Element for detecting carbon dioxide gas and process for producing the same.

Priority: 16.05.85 JP 102666/85
15.04.86 JP 85126/86

Date of publication of application: 20.11.86 Bulletin 86/47

Publication of the grant of the patent: 22.08.90 Bulletin 90/34

Designated Contracting States: AT BE CH DE FR GB IT LI NL SE

References cited:
DE-A-2 724 972
FR-A-2 383 440
GB-A- 986 011
US-A-4 157 378

ANORGANISCHE ALLGEMEINE CHEMIE, vol. 448, no. 1, January 1979, pages 71-78; G. ENGEL et al.: "Über Bleisilberphosphat mit Apatitstruktur"

Proprietor: SEIKISUI KASEIHIN KOGYO
KABUSHIKI KAISHA
25, 1-chome Minami Kyobate-cho
Nara-shi Nara 630 (JP)

Inventor: Nishino, Tadashi
694-6, Hirobakama-machi
Machida-shi Tokyo (JP)
Inventor: Nagai, Masayuki
4-3-3, Takeyama Modori-ku
Yokohama-shi Kanagawa (JP)

Representative: Lehn, Werner, Dipl.-Ing. et al
Hoffmann, Ettie & Partner Patentanwälte
Arabellastrasse 4
D-8000 München 81 (DE)

References cited:
JOURNAL OF INORGANIC & NUCLEAR
CHEMISTRY, vol. 41, no. 2, February 1979, pages 241-246; K.G. VARSHNEY et al.: "Synthesis, composition and ion exchange properties of Sn(IV) and Cr(III) arsenophosphates: separation of metal ions"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The present invention relates to an element for detecting carbon dioxide gas, and a process for producing the same.

The present invention can be utilized in various fields, such as, for example, for the control of the concentration of carbon dioxide gas in a hothouse for agricultural cultivation (agricultural use), for the monitoring of exhaust gases (industrial use), for the control of living environments (use for environmental sanitation), for the early detection of fires (use for the prevention of disasters), and the like.

Various sensors capable of detecting the presence of a specific component (e.g., hydrocarbons, oxygen or carbon monoxide) contained in a gas have been developed for such purposes as the prevention of disasters, effective operation of machines or plants, and the like. However, unlike such gases as hydrocarbons, oxygen and carbon monoxide, carbon dioxide is chemically stable and, therefore, to detect with sufficient sensitivity with a gas sensor utilizing hitherto known principles, e.g., an adsorption reaction or a combustion reaction of such a gas (see, e.g., U.S. Patent 4,343,768).

It is known that carbon dioxide gas generates, when dissolved into water, hydrogen ions in proportion to the quantity dissolved therein and, hence, the concentration of carbon dioxide gas can be measured indirectly by measuring the concentration of hydrogen ion by use of a pH meter and a glass electrode (see U.S. Patent 4,376,681). This method, however, requires a long period of time to dissolve carbon dioxide contained in a sample gas into water and remove it therefrom. In addition, the measurement tends to be strongly influenced by the presence of such foreign gases as SO₂, NO₂ and NH₃, which also could change the pH of the aqueous solution to be measured.

There is also known a method for detecting carbon dioxide gas, in which a sample of gas or fluid containing carbon dioxide gas, bicarbonate ion and/or carbonate ion is allowed to come into contact with an acid extracting fluid; a carbon dioxide-free gas is passed through the fluid in order to carry the dissolved carbon dioxide gas onto a carbon dioxide absorbing tube provided with an alkaline solution with a resulting change in the electrical conductivity of the alkaline solution, thus making it possible to measure the concentration of carbon dioxide gas contained in the sample (see U.S. Patent 4,321,645). However, this method, like the above method using a pH meter, not only requires a long period of time for dissolving and removing carbon dioxide gas, but also is unable to distinguish the kind of ions detected. In addition, an apparatus to be used for the measurement could hardly be small in size.

