Novel guanidinomethylbenzoic acid derivatives.

Priority: 30.07.85 JP 166903/85

Date of publication of application: 15.04.87 Bulletin 87/16

Publication of the grant of the patent: 20.09.89 Bulletin 89/38

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
AT-B- 303 058
GB-A- 2 058 773
US-A- 3 479 401

Proprietor: Kabushiki Kaisha Med-Creat, 23-1, Yoyogi 2-chome Shibuya, Tokyo (JP)
Proprietor: Satoh, Toshio, 57-3, Nagao Joroku-cho, Tokushima-shi Tokushima-ken (JP)

Inventor: Satoh, Toshio, 57-3, Nagao Jyoroku-cho, Tokushima-shi Tokushima-ken (JP)
Inventor: Matsumoto, Hitoshi, 125-22, Shimofukuman Hachiman-cho, Tokushima-shi Tokushima-ken (JP)
Inventor: Kakegawa, Hisao, 4-9-2, Minami-Showa-cho, Tokushima-shi Tokushima-ken (JP)

Representative: Pendlebury, Anthony et al, PAGE, WHITE & FARRER 54 Doughty Street, London WC1N 2LE (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

1. Field of the Invention:

This invention relates to a guanidinomethylbenzoic acid derivatives represented by the formula (I)

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{H}_2\text{N}
\end{array}
\begin{array}{c}
\text{C} \\
\text{NHCH}_2
\end{array}
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{C-NHCH}_2
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{H}_2\text{N}
\]

... (I)

or its salts, and also to antiulcer agents comprising the compounds of the formula (I) as an effective ingredient.

2. Prior Art:

A number of compounds have heretofore been proposed for use in the treatment and prevention of gastroenteric ulcers. As disclosed for instance in Japanese Patent Publication (Kokai) No. 57-197256, N-(phenyl)-trans-4-guanidinomethylcyclohexanecarboxamide hydrochloride (hereinafter referred to as a "control compound") possesses the ability to suppress those ulcers, such control compound being represented by the formula below.

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{H}_2\text{N}
\end{array}
\begin{array}{c}
\text{C} \\
\text{-NHCH}_2
\end{array}
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{C-NHCH}_2
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{H}_2\text{N}
\]

... control compound

The control compound however is not satisfactory in respect of its insufficient articular activity as well as its relatively high toxicity.

Upon synthesis and examination of various compounds as to their antiulcer effects, the present inventors have now found that guanidinomethylbenzoic acid derivative of the formula (I) or its salts have unexpectedly enhanced antiulcer effectiveness and extremely reduced toxicity, as will appear clear from the animal test results later described.

SUMMARY OF THE INVENTION

It is accordingly an object of the present invention to provide a guanidinomethylbenzoic acid derivative represented by the formula (I)

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{H}_2\text{N}
\end{array}
\begin{array}{c}
\text{C} \\
\text{-NHCH}_2
\end{array}
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{C-NHCH}_2
\begin{array}{c}
\text{CONH-} \\
\text{-} \\
\text{-}
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{N}
\text{H}_2\text{N}
\]

... (I)

and salts thereof and also acid addition salts thereof. Salts of the compounds of the formula (I) include for example those of inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and those of organic acids such as acetic acid, propionic acid, citric acid, lactic acid, tartaric acid, p-toluenesulfonic acid. Particularly preferred among those salts are pharmaceutically acceptable acid addition salts.

DETAILED DESCRIPTION

A guanidinomethylbenzoic acid derivative of the formula (I) or its salt according to the invention may be produced for instance by reacting 4-guanidinomethylbenzoic acid (II) and aniline (III) in the presence of dicyclohexylcarbodiimide (hereinafter referred to as "DCC"), and if necessary by converting the resulting free product into the form of a salt.
To be more specific, the desired compound (I) may be derived from the dehydrating condensation of the compound (II) with the compound (III) in a solvent in the presence of DCC. The amount of the compound (III) to be used per 1.0 mol of compound (II) is in the range of 1.0 to 1.5 mol. The amount of DCC to be used is in the range of 1.0 to 1.5 mol. Suitable solvents are anhydrous by nature and include acetone, tetrahydrofuran, dioxane, pyridine and the like. The condensation reaction can be fully completed with stirring at room temperature for 10 to 80 hours or with refluxing at the boiling point of the solvent for 1 to 5 hours. Upon completion of the reaction, the reaction mixture is filtered to remove insoluble matter. The filtrate is concentrated dry, followed by purification of the residue to obtain the compound (I).

