EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 13.05.92

Int. Cl.: C07H 19/213

Application number: 86106951.6

Date of filing: 22.05.86

New biologically active fluorescent cyclic nucleotides.

Priority: 06.06.85 IT 4250685

Date of publication of application: 17.12.86 Bulletin 86/51

Publication of the grant of the patent: 13.05.92 Bulletin 92/20

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
US-A- 3 712 885
US-A- 4 369 181

Proprietor: UNIVERSITA' DEGLI STUDI DI PARMA
via A. Gramsci
I-43100 Parma(IT)

Inventor: Sorbi, Robert Tibor
via Lidice 3
Parma(IT)

Caretta, Antonio
via Chiesa 18
Neviano Degli Arduini (PR)(IT)

Inventor: Cavaggioni, Andrea
via Guicciardini 7
Parma(IT)

Gastaldi, Liliana Marchesi
V. le dei Mille 3
Parma(IT)

Representative: Gervasi, Gemma, Dr. et al
NOTARBARTOLO & GERVASI Srl 33, Viale Bianca Maria
I-20122 Milano(IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

In biochemical research there is an increasing use of natural products rendered fluorescent by the addition of a fluorophore because they enable molecular events to be visualised within a minimum concentration, quantity and time domain. Furthermore; the role of cyclic nucleotides of the following type:

1) guanosine-3', 5' - (cyclic) phosphate

in regulating cell metabolism has been increasingly receiving the attention of researchers. Our intention was to produce fluorescent cyclic nucleotides which were biologically active. We took as our starting point the fact that cyclic nucleotides substituted in position 8 of the base do not lose activity (Muneyama et al., Biochemistry 12, 2390-2395, 1971). We therefore sought to attach in this position a known fluorophore, namely a fluorescein or a naphtalene-sulphonic dye. The former can be determined at very low concentrations and are not subject to interference with UV-absorbent products, and the latter are unsurpassed reporter molecules sensitive to the polarity of the environment around the molecule. Moreover, energy can be transferred between the two fluorochromes. For this purpose, we reacted a sulphydryl group introduced into position 8 of the nucleotide with sulphhydryl-fluorescent reagents. The unknown factor was whether substituting with groups of such high molecular weight made the derivative inactive towards cell
regulatory systems based on the binding of cyclic nucleotides to particular proteins. The object of the present research was the synthesis of said fluorescent cyclic nucleotides and their biological characterisation.

These can be formulated starting from a cyclic nucleotide of formula (I) or (II) by substituting the hydrogen atom in position 8 by a group which is a derivative radical of 5-(thioacetamido)-fluorescein class

\[
\text{(III)}
\]

where \(X \) is H, Br, or I (fluorescein, eosin, erythrosine respectively), or which is a derivative radical of 5-(2-thioacetamido-ethyl)-amino-naphthalene-1-sulphonic acid

\[
\text{(V)}
\]

The obtained products are represented by the general formula:

\[
\text{(VII)}
\]
wherein $X = \text{OH}$ or NH_2, $Y = \text{NH}_2$ when $X = \text{OH}$ and is H when $X = \text{NH}_2$, and L represents the fluorescent group bound through a thioacetamido linkage to the nucleotide. The synthesis proceeds by successive stages: firstly, bromination of the cyclic nucleotides in position 8 of the nucleotide and purification by chromatography or another method; secondly, substituting the bromine with a sulphhydryl by reaction with thiourea in an alkaline environment; thirdly, reacting with a compound of the fluorescein class able to react with the sulphhydryl group such as 6-iodoacetamido-fluorescein, or with 5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid.

By this means, HI is eliminated and the fluorescent group is inserted into position 8. The product in then purified. The reactions are conducted at ambient temperature and take place in a minimum of red light to enable the operations to proceed. The biological characterisation was effected by three tests, namely an activity, a binding and a hydrolysis resistance test. The activity test consists of determining the ability of the new fluorescent compounds to activate the permeability of retinal rod membranes (Caretta and Caravagiongi, Eur. J. Biochem, 132, 1-8, 1983). Briefly, the calcium flux into vesicles of retinal rod outer segment membranes filled with Arsenazo III was determined by complexometry. The flux was determined spectrophotometrically at a wavelength of 852 nm immediately after adding one of the following fluorescent cyclic nucleotides:

- Compound 1) guanosine derivative of formula (VII) containing the fluorescein class radical formula (III) in position 8
- Compound 2) guanosine derivative of formula (VII) containing the 5-(2-thioacetamido-ethyl-ethyl-amino)-naphtalene-1-sulphonic acid radical of formula (V) in position 8
- Compound 3) adenosine derivative of formula (VII) containing the fluorescein class radical of formula (III) in position 8
- Compound 4) adenosine derivative of formula (VII) containing the 5-(2-thioacetamido-ethyl-ethyl-amino)-naphtalene-1-sulphonic acid radical of formula (V) in position 8.

