EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 11.12.91
Int. Cl.5: G11B 7/24, G11B 7/26
Application number: 86109177.5
Date of filing: 04.07.86

Optical recording element having a smoothing layer.

Priority: 19.08.86 US 766992

Date of publication of application: 25.03.87 Bulletin 87/13

Publication of the grant of the patent: 11.12.91 Bulletin 91/50

Designated Contracting States:
DE FR GB NL

References cited:
EP-A- 0 037 054
EP-A- 0 072 017
US-A- 4 296 158
US-A- 4 446 223
US-A- 4 447 493

Proprietor: EASTMAN KODAK COMPANY (a New Jersey corporation)
343 State Street
Rochester New York 14650(US)

Inventor: Molaire, Michel Frantz
Kodak Park
Rochester New York 14650(US)
Inventor: Kaplan, Mark Steven
Kodak Park
Rochester New York 14650(US)

Representative: Parent, Yves et al
Kodak-Pathé Département Brevets et Licences Centre de Recherches et de Technologie Zone Industrielle F-71102 Chalon-sur-Saône Cédex(FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 98(1) European patent convention).
This invention relates to optical recording elements in which information is recorded by thermally deforming an optical recording layer. Such elements are useful in rapidly recording a large amount of information in a small area. These elements are useful for recording digital, video and audio information.

Recording on an optical recording element is accomplished by an information modulated beam of high energy density radiation such as a laser beam. The laser beam is focused onto the surface of the optical recording layer of the element. The recording layer absorbs energy from the light so that a small portion of the layer is deformed, thereby forming an information-bearing record element. The deformations may be in the form of pits, holes, or other changes in the material. This technique of optical recording on a heat-deformable recording layer is sometimes referred to in this art as ablative recording.

An important component of optical recording elements is a so-called smoothing layer. The smoothing layer is coated over the support to smooth out the support and to minimize noise and dropouts in optical recordings. The smoothing layer is then usually, in some optical recording elements, coated with a metal reflective surface. The recording layer is coated over the reflective layer.

The practice, as disclosed in U.S. Patent 4,446,223, has been to use liquid polymerizable/crosslinkable compositions as the smoothing layer. After the coating solvents are evaporated from the smoothing layer formulation, surface tension tends to form a smooth liquid overcoat. The layer is then subjected to radiation energy for polymerisation and crosslinking to produce a tack-free smooth film surface. However, the smoothing layer formed from the composition disclosed in U.S. Patent 4,446,223 tends to be non-flexible, brittle and form micropimplies. As a result, a smooth surface cannot always be preserved throughout the fabrication of an optical recording element.

The objective of the present invention is to provide an optical recording element which has a flexible, non-brittle smoothing layer which is free of micropimplies.

That objective is achieved with the present invention which provides an optical recording element comprising a support having coated thereon a smoothing layer characterized in that the smoothing layer is a crosslinked homopolymer derived from a single monomer having the structure

\[
P\{R-Q-C-C=CH_2\}_m
\]

or

\[
(CH_2)_nO - \text{ or } (CH_2CH_2O)_n
\]

O

\[
\text{or } -\text{O} -\text{.}
\]

R

\[
\text{represents hydrogen or methyl;}
\]

m

\[
is 2 to 4.
\]

n

\[
is 2 to 10; and
\]

P

\[
\text{represents a benzene or a cyclohexane nucleus;}
\]

Q

\[
\text{represents}
\]

or

\[
\text{or}
\]

The smoothing layer is flexible, non-brittle and essentially free of micropimplies, thus insuring a smoothing surface throughout the fabrication cycle of an optical recording element.

The monomers useful in forming the smoothing layers used in the optical recording elements of the invention are polymerized and crosslinkable with radiant energy such as UV light. The monomers and methods for making them are disclosed in U.S. Patent 4,322,490. Representative monomers useful herein are presented in Table I.
TABLE I

1. \(\text{CH}_2\text{=CH-C-O-}(\text{CH}_2)_2\text{-O-C-O-}(\text{CH}_2)_2\text{-O-C-CH=CH}_2 \)

2. \(\text{CH}_2\text{=CH-C-O-}(\text{CH}_2)_6\text{-O-C-O-}(\text{CH}_2)_6\text{-O-C-CH=CH}_2 \)

3. \(\text{CH}_2\text{=CH-C-O-}(\text{CH}_2)_3\text{-O-C-O-}(\text{CH}_2)_3\text{-O-C-CH=CH}_2 \)
6. \[
\text{CH}_2\text{=C-C-O-CH}_2\text{CH}_2\text{(OCH}_2\text{CH}_2\text{)}_{n-1}\text{-O-C-O-CH}_2\text{CH}_2\text{(OCH}_2\text{CH}_2\text{)}_{n-1}\text{-O-C-C=CH}_2
\]

\text{R}_1 = \text{H, CH}_3; \\
n = 2 \text{ to } 10.
The preferred optical recording elements of the invention comprise, in the following order, a support, a smoothing layer as disclosed herein, a metal reflective layer and an optical recording layer.

