Support for footboards or strips in mattress bases.

Priority: 15.04.85 ES 286035 U 15.04.85 ES 286036 U

Date of publication of application: 03.12.86 Bulletin 86/49

Publication of the grant of the patent: 01.08.90 Bulletin 90/31

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
EP-A-0 103 058
BE-A-775 845
BE-A-890 610

Proprietor: FABRICAS LUCIA ANTONIO BETERE S.A. (FLABESA), C/ Rafael de Riego, 25, 28045 Madrid(ES)

Inventor: Guerra, Fernando Garcia, C/ Leiza, 6, 28041 Madrid(ES)

Representative: Selting, Günther, Dipl.-Ing. et al, Patentanwälte von Kreisler, Selting, Werner Deichmannhaus am Hauptbahnhof, D-5000 Köln 1(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to a support for footboards or strips in mattress bases.

EP-A-103 058 discloses a support for footboards or strips in mattress bases. Said known support consists of a wire element that is bent into a suitable shape. The mid-portion of the wire element is coiled in several windings for embracing the end of the footboard. The two ends of the coil member are designed as spans extending underneath the footboard beyond the end of said footboard. The outer ends of said spans are bent upwardly to merge into arched portions that surround approximately one half of the circumference of a tubular beam of a frame, said beam having a circular cross section and a hole on its side opposite to the footboard. The support member is provided with hook-shaped portions at the end of the arched portions, said hook-shaped portions penetrate into the holes of the beam to anchor the support at the beam. The known support is rather complicated and does not provide an adequate fastening of the footboard to the frame beam.

It is the object of the present invention to provide a support as defined in the precharacterizing part of Claim 1 that furnishes very high resistance and rigidity to the spring bottom unit and facilitates a foolproof assembly of the mattress base.

This object is solved, according to the invention, with the features of Claim 1.

The support of the present invention is of great simplicity and functionality and contributes to the mattress spring bottom an adequate flexibility, absolute safety and consequent practical utility.

Starting from the essential base comprised by a frame with conventional rectangular shape, of rounded vertices and tubular elements of any suitable section, consisting of two longitudinal halves assembled by the bolsters, the support of the invention has been designed of a steel assembly element, applicable to the ends of the footboards of flexible transversal strips and to the sides or longitudinal beams of the aforesaid frame. The support is normally made of steel rods of variable section and different finishes, according to application requirements, adopting in its practical forming a symmetrical figure with two initial straight and parallel spans and three bends at right angles on each side, terminating in a central arching, thereby determining a rectangular opening in which the ends of the footboards or flexible strips penetrate, which can be made of wood, plastics, metallic or any other material provided with the basic property for these purposes: the precise essential flexibility in the spring bottom base.

With the support of the invention, the essential advantage of furnishing very high resistance and rigidity to the spring bottom unit is obtained, thus facilitating in turn the production process and the appropriate and foolproof assembly of the different integrating elements.

Additional features of the present invention are contained in the dependent Claims 2–6.

In view of the foregoing description, the outstanding practical utility is deduced simply by contemplating the coupling of the flexible elements of the support base of the mattress and the respective supports, the rigid element or frame, further attaining a uniform support surface for the mattress and level evenness with the whole upper contour of the frame.

The following detailed description refers to the accompanying drawings in which

Fig. 1 is a front elevational view of the support,
Fig. 2 is a plan view at the ends of the same,
Fig. 3 is a perspective view of the support and the end of a footboard or elastic strip indicating its coupling means,
Fig. 4 are plan and profile views of the elements illustrated in Fig. 3 with the complementary tip and damper and the frame or rigid element of the spring bottom,
Fig. 5 is a plan view of the normal mattress base,
Fig. 6 is the same view of another base or spring bottom with footboard or central flexible strip of greater width, and
Fig. 7 is an identical view applying throughout the surface of the spring bottom wide footboards or flexible strips.

Referring initially to Fig. 1 shown therein are straight and parallel spans 1 and 1' of the spring bottom, the ends of which comprise male pieces which penetrate into the longitudinal beams of the frame. The first symmetrical bends 2 and 2' at right angle, the successive and superimposed bends 3, 3' and 4, 4' and the central arched span 5 determine the adjusted rectangular opening for assembly of the elastic footboard or strip.