There is also known a method utilizing the characteristic absorption of carbon dioxide gas in the infrared region of the spectrum. In general, a sensor utilizing this method consists of an IR ray generation section from which an IR beam with a wavelength of 4.25 μm is emitted, a cell having a path length of several meters, an IR detector, and a fan which draws air through the cell. An apparatus utilizing the method, therefore, is expensive and could hardly be small in size. In addition, measurements utilizing the method are susceptible to the influence of dusts and other contaminants.

FR-A-2383440 discloses that the products of a combustion reaction, including carbon dioxide, may in general be detected by virtue of their effect on the electrical resistance of a porphyry semiconductor substrate.

DE-A-2724972 discloses a sintered apatite body having increased mechanical strength for use as a prosthetic tooth or bone. This is formed by calcining of a calcium compound, a magnesium compound and an amorphous apatite. In the calcining process, the apatite powder and the magnesium containing compound react chemically with each other producing an end product which is different from the initial formulation.

It is therefore desired to develop a small and light carbon dioxide gas sensor capable of detecting the gas with a high accuracy and a quick response, without being influenced by dusts or the like.

In view of the above desire, the present inventors have conducted intensive investigations and found that carbon dioxide gas can be detected by utilizing a hydroxyapatite, which so far is known to be a porous ceramic usable as a moisture sensor since its electrical resistance changes in response to the change in moisture (see Japanese Patent Application (OPI) No. 166,249/83). (The term "OPI" as used herein refers to a "published unexamined Japanese patent application"). The moisture sensor of a hydroxyapatite utilises the phenomenon that water absorbed on the surface of a hydroxyapatite penetrates into the pores of the porous ceramic and condenses therein. On the other hand, it has now been found that when a hydroxyapatite is brought into contact with carbon dioxide gas, carbonate apatite is formed therefrom in proportion to the concentration of carbon dioxide gas and, hence, the carbon dioxide gas can be detected through measurement of the change in its electrical resistance because the thus formed carbonate apatite has a greater electrical resistance than the hydroxyapatite. The present invention has been accomplished based on the above finding.

It is an object of the present invention to provide a carbon dioxide gas detection element capable of detecting the presence of carbon dioxide gas contained in a gas with a high sensitivity. According to one aspect, the present invention provides a detection element specific for carbon dioxide gas formed from a composite material comprising:
an inorganic carbonate or an inorganic halide, and a hydroxyapatite according to formula (I):

$$M_{16}(ZO_{4})_{6}(OH)_{2} \text{ (I)}$$

wherein M is an element selected from Ca, Ba, Sr, Pb, and Cd; and Z is an element selected from P, As, and V.

According to another aspect, the present invention provides a process for producing a detection element for carbon dioxide gas comprising immersing a hydroxyapatite into an aqueous solution of an inorganic carbonate, followed by drying; said hydroxyapatite being represented by formula (I).

According to another aspect, the present invention provides a process for producing a detection element for carbon dioxide gas comprising immersing a hydroxyapatite into an aqueous solution of an inorganic halide, followed by drying; said hydroxyapatite being represented by formula (II).

The detection of the presence of carbon dioxide gas can be effected with an increased sensitivity by bringing a carbon dioxide gas detection element comprising a composite of a hydroxyapatite represented by the above formula (I) and an inorganic carbonate into contact with a gas containing carbon dioxide in order to attain an increased change in its electrical resistance upon contact with carbon dioxide.

The detection of the presence of carbon dioxide gas can be effected with a much increased sensitivity even at a low temperature by using a carbon dioxide gas detection element which comprises a composite of a hydroxyapatite represented by the above formula (I) and an inorganic halide and bringing it into contact with carbon dioxide in order to enhance the change in its electrical resistance.

It is an object of the present invention to provide a carbon dioxide gas detection element capable of detecting the presence of carbon dioxide gas contained in a gas with a high sensitivity.

It is another object of the present invention to provide a carbon dioxide gas detection element which makes it possible to detect the presence of carbon dioxide gas contained in a gas by a simple means.

Fig. 1 is a perspective view showing a carbon dioxide gas detection element according to the invention in which a thin layer of a composite of a hydroxyapatite is utilized;

Fig. 2 is a side view of the element shown in Fig. 1.