The support is any of a wide variety of materials including for example, glass plate or a resin film such as poly(ethylene terephthalate), poly(methyl methacrylate), poly(vinyl chloride), polystyrene or cellulose acetate, paper, clay, wood or metal. Important characteristics of the support are that it has a relatively high melting point (to avoid deformation during recording), has a very smooth surface (to minimize noise), and is capable of being coated with a layer of amorphous material, with good adhesion and no significant chemical reactivity between the layer and the useful support.

The support is coated with the smoothing layer formulation prior to the coating of the reflective layer and the recording layer.

The smoothing layer formulation may also includes a photoinitiator composition. The photoinitiator composition comprises, for example, an amine activator and a 3-ketocoumarin photosensitizer.

However, various other photoinitiator compositions can be used. A mixture of Michler’s ketone and benzophenone is useful. Other compositions comprising an amine activator and a 3-ketocoumarin photosensitizer are described in Research Disclosure, December 1980, Item 20036 entitled "Photopolymerizable Compositions Featuring Novel Co-Initiators". The amount of the photoinitiator composition does not appear to be critical. Amounts between about 0.0002 and 0.2 mmole/g of dry solids content depending on the photoinitiator composition and the characteristics desired are effective. Especially effective are amounts from about 0.001 to about 0.01 mmole/g.

The following is a list of representative coumarin photosensitizers highly useful as one of the components of the photoinitiator composition:

3-(2-benzofuroyl)-7-dieethylaminocoumarin;
3-(2-benzofuroyl)-7-(1-pyrroldinyl)coumarin;
3-benzoyl-7-dieethylaminocoumarin;
3-(o-methoxybenzoyl)-7-dieethylaminocoumarin;
3-(o-dimethylaminobenzoyl)-7-dieethylaminocoumarin;
3,3'-carbonylbis(5,7-di-n-propoxycoumarin);
3,3'-carbonylbis(7-dieethylaminocoumarin);
3-benzoyl-7-methoxycoumarin;
7-dieethylamino-3-[3-(2-thienyl)acryloyl]coumarin;
3-(2-furoyl)-7-dieethylaminocoumarin;
3-(p-dieethylaminocinnamoyl)-7-dieethylaminocoumarin;
7-methoxy-3-(3-pyridylcarbonyl)coumarin and
3-benzoyl-5,7-dipropoxycoumarin.

Representative useful amine activators include ethyl p-dimethylaminobenzoate; other esters of p-
dimethylaminobenzoic acid, e.g., n-butyl p-dimethylaminobenzoate, phenethyl p-dimethylaminobenzoate, 2-phthalimidoethyl p-dimethylaminobenzoate, 2-methacryloyloxyethyl p-dimethylaminobenzoate, pentamethylenebis(p-dimethylaminobenzoate); 4,4'-bis(dimethylamino)benzophenone; phenethy1 and pentamethylene esters of m-dimethylaminobenzoic acid; p-dimethylaminobenzaldehyde; 2-chloro-4-dimethylaminobenzaldehyde; p-dimethylaminocetophenone; p-dimethylaminobenzyl alcohol; ethyl(p-dimethylamino)benzoyl acetate; p-piperidinoacetophenone; 4-dimethylaminobenzoin; N,N-dimethyl-p-toluidine; N,N-diethyl-m-phenetidin; tribenzylamine; dibenzylphenylamine; N-methyl-N-phenylbenzylamine; p-bromo-N,N-dimethylanoline; tridodecylamine; and 4,4',4''-methyleneidinetriss(N,N-dimethylanoline) (crystal violet, leuco base).

The smoothing layer formulations are made by combining a structure I monomer and an appropriate solvent with a sensitizer and mixing at a constant temperature until solution is obtained. Then an activator is added to the solution and mixed until a clear solution is obtained. The order of combining the components is not essential. It is necessary, however, to obtain a clear solution.