Compounds 1, 2, 3, and 4 were all active.

The active concentration for the cyclic nucleotides substituted with groups of the fluorescein class was 100 times less than for the respective natural cyclic nucleotides. Consequently, the activity of these new fluorescent cyclic nucleotides is approximately 100 times greater than the activity of the natural cyclic nucleotides from which they derive. The binding test at equilibrium under dialysis measures the ability of the fluorescent compounds to bind in retinal rod membranes to the sites to which natural cyclic nucleotides bind. Briefly, the test was carried out by bringing vesicles or retinal rod membranes into equilibrium under dialysis with a balancing solution containing concentrations of compound 1) varying from 0.2 to 12 micromolar. The excess fluorescent cyclic nucleotide bound to the membranes was determined by sampling, measuring the fluorescence of the membranes and comparing with the balancing solution. Taking account of the required corrections, it was found that the new fluorescent cyclic nucleotide (compound 1) binds to said sites with micromolar affinity (see Caretta, et al. - EUR. J. Biochem. - (1985) - 153 - pag. 49/53 published August 2, 1985).

Finally, the hydrolysis test measures the molecule stability under experimental conditions. Briefly, the fluorescent cyclic nucleotides were exposed to a retinal rod homogenate for a time sufficient to ensure total hydrolysis of the respective natural cyclic nucleotides to monoesters. The result demonstrated that the new fluorescent cyclic nucleotides are resistant to hydrolysis and that the fluorescence remains associated with the cyclic nucleotide.

Concluding, the simple and specific synthesis of fluorescent cyclic nucleotides (compound 1, 2, 3 and 4), their high biological activity towards biochemical regulatory systems which are based on the binding of cyclic nucleotides, and finally their stability under experimental conditions; make these new molecules useful in biochemical and pharmacological research, and enable them to be produced industrially.

EXAMPLE 1

Synthesis of 8-(5-thioacetamido-fluorescein)-guanosine-3', 5' - (cyclic) phosphate.

0.135 g of 8-bromo-guanosine-3', 5' - (cyclic) phosphate (pyridinium salt) and 0.075 g of thiourea in 3 ml of methanol were left overnight at room temperature. 0.06 g of sodium methydate, 3 ml of water and 0.110 g of 5-iodoacetamido-fluorescein (Molecular Probes, Junction City, OR 79448, USA) were then added in succession, followed by 0.2 N NaOH to neutralise the solution. After one hour the product was separated by thin layer chromatography on silica gel with an acid solvent A (butanol, acetone, water, acetic acid, ammonia 350/250/250/142/8 v/v).
The fluorescent band with $RF = 0.75$ was eluted with methanol, and the methanol was flash-evaporated leaving 0.15 g of solid product. RF in solvent A 0.75, in solvent B (isopropanol) , water, ammonia 7/2/1 w/w 0.45. Spectrum in water at pH 9; absorbance maxima at 492 nm, 250 nm shoulders at 260 nm, 290 nm.

Fluorescence excitation maximum at 492 nm in alkaline water, emission maximum at 520 nm. Stable in darkness under dry conditions.

EXAMPLE 2

Synthesis of 8-(5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid]-guanosine-3', 5'-(cyclic)-phosphate.

The process is the same as in Example 1, but substituting the iodo-acetamido-fluorescein with 5-(2-iodoacetamido-ethyl)-amino-naphtalene-2-sulphonic acid (Hudson and Weber, 1973 Biochemistry 12, 4154) and working in dim red light. RF in solvent A 0.48, in solvent B 0.45. Spectrum in methanol-absorbance maxima at 340 nm, 258 nm, absorbance minima at 320 nm, 238 nm, shoulder at 270 nm. It decomposes in light.

EXAMPLE 3

The process of Example 1 was repeated but substituting 8-bromo-adenosine -3', 5' -(cyclic) phosphate for 8-bromo-guanosine-3', 5' - (cyclic) phosphate.

The obtained product 8-(5-thioacetamido-fluorescein)-adenosine-3', 5'-(cyclic) phosphate has the same RF values and the same spectrum as the compound obtained in Example 1.

EXAMPLE 4

The process of Example 2 was repeated but substituting 8-bromo-adenosine-3', 5'-(cyclic) phosphate for 8-bromo-guanosine-3', 5' - (cyclic) phosphate.