The plan view illustrated in Fig. 2 shows details similar to those in Fig. 1, namely the overlapping of the straight and parallel spans 1 and 1' and the first right angle bends 2 and 2', and shows the rectangular configuration for coupling of the elastic footboard or strip.

Fig. 3 shows the coupling of the support and the elastic footboard or strip 6 by the insertion of the end 7 into the opening of said support.

Fig. 4 illustrates the coupling of the elements of Fig. 3 and, in addition, the tip 8 which encompasses the upper face of the end of the elastic footboard or strip and the straight and parallel spans of the support on its lower face, the damper element 9 and the rigid frame 10 carrying the whole assembly of the spring bottom.

Fig. 5 shows the rectangular frame 11 with rounded vertices on which are mounted the supports 12 for the assembly with the ends 13 of each flexible footboard or strip 14 of a lightly arched rectangular structure.

Fig. 6, in addition to the components shown in Fig. 5, shows the aforesaid second possibility, consisting in the inclusion of a flexible footboard or strip 15 of greater width than the other ones.

Fig. 7 shows that the aforesaid footboard of greater width 15 has been applied throughout the surface of the mattress base, thereby attaining the
desired maximum resistance, reducing the precalculated flexibility limits of the spring bottom in attending to the therapeutic requirements of the user.

Claims

1. Support for flexible footboards or strips (6) in mattress bases, comprising a metallic assembly element, applicable to the ends of the flexible transversal footboards or strips (6) on one hand, and to the internal face of the sides or longitudinal beams of the frame (10, 11) on the other hand, said support being made of variable section steel rod, with different finishes, and forming a symmetrical figure with two straight and parallel spans (1, 1') characterized in that said two initial straight and parallel spans (1, 1') have three successive bends along each span, the bends being symmetrical and at right angles to each other, the first bends (2, 2') being placed in a horizontal plane and the second (3, 3') and the third bends (4, 4') being placed in the same vertical plane, the third bends (4, 4') being placed vertically above said horizontal plane, and terminating in a central arching (5) connecting the two spans (1, 1') together and defining a rectangular opening in which the ends (7) of the flexible footboards or strips (6) penetrate.

2. Support as defined in Claim 1, characterized in that for the assembly of the support with the frame (10, 11) a pair of holes is provided in the internal face of the longitudinal beams for each support, and in that the rectangular opening or female piece being defined by the bends (2, 2'; 3, 3'; 4, 4') and arched span (5) and received at the ends (7) of the flexible footboards or strips (6), is provided with sundry recesses staggered laterally to act as limiting stops of their penetration in the support, said assembly ensuring the estimated necessary flexibility of the spring bottom and provides a rigid and oscillation-free attachment.

3. Support as defined in Claims 1 or 2, characterized in that the assembly of the spring bottom comprises a tip (8), preferably of plastic material, which terminates the ends or heads of strips and/or footboards (6) incorporating in their bottom a rubber dampener element (9) or the like to absorb the pressure or thrust of the ends edges of the said strip or footboards (6) when the user uses the spring bottom.

4. Support as defined in Claims 1 to 3, characterized in that the assembly including the support includes a frame (11) consisting of two longitudinal halves of a tubular structure connectable at its front ends to form the rectangular frame (11), the rectangular frame having preferably rounded vertices, and in that the vertices in their section can adopt any appropriate figure for the assigned duty.

5. Support as defined in one of Claims 1 to 4, characterized in that the flexible footboards or strips (6) are indistinctly of any appropriate material, such as wood, plastic, metal or any other provided with the suitable flexibility for the conformation of the spring bottom, having provided in its configuration, in addition to a smooth longitudinal arching, sundry likewise staggered recesses of the sides in one section of each end, to act as penetrations stops in the respective supports, thereby granting to the assembly of flexible footboards or strips (6), supports and frame the appropriate resistance and rigidity, eliminating at the same time all transversal oscillations.

6. Support as defined in one of Claims 1 to 5, characterized in that the flexible footboards or strips (6) of each spring bottom may be of uniform width, that is, standardized so as to absorb uniformly the weight throughout the surface, or variable, with greater width, rigidity and consequent resistance in the center, or applying these qualities all over the base, coupling in the last two cases two supports at each end of the flexible footboards or strips (6), avoiding in any way the lateral tilt.