In general, the smoothing layer formulations will comprise, on a dry weight to weight basis, from 50 to 93 percent of the selected formula I monomer; from 2 to 10 weight percent of activator; and when desired, 1 to 5 weight percent of the photosensitizer in an appropriate solvent.

It is also possible to induce polymerization and crosslinking of the α,β-ethylenically unsaturated carbonyl substituted aliphatic and aromatic group with heat or using E beam energy without the use of a photoinitiator composition. It is also possible to coat the polymerizable crosslinkable monomer without a solvent, using techniques such as gravure printing. Temperatures in the range of from 40° to 120° C are useful in promoting polymerization and crosslinking of the monomer.

The formulations may also contain a solvent such as dichloromethane, 2-ethoxyethanol, toluene, 1,1,1-trichloroethane, heptane and other suitable solvents to facilitate coating. After coating, any solvent used is allowed to evaporate to obtain a dried coated layer of the photocurable composition.

The coated formulation is then exposed to UV radiation. The radiation causes the monomer to polymerize and crosslink, thus, curing the layer.

Following coating, polymerization of the fluid produces a smooth surface on the support. The thus formed smoothing layer is made reflective by vacuum metalization of the smooth surface. Useful metals for this purpose include gold and aluminum.

Useful recording layers, comprising a dye and a binder, are coated by any of a wide variety of methods. Most conveniently, the dye and binder are coated from a common solvent or, alternatively, from a mixture of miscible solvents. The dye-binder composition is coated by spray coating, air knife coating, whirl coating or by any other suitable method. The thickness of the recording layer according to the present invention is not critical; however, best results are obtained when the thickness of the layer is between about 0.1 and about 10 microns. Useful dyes and binders are disclosed in U.S. Patent 4,380,769 and U.S. Patent 4,499,165. These patents also describe in detail methods for making the recording layer. Other useful recording elements having heat-deformable recording layers include metallic or alloy layers.

Optimization of the recording elements of the present invention is described in U.S. Patent 4,360,908 of Howe and Wrobel which discloses a recording layer having an absorption factor of 20 or greater and comprising an amorphous material consisting essentially of a thermoplastic binder and a dye. Preferred disc configurations are described in U.S. Patent 4,447,899.

The following examples are presented to further illustrate how to make and use the invention.

Example 1

<table>
<thead>
<tr>
<th>Smooth Layer Formulation</th>
<th>mg/m² (mg/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomer 1, Table I</td>
<td>8636 (802)</td>
</tr>
<tr>
<td>3-benzoyl-5,7-dipropoxy-coumarin as a sensitizer</td>
<td>236.8 (22)</td>
</tr>
<tr>
<td>ethyl p-dimethylamino-benzoate as an activator</td>
<td>473.6 (44)</td>
</tr>
<tr>
<td>Fluorad FC431 a (nonionic fluoro-chemical surfactant sold by 3M Co.)</td>
<td>64.6 (6)</td>
</tr>
</tbody>
</table>
The above formulation was machine coated on a polyester support in dichloromethane or 1,1,1-trichloroethane at about 15% solids by pumping the formulation through a coating hopper at a speed of about 22.8 meters/min (75 fpm) to produce a dried layer about 5 micrometers thick. Polymerization and crosslinking was accomplished by exposing the smoothing layer to a 3000W*Hg light source focused at the web for about 0.1 second. A metal reflecting layer was vacuum deposited on the smoothing layer. Microscopic evaluation of the reflecting layer revealed a nearly featureless surface.

Example 2 Prior Art Smoothing Layer

A prior art multi-component formulation, composed of Hughson® 63A acrylated urethane resin, 4310 mg/m² (401 mg/ft²), Chemlink® 41D, 431 g/m² (40 gm/ft²) and the same amount of sensitizing, activator and solvent as was used in Example 1, was coated under conditions similar to those of Example 1. Hughson® 63A is a mixture of urethane acrylate, along with unspecified oligomers and ethylenically unsaturated monomers. Chemlink® 41D is itself a mixture of acrylates of pentaerythritol, sold by Ware Chemical Co. A metal reflective layer was applied to the smoothing layer as in Example 1.

A wedge brittleness test (ANSI PH 1.31-1973) was performed in the coatings of Examples 1 and 2 (prior art). The wedge brittleness test was performed by conditioning sample strips of each coating at 21°C and 50 percent relative humidity, pulling a loop of each strip, coating side outwards, through a 9° wedge-shaped device as described in the ANSI PH 1.31-1973 standard, and recording the distance in inches between the legs of the wedge where the first cracks occurred, this distance representing the diameter of the loop when the cracks occurred.