The obtained product 8-[5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid]-adenosine-3', 5' -(cyclic)phosphate has the same RF values and the same spectrum as the compound obtained in Example 2.

EXAMPLE 5

Synthesis of 8-(5-thiacetamido-erythrosine)-3', 5' (cyclic) phosphate-guanosine.

This compound is obtained by direct iodination of the corresponding compound 1 namely 8-(5-thioacetamido-fluorescein)-3', 5' - (cyclic) phosphorate-guanosine. 4 micromoles of compound 1 in 2 ml of 0.2 mM NH$_3$ were treated with 20 micromoles of iodine dissolved in 2 ml of methanol for 10 hours in room light.

The orange coloured product was isolated by chromatography as in Example 1. RF in solvent A is 0.75, in solvent B is 0.45. Absorbance maximum in water at pH 9 is at 520 nm. Phosphorescent product.

EXAMPLE 6

Synthesis of 8-(5-thioacetamido-eosin)-3', 5' (cyclic) phosphate-guanosine.

The working conditions of example 5 were applied but substituting bromin for iodine. Same RF. Absorbance maximum in water at pH 9 is at 510 nm. Fluorescent.

Reference EXAMPLE 7

p.methylbenzylphosphate ester of 8-(5-thioacetamido-fluorescein)-3', 5' (cyclic) phosphorate-guanosine.

This is an example of a phosphate triester obtained by reacting 8-(5-thioacetamido-fluorescein)-3', 5' - (cyclic) phosphorate-guanosine with a substituted diazomethane (Engel et al., 1977, J. Med. Chem. 20,907). 5 mg of the compound of Example 1 in the form of triethylamine salt, in 0.5 ml of absolute ethanol were treated with 0.5 ml of tolyl-dimethane (Closs and Moss, J. Am. Chem. Soc. 86, 4042) in darkness for 10 hours. The reaction mixture was separated by silica gel thin layer chromatography with solvent C
(chloroform, methanol 8/1 v/v). The fluorescent bands with Rf 0.67 and 0.72 were eluted with methanol and stored at low temperature in solution. The two products were assigned to two isomers (loc. cit.). Rf in solvents A and B is zero. The ester decomposes rapidly at room temperature and in alkali. This product is an unstable hydrophobic form of the compound of Example 1, into which it spontaneously reconverts. It may be used to introduce the fluorescent cyclic nucleotide across the membrane.

Claims

Claims for the following Contracting States: BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Biologically active cyclic nucleotides made fluorescent by inserting a fluorescent group, represented by the general formula:

\[\text{(VII)} \]

wherein: X is OH or NH$_2$, Y = NH$_2$ when X = OH and is H when X = NH$_2$, and L is a fluorescent group selected from 5-thioacetamido-fluorescein, 5-thioacetamido-2′4′5′7′-tetrabromofluorescein, 5-thioacetamido-2′, 4′, 5′, 7′-tetraido-fluorescein, 5-(2-thioacetamido-ethyl)-amino-naphthalene-1-sulphonic acid.

2. Process for obtaining compounds of claim 1, consisting of the steps of:
(a) bromination in position 8 of biologically active cyclic nucleotides of formula:

\[\text{(I) or (II)} \]

wherein X and Y have the meanings defined in claim 1, (b) subsequent reaction with thiourea to introduce an -SH group in place of bromine, and (c) reaction of the compound obtained from step (b)
with an iodoacetamido derivative of fluorescein (or bromo- or iodo-fluorescein) or of 5-ethylamino-naphtalene-1-sulphonic acid, with the elimination of HI and the formation of a thioacetamido bond between the nucleotide and the fluorescent group.

3. Compound of formula VII according to claim 1 wherein X = OH, Y = NH₂ and L is 5-(thioacetamido)-fluorescein.

4. Compound of formula VII according to claim 1 wherein X = NH₂, Y = H and L is 5-(thioacetamido)-fluorescein.

5. Compound of formula VII according to claim 1 wherein X = OH, Y = NH₂ and L is 5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid.

6. Compound of formula VII according to claim 1 wherein X = NH₂, Y = H and L is 5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid.