Fig. 3 is a side view showing a carbon dioxide gas detection element according to the invention provided with a heater;

Fig. 4 is a side view showing another carbon dioxide gas detection element according to the invention provided with a heater;

Fig. 5 is a perspective view showing a carbon dioxide gas detection element of a porous type according to the invention;

Fig. 6 is a perspective view showing a carbon dioxide gas detection element according to the invention provided with a wire lead which also functions as a heater;

Fig. 7 is a flow chart showing an example of practicing the process for detecting carbon dioxide gas according to the invention;

Fig. 8 is a graph showing the relationship between the content of sodium carbonate in a hydroxyapatite-sodium carbonate composite according to the invention, used in Example 1, and its electrical resistance;

Fig. 9 is a graph showing the relationship between the content of calcium carbonate in a hydroxyapatite-calcium carbonate composite according to the invention, used in Example 1, and its electrical resistance;

Fig. 10 is a graph showing sensitivities for detecting carbon dioxide gas of a hydroxyapatite, a hydroxyapatite-sodium carbonate composite and a hydroxyapatite-calcium carbonate composite at a temperature of 500°C, as tested in Example 1;

Fig. 11 is a graph showing the sensitivities of the same materials as in Fig. 10 at a temperature of 600°C, as tested in Example 1;

Fig. 12 is a planar view showing an alumina substrate or base used in Example 2, which shows an example of the arrangement of electrodes in a carbon dioxide gas detection element according to the invention;

Fig. 13 is a graph showing the test results in Example 2 obtained with a reference element for detecting carbon dioxide gas;

Fig. 14 is a graph showing the test results in Example 2 obtained with a carbon dioxide gas detection element according to the invention incorporated with calcium chloride;

Fig. 15 is a graph showing the results of the test in Example 3;

Fig. 16 is a graph showing the results of the test in Example 4;

Fig. 17 is a graph showing the results of the test in Example 5; and

Fig. 18 is a graph showing the results of the test in Example 6.

The hydroxyapatite represented by formula (I):

$$M_{16}(ZO_{4})_{6}(OH)_{2} \text{ (II)}$$

wherein M is an element selected from the group consisting of Ca, Ba, Sr, Pb and Cd; and Z is an element selected from the group consisting of P, As and V, may be prepared by known methods, including e.g., wet dry and hydrothermal processes. Any hydroxyapatite having formula (II) can be used in the present invention. However, it is preferable to use a hydroxyapatite represented by formula (II) wherein M is Ca and Z is P.

Further, compounds of formula (II) may also contain small amounts of the elements Sc, Y, Ti, Bi, V, Ni, Mn, Fe, Sn, Rb, Na, K, and Cs in addition to those elements listed for element M and small amounts of the elements Si, Ge, Cr, Mn, Al, and B in addition those elements listed for element Z.
A porous sintered material of a hydroxyapatite can be obtained by molding powders of a hydroxyapatite in a mold of, such as a pellet molding machine with the application of pressure and then sintering the molded product in an electric furnace at a temperature of from 800 to 1,000°C, preferably from 850 to 950°C, for a period of 1 hour or more, preferably from 1.5 to 2.5 hours.

In the case where a thin layer sintered material is to be obtained, the hydroxyapatite may be mixed with water and an organic binder, e.g., a methyl cellulose, to form a slurry, which can be coated on a refractory substrate or base in the form of a thin layer. The coated product may then be sintered at a temperature of from 800 to 1,000°C, preferably from 800 to 950°C, for a period of 1 hour or more, preferably from 1.5 to 2.5 hours.

The thus prepared porous sintered product can be immersed in an aqueous inorganic carbonate solution and then dried to allow the inorganic carbonate to attach to the surface of the hydroxyapatite, thereby forming a composite of a hydroxyapatite and an inorganic carbonate according to the invention.

Any inorganic carbonate which increases the variation in electrical resistance due to the contact of the hydroxyapatite with carbon dioxide gas can be used in the present invention. It is preferred to use a sodium carbonate or calcium carbonate.

