden zuzuführen, dadurch gekennzeichnet, dass sie im wesentlichen besteht aus einer Kombination zweier oder mehrerer Zuleitungsansätze (1, 2) für Webfäden (3, 4); einer Hauptblasdüse (5) zur Einführung der Webfäden (3, 4) in das Webfach, einem einstellbaren Wahlblock (6), der einen oder mehrere Durchführungsansätze enthält (7; 16, 17, 20, 21, 22), und der einen oder mehrere Durchführungsansätze enthält (7; 16, 17, 20, 21, 22), und der einerseits zwischen den äußeren Enden (9, 10) der Zuleitungsansätze (1, 2) und andererseits dem Eintritt (11) der Hauptblasdüse (5) aufgestellt ist, wobei, durch Verstellung des Wahlblocks (6), die Durchführungsansätze (7; 16, 17, 20, 21, 22) eine Verbindung zwischen einem der Zuleitungsansätze (1, 2, 28) und dem Eintritt (11) der Hauptblasdüse (5) herstellen können; und Mitteln zur Verstellung des Wahlblockes (6).

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Wahlblock (6) um die Symmetrieachse (8) der Hauptblasdüse (5) dreihbar ist.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Wahlblock (5) verschiebbar ist.

4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Wahlblock (5) dreihbar ist.

5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wahlblock (6) mit Belüftungsansätzen (14: 25, 26, 27) versehen ist, die die nicht mit dem Eintritt (11) der Hauptblasdüse (5) verbundenen Zuleitungsansätze (1, 2, 28) mit der Umgebungsatmosphäre des Wahlblockes (6) verbinden können.

6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuleitungsansätze (1, 2, 28) von den Austrittsansätzen der Düsen (29, 30, 31) gebildet werden.

7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuleitungsansätze (1, 2, 28) mit Vorrichtungen zum Zurückziehen des Fadens versehen sind.

8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuleitungsansätze (1, 2, 28) mit Vorrichtungen zum Festkleben des Fadens (32, 33) versehen sind.

9. Verfahren zur Einführung eines Webfadens in das Webfach einer Webmaschine, dadurch gekennzeichnet, dass es im wesentlichen besteht aus der Beschleunigung des Webfadens (3, 4) bevor er die Austrittseite der Hauptblasdüse (5) erreicht, auf eine Geschwindigkeit, die im wesentlichen der Einspritzgeschwindigkeit gleich ist.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Webfaden (3, 4) derart bis auf die notwendige Geschwindigkeit beschleunigt wird, dass das freie Fadende (15) am Anfang der Webphase die Hauptblasdüse (5) austrittsseitig verlässt und im wesentlichen mit der Einspritzgeschwindigkeit.

11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Webfaden (3, 4) diese Geschwindigkeit erreicht, während der Zeitspanne, dass dieser Webfaden das Wahlblock (6) und die Hauptblasdüse (5) durchläuft.

Revendications

1. Dispositif de fourniture d’un fil de trame à un souffleur principal sur une machine à tisser, caractérisé par le fait qu’il se compose essentiellement de la combinaison de deux ou de plusieurs canaux d’aménée (1, 2) de fils de trame (3, 4); d’un souffleur principal (5) pour l’insertion des fils de trame (3, 4) dans la foule; d’un bloc distributeur (6) réglable, comprenant un ou plusieurs canaux canavriers (7; 16, 17, 20, 21, 22) et monté entre les extrémités finales (9, 10) des canaux d’aménée (1, 2) d’une part et l’entrée (11) du souffleur principal (5) d’autre part, ces canaux canavriers (7; 16, 17, 20, 21, 22) pouvant établir une liaison, par déplacement du bloc distributeur (6), entre un des canaux d’aménée (1, 2, 28) et l’entrée (11) du souffleur principal (5); ainsi que de moyens de déplacement du bloc distributeur (6).

2. Dispositif selon la revendication 1, caractérisé par le fait que le bloc distributeur (6) peut tourner autour de l’axe de symétrie (8) du souffleur principal (5).

3. Dispositif selon la revendication 1, caractérisé par le fait que le bloc distributeur (6) peut coulisser.

4. Dispositif selon la revendication 1, caractérisé par le fait que le bloc distributeur (6) peut tourner.

5. Dispositif selon l’une des revendications précédentes, caractérisé par le fait que le bloc distributeur (6) est pourvu de canaux d’échappement (14; 25, 26, 27) pouvant relier les canaux d’aménée (1, 2, 28) non reliés à l’entrée (11) du souffleur principal (5) à l’atmosphère extérieure entourant le bloc distributeur (6).

6. Dispositif selon l’une des revendications précédentes, caractérisé par le fait que les canaux d’aménée (1, 2, 28) sont constitués par les sorties des souffleurs (29, 30, 31).

7. Dispositif selon l’une des revendications précédentes, caractérisé par le fait que les canaux d’aménée (1, 2, 28) sont pourvus de dispositifs pour ramener le fil vers l’arrière.

8. Dispositif selon l’une des revendications précédentes, caractérisé par le fait que les canaux
d'amenée (1, 2, 28) sont équipés de dispositifs de pincement du fil (32, 33).

9. Méthode de fourniture d'un fil de trame en vue de son insertion dans la foule d'une machine à tisser, caractérisée par le fait qu'elle consiste principalement en l'accélération du fil de trame (3, 4) à une vitesse sensiblement égale à la vitesse d'insertion, avant que le fil de trame n'atteigne la sortie du souffleur principal (6).

10. Méthode selon la revendication 9, caractérisée par le fait que le fil de trame (3, 4) est accéléré à la vitesse appropriée de telle manière que l'extrémité libre (15) du fil de trame quitte la sortie de souffleur principal (6) au moment du lancement d'un cycle d'insertion de trame et essentiellement à la vitesse d'insertion.

11. Méthode selon la revendication 9 ou 10, caractérisée par le fait que la vitesse est donnée au fil de trame (3, 4) pendant la course de ce fil de trame au travers du bloc distributeur (6) et du souffleur principal (5).