7. Compound of formula VII according to claim 1 wherein L is 5-(thioacetamido)-2', 4', 5', 7'-tetrabromofluorescein.

8. Compounds of formula VII according to claim 1 wherein L is 5-(thioacetamido)-2',4',5',7'-tetraiodo-fluorescein.

Claim for the following Contracting State: AT

1. Process for obtaining fluorescent, biologically active cyclic nucleotides of general formula:

 ![Diagram](attachment:image.png)

 wherein X = OH and Y = NH₂ or X = NH₂ and Y = H and L is a fluorescent group selected from 5-thioacetamido-fluorescein, 5-thioacetamido-2',4',5',7'-tetrabromo-fluorescein, 5-thioacetamido-2',4',5',7'-tetraiodo-fluorescein, and 5-(2-thioacetamido-ethyl)-amino-naphtalene-1-sulphonic acid, consisting of the steps of: (a) bromination in position 8 of compounds of formula:
EP 0 205 005 B1

wherein X and Y have the meanings above defined, (b) subsequent reaction with thiourea to introduce an -SH group in place of bromine, and (c) reaction of the obtained compound with an iodoacetamido derivative of fluorescein (or bromo- or iodo-fluorescein) or of 5-ethylamino-naphtalene-1-sulphonic acid, with the elimination of HI and the formation of a thioacetamido bond between the nucleotide and the fluorescent group.

Revendications

Revendications pour les Etats contractants suivants : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Nucléotides cycliques biologiquement actifs rendus fluorescents en insérant un group fluorescent ayant la formule générale:

\[
\text{(VII)}
\]

dans laquelle: X est OH ou NH₂, Y est NH₂ lorsque X=OH et H lorsque X=NH₂, et L est un group fluorescent choisi entre 5-thioacetamido-fluorescéine, 5-thioacetamido-2',4',5',7'-tetrabromofluorescéine, 5-thioacetamido-2',4',5',7'-tetraiodo-fluorescéine, acide 5-(2-thioacetamido-ethyl)-amino-naphtaline-1-sulphonique.
2. Procédé pour obtenir les composés de la revendication 1, consistant dans les passages:
(a) bromuration dans la position 8 des nucléotides cycliques biologiquement actifs ayant la formule:

\[\text{Diagramme} \]

dans laquelle X et Y ont les significations définies dans la revendication 1, (b) réaction successive avec thiourée afin d'introduire un group -SH à la place du brome et (c) réaction du composé selon la revendication 1 obtenu en (b) avec un dérivé iodoacetamidique de la fluorescéine (ou de la brome- ou iode-fluorescéine) ou de l'acide 5-ethylamino-naphtaline-1-sulphonique, avec élimination de HI et formation d'un lien thiaoacetamidique entre le nucléotide et le group fluorescent.

3. Composé de la formule VII, selon la revendication 1, dans lequel X = OH, Y = NH₂ et L est 5-(thiaoacetamido)-fluorescéine.

4. Composé de la formule VII selon la revendication 1, dans lequel X = NH₂, Y = H et L est 5-(thiaoacetamido)-fluorescéine.

5. Composé de la formule VII selon la revendication 1, dans lequel X-OH, Y = NH₂ et L est l'acide 5-(2-thiaoacetamido-ethyl)-amino-naphtaline-1-sulphonique.

6. Composé de la formule VII selon la revendication 1, dans lequel X = NH₂, Y = H et L est l'acide 5-(2-thiaoacetamido-ethyl)-amino-naphtaline-1-sulphonique.

7. Composé de la formule VII selon la revendication 1, dans lequel L est 5-(thiaoacetamido)-2',4',5',7'-tetrabromofluorescéine.

8. Composé de la formule VII selon la revendication 1, dans lequel L est 5-(thiaoacetamido)-2',4',5',7'-tetraiodo-fluorescéine.

Revendication pour l'Etat contractant suivant : AT
1. Procédé pour obtenir nucléotides cycliques fluorescents biologiquement actifs de la formule:

\[
\text{(VII)}
\]

\[
\text{(I) ou (II)}
\]

dans laquelle \(X=\text{OH}\) et \(Y=\text{NH}_2\) ou \(X=\text{NH}_2\) et \(Y=\text{H}\) et \(L\) est un group fluorescent choisi entre 5-thioacetamido-fluorescéine, 5-thioacetamido-2',4',5',7'-tetrabrome-fluorescéine, 5-thioacetamido-2',4',5',7'-tetraiodo-fluorescéine et l'acide 5-(2-thioacetamido-ethyl)-amino-naphtaline-1-sulphonique, consistant dans les passages:

(a) bromuration à la position 8 des composés ayant la formule:

\[
\text{(VIII)}
\]

où \(X\) et \(Y\) ont la signification définie avant, (b) successive réaction avec thiourée pour introduire un group-SH à la place du brome, et (c) réaction du composé obtenu avec un dérivé iode-acetamidique de la fluorescéine (ou de la brome- ou iode-fluorescéine) ou de l'acide 5-ethylamino-naphtaline-1-sulphonique, avec élimination de HI et formation d'un lien thioacetamidique entre le nucléotide et le group fluorescent.