A curl test (ANSI PH 1.29-1971) was also performed on the coatings of Examples 1 and 2. The curl test was performed by conditioning sample strips at 21°C and 50 percent relative humidity, then matching the curl of each sample on a template of curves of varying radii to determine the radius of curvature and reporting the value of 100/R as the degree of curl where R is the radius of curvature in inches.

The results of these experiments are tabulated in Table II

A comparison of this prior art smoothing layer with the smoothing layer of Example 1 is tabulated in Table II.

| TABLE II |
|-----------------|-----------------|-----------------|-----------------|
| Monomer 1, Table I | Curl | Wedge Brittleness | Surface Quality |
| 30.48 | 0.36 | OK—no pimplies with single pass |
| Hughson®/Chemlink® | 71.12 | 0.76 | Micropimplies with one pass |

A one pass coating was found sufficient for good smoothing performance of monomer 1 while two passes were necessary for good smoothing performance when the multi-component prior art smoothing layer was used. By a one pass coating we mean that the coated element was not passed through the coating machine a second time to further smooth the layer at the expense of increasing the thickness of the smoothing layer. Also, the smoothing layer of the invention exhibited less curl and less brittleness than the prior art smoothing layer.

Example 3

A formulation comprising monomer 4 of Table I was spin coated side by side with the prior art smoothing layer formulation of Example 2. Complete optical recording elements were then prepared with each formulation for performance evaluation of carrier-to-noise ratio (CNR). The complete elements were prepared and evaluated as described in Example 15 of U.S. Patent 4,409,165. The reflective layer was Cr/Au (1,1nm/140,5nm 02 11 Å * Å *). The recording layer was a dye and binder layer comprising bis-
[4-benzyl-5-(4-methoxyphenyl)dithiolene] nickel and bis(4-phenyl-5-isopropyldithiolene) nickel and the binder was

$$\begin{align*}
\end{align*}$$

The results are shown in Table III.

TABLE III

<table>
<thead>
<tr>
<th>Read/Write Performance Data</th>
<th>Max CNR (db)</th>
<th>CNR at 10 MW (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Art</td>
<td>66.6</td>
<td>62.70</td>
</tr>
<tr>
<td>Monomer 4 formulation</td>
<td>67.10</td>
<td>64.2</td>
</tr>
</tbody>
</table>

The monomer 4 formulation resulted in improved CNR performance compared to the control. The formulation of this example was also found to exhibit less brittleness and cure than the prior art formulations.

Example 4

A surface-smoothing formulation was prepared, coated and cured as described in Example 3 using monomer 5 of Table I. A hard crosslinked polymer was formed on UV irradiation. Metallization of the resulting smoothing layer was followed by microscopic analysis of the metal surface. This analysis revealed that surface-smoothing had taken place.

Example 5

Example 4 was repeated except the smoothing layer monomer was monomer 8 of Table I. A smooth surface was observed on the metal layer.

Claims
1. An optical recording element comprising a support having coated thereon in the order a smoothing layer, a metal reflective layer and an optical recording layer characterized in that the smoothing layer is a crosslinked homopolymer derived from a single monomer having the structure

\[
P \rightarrow^1 \text{Q} \rightarrow [\text{R}-\text{Q}-\text{C}-\text{C} = \text{CH}_2]_m
\]

\(\text{Q} \) represents

\(\text{O} \left(\text{CH}_2 \right)_n \text{O or } \left(\text{CH}_2 \text{CH}_2 \text{O} \right)_n \);

\(P \) represents a benzene or cyclohexane nucleus;
\(R \) represents

\[
-\text{C}-\text{O}-
\]

or -O-;
\(R^1 \) represents hydrogen or methyl;
\(n \) is 2 to 10; and
\(m \) is 2 to 4.

2. The optical recording element of claim 1 wherein \(n \) is 2 to 6 and \(m \) is 3.

3. The optical recording element of claim 1 or 2 wherein the homopolymer is derived from a single monomer selected from the groupe consisting of

\[
\text{CO}_2 \text{CH}_2 \text{CH}_2 \text{OCCH} = \text{CH}_2)_3 \text{ and}
\]

\[
\text{CO}_2 \text{CH}_2 \text{CH}_2 \text{OCCH} = \text{CH}_2)_3
\]

4. An optical recording element according to any of claims 1 to 3 wherein the optical recording layer is a heat-deformable optical recording layer.