Patentansprüche

1. Stützvorrichtung für flexible Bodenbretter oder -latten (6) bei Matratzenunterlagen, mit einem metallischen Montageelement zur Anbringung einerseits an den Enden der flexiblen querlaufenden Bodenbreter oder -latten (6) und andererseits an der Innenfläche der Seiten oder Längsbalken des Rahmens (10, 11), wobei die Stützvorrichtung aus Stahl-Stabmaterial mit variablen Querschnitten besteht, das unterschiedliche Oberflächenbeschaffenheit hat und eine symmetrische Anordnung mit zwei geraden und parallelen Strebungen (1, 1') bildet, dadurch gekennzeichnet, daß die beiden im Anfangsbereich geraden und parallelen Strebungen (1, 1') jeweils drei aufeinanderfolgende Biegungen haben, die symmetrisch und zueinander rechtwinklig sind, wobei die ersten Biegungen (2, 2') in einer horizontalen Ebene, die zweiten (3, 3') und die dritten Biegungen (4, 4') in der gleichen vertikalen Ebene und die dritten Biegungen (4, 4') vertikal über der horizontalen Ebene angeordnet sind, und in einem zentralen Bogen (5) enden, der die beiden Strebungen (1, 1') miteinander verbindet und eine rechteckige Öffnung bildet, in die die Enden (7) der flexiblen Bodenbretter oder -latten (6) eingreifen.

2. Stützvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zum Zusammenbau der Stützvorrichtung mit dem Rahmen (10, 11) für jede Stützvorrichtung ein Loch-Paar in der Innenfläche der Längsbalken vorgesehen ist, und daß die rechteckige Öffnung oder das weibliche Teil, das durch die Biegungen (2, 2'; 3, 3'; 4, 4') und die bogenförmigen Streben (5) gebildet und an den Enden (7) der flexiblen Bodenbretter oder -latten (6) aufgenommen ist, mit mehreren Ausnehmungen versehen ist, die seitlich so versetzt sind, daß sie bei der Einführung der Bodenbretter oder -latten (6) in die Stützvorrichtung als Anschlagstücke wirken, wobei die Baugruppe veranschlagte notwendige Flexibilität des Federbodens gewährleistet und eine stabile und schwingungsfreie Befestigung schafft.

3. Stützvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Baugruppe des Federbodens mit einem vorzugsweise aus Kunststoffmaterial bestehenden Endteil (8) versehen ist, das die Enden oder Kopfriemen der Latten und/oder Bodenbretter (6) begrenzt und an deren Basis ein
Dämpfungsteil (8) aus Gummi oder ein ähnliches Teil enthält, das bei Benutzung des Federraums den Druck oder den Stoß der Endkanten der Latten oder Bodenbreter (6) auffängt.

4. Stützvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die die Stützvorrichtung enthaltende Baugruppe einen Rahmen (11) aufweist, der aus zwei längs läufenden Hälfte einer Rohrstruktur besteht, die an ihren Stirnseiten zur Bildung des rechteckigen Rahmens (11) verbunden sind, wobei der rechteckige Rahmen (11) vorzugsweise gerundete Ecken aufweist, und daß die Ecken im Schnitt betrachtet jede für den jeweiligen Zweck geeignete Gestalt haben können.

5. Stützvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die flexiblen Bodenbreter oder -latten (6) nach Belieben aus irgendeinem geeignetem Material bestehen, wie Holz, Kunststoff, Metall oder jegliches anderes Material, das die zur Bildung des Federrahmens geeignete Flexibilität hat, wobei der Federboden derart ausgeführt ist, daß er zusätzlich zu einer sanften längsverlaufenden Wölbung mit mehreren gleichmaßen abgestuften Ausnehmungen an den Seiten eines Abschnittes jedes Endes versehen ist, die als Anschlagstücke bei der Einführung in die jeweiligen Stützvorrichtungen wirken und dadurch der aus den flexiblen Bodenbretern oder -latten (6), den Stützvorrichtungen und dem Rahmen bestehenden Baugruppe die erforderliche Widerstandsfähigkeit und Festigkeit verleiht, und gleichzeitig jegliche Transversalschwingungen beseitigen werden.

6. Stützvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die flexiblen Bodenbreter oder -latten (6) jedes Federbodens gleiche Breite haben, d.h. so standardisiert sind, daß sie die Gewicht über die gesamte Fläche gleichmäßig aufnehmen, oder derart variiert sind, daß Breite, Festigkeit und folglich Widerstandsfähigkeit in der Mitte größer sind, oder diese Eigenschaften über die gesamte Basis vorhanden sind, wobei in den letzten beiden Fällen an jedem Ende der flexiblen Bodenbreter oder -latten (6) zwei Stützvorrichtungen verbunden sind, wobei seitliches Kippen in jedem Fall vermieden wird.

Revendications

1. Support pour les planchettes ou lattes flexibles (6) d'un sommier, comportant un élément métallique d'assemblage qui peut s'appliquer, d'une part, aux extrémités des planchettes ou lattes transversales, flexibles (6) et, d'autre part, à la face intérieure des longueurs latérales, ou longitudinaux, du châtel (10, 11), tel qu'il est donné d'une tige d'acier de section différente de sections, et permettant une figure symétrique avec deux longueurs droites et parallèles (1, 1), caractérisée en ce que les deux longueurs initiales droites et parallèles (1, 1) présentent trois pils successifs le long de chaque longueur, les pils étant symétriques et à angle droit l'un de l'autre, les premiers pils (2, 2) étant placés dans un plan horizontal et les secondes (3, 3) et les troisièmes (4, 4) pils étant placés dans le même plan vertical, le troisième pil (4, 4) étant placé verticalement au-dessus du pil horizontal, et se terminant en un arc central (5) qui relie ensemble les deux longueurs (1, 1') et définit une ouverture rectangulaire dans laquelle pénètrent les extrémités (7) des planchettes ou lattes flexibles (6).

2. Support selon la revendication 1, caractérisé en ce que, pour l'assemblage du support avec le châtel (10, 11) une paire de trous sont prévus, pour chaque support, dans la face intérieure des longueurs latérales, et par le fait que la pièce à ouverture rectangulaire, ou pièce femelle, définie par les pils (2, 2'; 3, 3'; 4, 4') et par la longueur en arc (5) et logée aux extrémités (7) des planchettes ou lattes flexibles (6), présente, latéralement, diverses encoces découpées, pour agir comme butées limitant leur pénétration dans le support, ledit assemblage garantissant la flexibilité estimée nécessaire de la base élastique et fournissant une fixation rigide et sans oscillation.

3. Support selon l'une des revendications 1 ou 2, caractérisé en ce que l'ensemble constituant la base élastique comporte une extrémité rapportée (8), de préférence en matériau plastique, qui termine les extrémités ou têtes des lattes et/ou planchettes (6) en incorporant dans leur base un élément amortisseur en caoutchouc (9) ou analogue pour absorber la pression ou la pousée des bords d'extrémité des lattes ou planchettes (6) lorsque l'utilisateur utilise la base élastique.

4. Support selon les revendications 1 à 3, caractérisé en ce que l'ensemble incluant le support comporte un châtel (11) constitué de deux moitiés longitudinales d'une structure tubulaire connectable à ses extrémités avant pour former le châtel rectangulaire (11), ce châtel rectangulaire présentant de préférence des sommets arrondis, et par le fait que ces sommets peuvent adopter, en coupe, toute forme appropriée pour le but assigné.

5. Support selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les planchettes ou lattes flexibles (6) sont, indistinctement, en tout matériau approprié, tel que le bois, la matière plastique, le métal ou tout autre présentant la flexibilité convenable pour la conformation de la base élastique, la configuration de ces planchettes ou lattes comportant, en plus d'un arc longitudinal lisse, diverses encoces découpées, sur les côtés d'une portion de chaque extrémité, pour agir comme butées de pénétration dans les supports respectifs, attribuant ainsi à l'ensemble constitué des planchettes ou lattes flexibles (6), des supports et du châtel la résistance et la rigidité appropriées, éliminant en même temps toutes les oscillations transversales.

6. Support selon l'une des revendications 1 à 5, caractérisé en ce que les planchettes ou lattes flexibles (6) de chaque base élastique peuvent être de largeur uniforme ou non uniforme et que, d'une part, une largeur, une rigide et par conséquent, une résistance plus grandes au centrage, ou bien peuvent appliquer ces caractéristiques sur toute la base, en accouplant, dans ces deux derniers cas, deux supports à chaque extrémité des planchettes ou lattes flexibles (6), évitant ainsi le basculement latéral.