Similarly, a hydroxyapatite-inorganic halide composite material of a carbon dioxide gas detection element according to the invention can be produced by immersing a porous sintered product of a hydroxyapatite in an aqueous inorganic halide solution and drying it to thereby deposit the inorganic halide on a surface of the hydroxyapatite.

In the present invention, there can be used any inorganic halide which is capable of enhancing the change in the electrical resistance of the hydroxyapatite upon contact with gaseous carbon dioxide. It is, however, preferable to use calcium chloride, ammonium chloride or mixtures thereof.

A carbon dioxide gas detection element can be produced by providing electrodes and wire leads at the both ends of the material comprising the hydroxyapatite-inorganic carbonate composite or the hydroxyapatite-inorganic halide composite according to the invention.

A carbon dioxide gas detection element according to the invention can also be produced by providing electrodes and wire leads at both ends of a porous sintered product of a hydroxyapatite and then immersing it in an aqueous inorganic carbonate solution, followed by drying it to form a composite of the hydroxyapatite and the inorganic carbonate.

Similarly, a hydroxyapatite-inorganic halide composite material of a carbon dioxide gas detection element according to the invention can be produced by immersing a porous, sintered product of a hydroxyapatite, which is provided with electrodes and wire leads, in an aqueous inorganic halide solution and drying it to thereby deposit the inorganic halide on a surface of the hydroxyapatite.

The immersion of the sintered hydroxyapatite into the aqueous solution of an inorganic carbonate or an inorganic halide may be carried out in two stages: firstly under a reduced pressure, e.g., 1/10 of atmospheric pressure in the first stage, and then at atmospheric pressure in the second stage. When the immersion is carried out in two stages as above, the inorganic carbonate or the inorganic halide contained in the aqueous solution of the carbonate or the halide can be distributed throughout the pores of the sintered product to form a hydroxyapatite-inorganic carbonate composite or a hydroxyapatite-inorganic halide composite on the entire surface of the hydroxyapatite.

The amount of the composites formed by the immersion can be increased by using in the immersing treatment an aqueous inorganic carbonate or halide solution containing the carbonate or halide in an increased amount. The electrical resistance of the detection element decreases with the increase in the amount of the composite contained therein. This makes the increase in the electrical resistance of the composites observed upon contact with gaseous carbon dioxide greater, i.e., makes the element more sensitive to gaseous carbon dioxide. Accordingly, the presence of carbon dioxide contained in a gas can be detected by the use of the detection element according to the invention even at a relatively low temperature, e.g., at around room temperature.

In the hydroxyapatite, the electrical resistance is increased by the presence of carbon dioxide in a gas, but it is slightly decreased when moisture is present in the gas. Accordingly, in order to completely remove the influence by the moisture in the gas, it is required to remove the moisture in the gas in advance, or the detection may be carried out at an elevated temperature, e.g., as high as 500°C or above, so as to make the sensitivity of the element higher and, at the same time, to make the relative humidity of the gas low enough not to disturb the detection of gaseous carbon dioxide.

However, since the detection element comprising the hydroxyapatite-carbonate or hydroxyapatite-halide composite according to the invention has a sufficiently high sensitivity to carbon dioxide gas, it can detect the carbon dioxide gas in the presence of moisture at a relatively low temperature, e.g., at a temperature around room temperature, or at a temperature around 300°C.

As described above, a carbon dioxide gas detection element can be prepared by providing electrodes and wire leads at the both ends of the composite of a hydroxyapatite, or by forming a thin layer of the hydroxyapatite or composites thereof on an insulating base, followed by bonding electrodes and wire leads to both ends of the thin layer. The thin layer formed on an insulating base can be mounted on or above a heater positioned on a refractory substrate or base to
give a detection element that can be used at elevated temperatures.

A pair of plates of electrodes can be provided on an alumina substrate or base, and then a platinum paste can be coated and dried thereon. On the electrodes of the alumina substrate or base can be placed the thin layer of the hydroxyapatite prepared as above, and then sintered at a temperature not lower than 500°C, preferably from 700°C to 1,000°C, to give a detection element for carbon dioxide gas with platinum as a noble metal positioned between the hydroxyapatite and the electrodes.