The desired compound in the form of an acid addition salt may be directly obtained by reacting an acid addition salt of either one of the compounds (II) and (III) with the other under nonbasic conditions. Bases of both of the compounds (II) and (III) are reacted to free the compound (I) as a base which may be converted in conventional manner to an acid addition salt. Such an acid addition salt of the compound (I) may also be converted to other selected acid addition salts by the use of a salt interchange technique known per se.

The compounds (I) or their salts are applicable to the treatment of human beings and warm-blooded animals by oral or nonoral routes (for example, intramuscular injection, subcutaneous injection and local administration).

The compounds contemplated by the invention can be prepared as an antulcer agent into various forms suitable for oral or nonoral administration in which instance they may be combined with pharmaceutically acceptable, nontoxic carriers in common use. These forms of preparations depend upon the manner in which they are used and include solid forms (for example, tablets, capsules, granules, powders, fine powders, sugar-coated pills and troches), semi-solid forms (for example, ointments, creams and suppositories) and liquid forms (for example, injections, emulsions, suspensions, lotions, tinctures, sprays and syrups). Suitable pharmaceutically acceptable, nontoxic carriers include for example starch, gelatin, grape sugar, lactose, fruit sugar, maltose, magnesium carbonate, talc, magnesium stearate, methyl cellulose, carboxymethyl cellulose (CMC) and its salts, gum arabic, polyalkylene glycol, distilled water for injection use, p-hydroxybenzoic acid alkyl esters, syrups, ethanol, propylene glycol, glycerin, petrolatum, carbowax.

The aforesaid preparations may contain other therapeutically useful agents, dispersants, antioxidants, preservatives, stabilizers, perfumes, binders, lubricants, osmotic pressure regulating salts, buffers.

The amounts of the compounds of the invention to be used vary with the forms of preparations, but are preferably in the range of 5 to 100 wt. % in the case of solid and semi-solid preparations and in the range of 0.1 to 10 wt. % in the case of liquid preparations, respectively.

The doses of the compounds of the invention vary widely depending upon the conditions of patients, the kinds of warm-blooded animals to be treated, the symptoms and the diagnostics by the doctors. The compounds may be applied usually in a daily dose of 0.01 to 30 mg/kg of weight, preferably 0.1 to 20 mg/kg of weight. Even those exceeding the above specified doses are suitably applicable according to the symptoms and diagnoses. Dosage may be made at a time or separately a day.

Guanidinomethylbenzoic acid derivative of the formula (I) or its salts according to the invention are capable of exhibiting excellent antulcer characteristics as evidenced by the following animal tests.

The tests were conducted with use of the compounds given below.

Test Compounds

A: N-phenyl-4-guanidinomethylbenzamide (compound of Example 1)
B: N-(phenyl)-trans-4-guanidinomethylcyclohexanecarboxamide hydrochloride (control compound)
Test Method 1 (Effect on Stress Induced Ulcer)

1. Test Procedures

The method of Takagi et al. (Jap. J. Pharmacol., 18, 9 (1968)) was followed. SD male rats each weighing from 180 to 200 g (8 weeks of age and 6 to 8 rats in one group) were fasted for 24 hours, followed by oral administration of the above test compounds which had been suspended in 1% CMC aqueous solution. 15 minutes later, the animals were put into a stress cage which was then immersed in a water tank at 24°C at the depth of the xiphisterna of the animals. After being immersed for 18 hours, the animals were killed under etherization to excise the stomachs. Each of the stomachs was injected with 12 ml of 1% formalin aqueous solution and then immersed in 1% formalin aqueous solution for 15 minutes. The stomach was incised along its upper curvature and measured by an anatomic microscopy for the major axis (mm) of each ulcer that had developed on the gastric mucous membrane. The total major axis (mm) was taken as the ulcer factor. The ulcer inhibition rate was obtained from the following equation. The ED₅₀ values were obtained from the doses-ulcer inhibition rates curve.

\[
\text{ulcer inhibition rate (\%)} = (1 - \frac{m}{l}) \times 100
\]

where \(l \) is the ulcer factor of a group without the test compounds administered, and \(m \) is the ulcer factor of a group having such compounds administered.

2. Test Results

The results are shown in Table 1.

Test Method 2 (Effect on Ethanol Induced Ulcer)

1. Test Procedures

The method of Robert (Gastroenterology, 77, 439 (1979)) was followed. SD male rats each weighing from 180 to 200 g (8 weeks of age and 6 to 8 rats in one group) were fasted for 24 hours, followed by oral administration of the test compounds which had been suspended in 1% CMC aqueous solution. After lapse of 30 minutes, 1 ml of ethanol (99.5%) was orally administered. One hour later, the animals were killed under etherization to remove the stomachs. Each of the stomachs was injected with 12 ml of 1% formalin aqueous solution and then immersed in 1% formalin aqueous solution for 15 minutes. The ulcer factor and ulcer inhibition rate were determined in a manner similar to Test Method 1. The ED₅₀ values were obtained from the doses-ulcer inhibition rates curve.