Patentansprüche

Patentansprüche für folgende Vertragsstaaten: BE, CH, DE, FR, GB, IT, LI, LU, NL, SE
1. Biologisch aktive zyklische Nukleotide die fluoreszent gemacht werden durch Einsetzung einer fluoreszenten Gruppe der allgemeinen Formel:

\[
\text{(VII)}
\]

in welcher: \(X\) ist OH oder \(\text{NH}_2\), \(Y = \text{NH}_2\) wenn \(X = \text{OH}\) und \(H\) wenn \(X = \text{NH}_2\), und \(L\) ist eine fluoreszenten Gruppe ausgewählt aus 5-thioazetamido-fluorescein, 5-thioazetamido-2',4',5',7'-tetrabromfluorescein, 5-thioazetamido-2',4',5',7'-tetrajodfluorescein, 5-(2-thioazetamido-äthyl)amino-naphtalin-1-sulphonsäure.

2. Verfahren zur Herstellung der Verbindungen des Anspruchs 1, dadurch gekennzeichnet, dass:
 (a) biologisch aktive zyklische Nukleotide der Formel:

\[
\text{(I) oder (II)}
\]

in welcher \(X\) und \(Y\) sind wie in Anspruch 1 definiert, in Stelle 8 bromiert werden, (b) die erhaltene Verbindungen mit Thiocarstoff umgesetzt werden, um eine SH-Gruppe an Stelle des Broms einzusetzen, und (c) die in (b) hergestellten Stoffen mit einem Jodoazetamidderivat der Fluorescein (oder Bromfluorescein oder Jodfluorescein) oder mit 5-thylamino-naphtalin-1-sulphonsäure umgesetzt werden unter HI Entfernung und Bildung einer Thioazetamid-Bindung zwischen dem Nukleotid und der fluoreszenten Gruppe.

3. Verbindung der Formel VII gemäss Anspruch 1, in welcher \(X = \text{OH}\), \(Y = \text{NH}_2\) und \(L = 5-(\text{Thioazetamido})-\text{fluorescein}.

4. Verbindung der Formel VII gemäss Anspruch 1, in welcher \(X = \text{NH}_2\), \(Y = H\) und \(L = 5-(\text{Thioazetamido})-\text{fluorescein}.

5. Verbindung der Formel VII gemäss Anspruch 1, in welcher \(X = \text{OH}\), \(Y = \text{NH}_2\) und \(L = 5-(2-\text{Thioazetamido-äthyl})\text{-amino-naphtalin-1-sulphonsäure}.

6. Verbindung der Formel VII gemäss Anspruch 1, in welcher \(X = \text{NH}_2\), \(Y = H\) und \(L = 5-(2-\text{Thioazetamido-äthyl})\text{-amino-naphtalin-1-sulphonsäure}.

11
7. Verbindung der Formel VII gemäß Anspruch 1, in welcher \(L = 5\)-(Thioazetamido)-2',4',5',7'-tetrabromfluoreszein.

8. Verbindung der Formel VII gemäß Anspruch 1, in welcher \(L = 5\)-(Thioazetamido)-2',4',5',7'-tetrajodfluoreszein.

Patentanspruch für folgenden Vertragsstaat: AT

1. Verfahren zur Herstellung von fluoreszenten, biologisch aktiven zyklischen Nukleotiden der allgemeinen Formel

\[
\text{(VII)}
\]

in welcher \(X = \text{OH} \) und \(Y = \text{NH}_2 \) oder \(X = \text{NH}_2 \) und \(Y = \text{H} \) und \(L \) ist eine fluoreszente Gruppe ausgewählt aus 5-thioazetamido-fluoreszein, 5-thioazetamido-2',4',5',7'-tetrabromfluoreszein, 5-thioazetamido-2',4',5',7'-tetrajodfluoreszein, und 5-(2-thioazetamido-äthyl)amino-naphtalin-1-sulphonsäure, dadurch gekennzeichnet, dass:

(a) Verbindungen der Formel:

\[
\text{(I) oder (II)}
\]

in welcher \(X \) und \(Y \) sind wie oben definiert, in Stelle 8 bromiert werden, (b) die erhaltenen Verbindungen mit Thioharstoff umgesetzt werden, um eine SH-Gruppe an Stelle des Broms einzusetzen, und (c) die hergestellten Stoffen mit einem Jodoazetamidderivat der Fluoreszein (oder Bromfluoreszein oder Jodfluoreszein) oder mit 5-äthylamino-naphtalin-1-sulphonsäure umgesetzt werden unter HI Entfernung und Bildung einer Thioazetamid-Bindung zwischen dem Nukleotid und der fluoreszente Gruppe.