5. An optical recording element according to claim 4 wherein the heat-deformable optical recording layer comprises a binder and a dye and has an absorption factor of at least 20.

Revendications

1. Elément d'enregistrement optique comprenant un support recouvert dans l'ordre par une couche de nivellement, une couche métallique réfléchissante et une couche d'enregistrement optique, caractérisé en ce que la couche de nivellement est un homopolymère réticulé dérivé d'un unique monomère ayant la structure
EP 0 215 222 B1

\[
P - [R - Q - C - C = CH_2]_m \quad \text{à}
\]

\[
\text{ où } Q \text{ représente}
\]

\[
\text{CH}_2 \text{O} \quad \text{à}
\]

ou

\[
\text{CH}_2 \text{CH}_2 \text{O} \quad \text{à}
\]

\[
P \text{ représente un noyau benzénique ou cyclohexane ;}
\]

\[
R \text{ représente}
\]

\[
\text{O}
\]

\[
\text{C} \quad \text{O} \quad \text{à}
\]

\[
\text{R'} \text{ représente un hydrogène ou un groupe méthyle ;}
\]

\[
n \text{ est compris entre 2 et 10 ; et}
\]

\[
m \text{ est compris entre 2 et 4}
\]

2. Elément d'enregistrement optique selon la revendication 1 dans lequel n est compris entre 2 et 6 et m est 3.

3. Elément d'enregistrement optique selon la revendication 1 ou 2 dans lequel l'homopolymère est dérivé d'un unique monomère choisi parmi :

\[
\text{CO}_2 \text{CH}_2 \text{CH}_2 \text{CCCH=CH}_2 \quad \text{à}
\]

\[
\text{CO}_2 \text{CH}_2 \text{CH}_2 \text{CCCH=CH}_2 \quad \text{à}
\]

4. Elément d'enregistrement optique selon l'une des revendications 1 à 3 dans lequel la couche d'enregistrement optique est une couche d'enregistrement optique déformable par la chaleur.

5. Elément d'enregistrement optique selon la revendication 4 dans lequel la couche d'enregistrement optique déformable par la chaleur comprend un liant et un colorant et a un facteur d'absorption d'au moins 20.

Patentansprüche

1. Optisches Aufzeichnungselement mit einem Träger, auf den in der folgenden Reihenfolge aufgetragen sind: eine Glättsschicht, eine Metall-Reflexionsschicht und eine optische Aufzeichnungsschicht, dadurch gekennzeichnet, daß die Glättsschicht eine Schicht aus einem quervernetzten Homopolymeren ist, das
sich von einem einzelnen Monomeren der folgenden Struktur ableitet:

\[
P \quad \text{[R-O-C-C=CH\textsubscript{2}]} \quad \text{m}
\]

in der bedeuten:

- \(Q\) gleich

\[\quad \text{CH\textsubscript{2}} \rightarrow \text{R} \rightarrow \text{O}\]

oder

\[\quad \text{CH\textsubscript{2}} \rightarrow \text{CH\textsubscript{2}O} \rightarrow \text{R}\]

- \(P\) einen Benzol- oder Cyclohexamerring;
- \(R\) gleich

oder -O-

\[\quad \text{O} \rightarrow \text{C} \rightarrow \text{O}\]

- \(R_1\) gleich Wasserstoff oder Methyl;
- \(n\) gleich 2 bis 10 und
- \(m\) gleich 2 bis 4.

2. Optisches Aufzeichnungselement nach Anspruch 1, in dem \(n\) für 2 bis 6 und \(m\) für 3 steht.

3. Optisches Aufzeichnungselement nach Anspruch 1 oder 2, in dem sich das Homopolymer von einem einzelnen Monomeren ableitet, das ausgewählt ist aus der Gruppe bestehend aus:

\[\quad \text{(CO\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}OCCH=CH\textsubscript{2})} \quad \text{und}\]

\[\quad \text{(CO\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}OCCH=CH\textsubscript{2})} \quad \text{und}\]

4. Optisches Element nach einem der Ansprüche 1 bis 3, in dem die optische Aufzeichnungsschicht eine durch Einwirkung von Wärme deformierbare optische Aufzeichnungsschicht ist.

5. Optisches Aufzeichnungselement nach Anspruch 4, in dem die durch Wärme deformierbare Aufzeichnungsschicht ein Bindemittel und einen Farbstoff enthält und einen Absorptionsfaktor von mindestens 20 aufweist.