2. Test Results

The results are shown also in Table 1.

Test Method 3 (Effect on Indomethacin Induced Ulcer)

1. Test Procedures

The method of Okabe et al. (Jap. J. Pharmacol., 29, 670 (1979)) was followed. SD male rats each weighing from 180 to 200 g (8 weeks of age and 6 to 8 in one group) were fasted for 24 hours, followed by oral administration of the test compounds which had been suspended in 1% CMC aqueous solution, and 15 minutes afterwards, by subcutaneous administration of indomethacin (30 mg/kg of weight) which had been dissolved in 3% sodium bicarbonate aqueous solution. After lapse of 5 hours, the animals were killed under etherization to take out the stomachs. Each of the stomachs was injected with 12 ml of 1% formalin aqueous solution containing 0.1% pontamine sky blue and then immersed in 1% formalin aqueous solution for 15 minutes. The ulcer factor and ulcer inhibition rate were determined in a manner similar to Test Method 1. The ED₅₀ values were obtained from the doses-ulcer inhibition rates curve.

Test Results

The results are shown also in Table 1.
Test Method 4 (Acute Toxicity-Minimum Lethal Dose (MLD))

1. Test Procedures

ddY Male mice each weighing from 20 to 22 g (4 weeks of age and 5 mice in one group) were fasted overnight, followed by oral administration of the test compounds which had been suspended in 1% CMC aqueous solution. Observation was made as to the death of the animals over 7 days to thereby determine the minimum lethal doses (MLD).

2. Test Results

The results are shown also in Table 1.

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Test Compound</th>
<th>Effect on Stress induced ulcer</th>
<th>Effect on Ethanol induced ulcer</th>
<th>Effect on Indomethacin induced ulcer</th>
<th>MLD, mg/kg</th>
<th>Acute Toxicity test</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.34</td>
<td>35</td>
<td>58</td>
<td>>3000</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>B</td>
<td>143</td>
<td>220</td>
<td>73</td>
<td><1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As is clearly evident from the results given in Table 1, Invention Compound A is remarkably effective in suppressing ulcers against stress, ethanol and Indomethacin, as contrasted to Control Compound B. Further, the toxicity of Invention Compound A is extremely low as exhibited by its acute toxicity (minimum lethal dose) greater 3,000 mg/kg when orally administered to the mice.

The invention will now be further described by way of the following example.

Example

Example 1

(a) Preparation of 4-guanidinomethylbenzoic acid hydrochloride

17.7 Grams of S-methyl isothiourea sulfate was dissolved in 100 ml of 2N sodium hydroxide under cooling, followed by addition of 2N sodium hydroxide up to pH 11 and by subsequent addition of a solution of 10 g p-aminomethylbenzoic acid in 50 ml of boiling water. The resulting solution was allowed to stand overnight at room temperature and thereafter cooled. Crystals thus precipitated were collected by filtration, neutralized by washing with cold water and then dried in vacuo. 99 ml of 1N hydrochloric acid was added to the resulting crystals, and the solution was then heated. Upon removal of insoluble material by filtration, the filtrate was evaporated in vacuo. The residue was recrystallized from water-methanol (1:1) to give 8.4 g of 4-guanidinomethylbenzoic acid hydrochloride as white crystals.

mp: 227-230°C

IR(KBr) vmax(cm\(^{-1}\)): 3400-3000, 1680

Elemental analysis (as C\(_8\)H\(_5\)N\(_2\)O\(_2\)-HCl):

Calculated (%): C, 47.07; H, 5.27; N, 18.30

Found (%): C, 46.98; H, 5.15; N, 18.37

(b) Preparation of N-phenyl-4-guanidinomethylbenzamide hydrochloride

1.0 Gram of 4-guanidinonoethylbenzoic acid obtained in Item (a) above and 0.45 g of aniline were dissolved in a solution consisting of 50 ml of pyridine and 20 ml of dimethylformamide, followed by addition of 1.0 g of dicyclohexylcarbodiimide. The resulting mixture was reacted at room temperature for 70 hours. Thereafter, the reaction mixture was added with 50 ml of water and stirred for 30 minutes. Upon removal of insoluble matter by filtration, the filtrate was concentrated to dryness. The residue was washed first with 50 ml of benzene and then with 50 ml of ethyl acetate and recrystallized from water to give 0.8 g of N-phenyl-4-guanidinomethylbenzamide hydrochloride as white crystals.

mp: 179-180°C

IR (KBr) vmax (cm\(^{-1}\)): 3400-3000, 1660, 1600

MS (e/m): 268 (M\(^+\)-HCl)

Elemental analysis (as C\(_8\)H\(_7\)N\(_4\)-HCl):

Calculated (%): C, 59.11; H, 5.62; N, 18.38

Found (%): C, 59.37; H, 5.97; N, 18.84
Claims for the contracting states BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. A guanidinomethylbenzoic acid derivative represented by the formula

\[
\begin{align*}
\text{HN} & \quad C \quad \text{NHCH}_2 \quad \text{phenyl} \quad \text{CONH} \quad \text{phenyl} \\
\text{H}_2\text{N} &
\end{align*}
\]

or a salt thereof.

2. An antiulcer agent comprising as an effective ingredient a guanidinomethylbenzoic acid derivative represented by the formula

\[
\begin{align*}
\text{HN} & \quad C \quad \text{NHCH}_2 \quad \text{phenyl} \quad \text{CONH} \quad \text{phenyl} \\
\text{H}_2\text{N} &
\end{align*}
\]

or a salt thereof.

Claims for the contracting state AT

1. A process for producing a guanidinomethylbenzoic acid derivative represented by the formula

\[
\begin{align*}
\text{HN} & \quad C \quad \text{NHCH}_2 \quad \text{phenyl} \quad \text{CONH} \quad \text{phenyl} \\
\text{H}_2\text{N} &
\end{align*}
\]

or a salt thereof, which comprises reacting 4-guanidinomethylbenzoic acid and aniline, and if necessary, converting the resulting free product into a salt thereof.

2. A process according to claim 1, wherein the reaction is conducted in a solvent in the presence of di-cyclohexyl-carbodiimide.

Patentansprüche für die Vertragsstaaten BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Guanidinmethylbenzoësäure-Derivat der Formel

\[
\begin{align*}
\text{HN} & \quad C \quad \text{NHCH}_2 \quad \text{phenyl} \quad \text{CONH} \quad \text{phenyl} \\
\text{H}_2\text{N} &
\end{align*}
\]

oder eines ihrer Salze.

2. Anti-Ulcusmittel, enthaltend als Wirkstoff ein Guanidinmethylbenzoësäure-Derivat der Formel

\[
\begin{align*}
\text{HN} & \quad C \quad \text{NHCH}_2 \quad \text{phenyl} \quad \text{CONH} \quad \text{phenyl} \\
\text{H}_2\text{N} &
\end{align*}
\]

oder eines ihrer Salze.
Patentansprüche für den Vertragsstaat AT

1. Verfahren zur Herstellung eines Guanidinemethybenzoesäure-Derivat der Formel

\[
\begin{align*}
\text{HN} & \quad \text{C} \quad \text{NHCH}_2 \quad \text{CONH} \\
\text{H}_2\text{N} & \quad \text{H}_2\text{N}
\end{align*}
\]

oder eines ihrer Salze, gekennzeichnet durch die Umsetzung von 4-Guanidinemethybenzoesäure und Anillin und ggf. Umwandlung des entstandenen freien Produkts in ein Salz.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umsetzung in einem Lösungsmittel in Gegenwart von Dicyclohexyl-carbodiimid durchgeführt wird.

Revendications pour les Etats Contractants BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Dérivé d'acide guanidinométhylbenzoïque représenté par la formule:

\[
\begin{align*}
\text{HN} & \quad \text{C} \quad \text{NHCH}_2 \quad \text{CONH} \\
\text{H}_2\text{N} & \quad \text{H}_2\text{N}
\end{align*}
\]

ou un de ses sels.

2. Agent anti-ulcèreux comprenant, comme ingrédient efficace, un dérivé d'acide guanidinométhylbenzoïque représenté par la formule

\[
\begin{align*}
\text{HN} & \quad \text{C} \quad \text{NHCH}_2 \quad \text{CONH} \\
\text{H}_2\text{N} & \quad \text{H}_2\text{N}
\end{align*}
\]

ou un de ses sels.

Revendications pour l'Etat Contractant AT

1. Procédé de production d'un dérivé d'acide guanidinométhylbenzoïque représenté par la formule

\[
\begin{align*}
\text{HN} & \quad \text{C} \quad \text{NHCH}_2 \quad \text{CONH} \\
\text{H}_2\text{N} & \quad \text{H}_2\text{N}
\end{align*}
\]

ou d'un de ses sels, qui consiste à faire réagir de l'acide 4-guanidinométhylbenzoïque et de l'aniline et, si nécessaire, à transformer le produit libre résultant en un de ses sels.

2. Procédé suivant la revendication 1, dans lequel la réaction est conduite dans un solvant, en présence de dicyclohexyl-carbodiimide.