The thus prepared detection element material can then be immersed in an aqueous solution of an inorganic carbonate or halide, in order to impregnate the halide into the porous hydroxyapatite. Thereafter, it can be taken out of the solution and dried to give a detection element comprising composites of the carbonate apatite and the noble metal, or of the halide apatite and the noble metal. The resulting material can then be heated at a constant temperature in the range of from 100°C to 600°C, preferably at 400°C, for at least 30 minutes, preferably from 1 to 3 hours, and cooled to give a highly sensitive detection element material according to the invention.

In a carbon dioxide gas detection element according to the present invention, a noble metal such as platinum, palladium, rhodium, gold, or silver or a salt thereof and an inorganic carbonate or an inorganic halide can jointly form a composite with a hydroxyapatite. Any noble metal or salt thereof, or a mixture thereof which makes the variation in electrical resistance due to the contact of the hydroxyapatite with carbon dioxide gas great can be used in the present invention. It is, however, preferable to use platinum, palladium chloride or mixtures thereof. Since palladium chloride is soluble in water, a composite between the hydroxyapatite and palladium chloride as a noble metal can be formed by immersing the former in an aqueous solution of the latter, as in the case of the inorganic carbonate or the halide.

In the preparation of the detection element for carbon dioxide gas according to the invention, the element comprising the composite with an inorganic halide can be brought, during the heating at a constant temperature in the range of from 100°C to 600°C (e.g., at a working temperature of 400°C), into contact with a conditioning gas which contains carbon dioxide gas, so as to further enhance its sensitivity to gaseous carbon dioxide. The concentration of carbon dioxide in the conditioning gas can be lower than in a sample gas to be actually examined. It can be preferable to use a conditioning gas which contains carbon dioxide gas in a concentration as close as possible to that in a sample gas to be actually examined.

The contact between the composite apatites and a sample gas or a conditioning gas can be effected as a pretreatment just before the use of a carbon dioxide detection element prepared from the material according to the invention.

In Figs. 1, 2, 3 and 4, 1 is a thin layer of the hydroxyapatite or the composites thereof; 2 are electrodes provided at the both ends of the thin layer 1 for measuring its electrical resistance (impedance); 3 are wire leads to connect the electrodes 2 to an apparatus 16 (not shown in Figs. 1, 2, 3 and 4) for measuring electrical resistance (impedance); and 4 and 41 are a refractory substrate or base to support the thin layer 1. In Figs. 5, 5 is a heater provided on the refractory substrate or base 4 and having provided thereon the thin layer 1.

In Figs. 5 and 6, 11 and 12 are a porous hydroxyapatite or composites thereof; 21 and 22 are electrodes; and 31 and 32 are wire leads. In the element shown in Fig. 6, either or both of the electrodes 22 and 22 function as a heater and, at the same time, as an electrode.

When the composite of a hydroxyapatite is brought into contact with carbon dioxide at a temperature of from 600 to 1,000°C, the hydroxyapatite changes to a carbonate apatite with a significant change in its electrical resistance, which can be utilized for the detection of the presence of carbon dioxide. Further, in the case of the above-described composite material of the hydroxyapatite, the sensitivity for detecting the carbon dioxide gas can be increased by an increase in temperature at which it is brought into contact with the gas. Accordingly, since the thin layer 1 is used by heating or in a heating atmosphere, it is installed on the refractory substrate or base 4. It is preferred that the thin layer 1 has a thickness not greater than 300 μm (most preferably not greater than 200 μm) and is in a porous state. In cases where the element according to the invention is in the porous form, the wire leads may function as a support, as well. In this case, it is necessary that the wire leads have a sufficient strength and durability.

The element according to the invention is used at an elevated temperature and, hence, the wire leads, as well as the substrate or base, to be used therein are preferably made of a material which can withstand a high temperature at which the detection is to be effected.

Fig. 7 shows an example of a preferable flow chart illustrating a case where a gas to be examined is heated. In the flow sheet, 13 is a dehumidifier; 14 is a heater for a gas to be examined; 15 is a sensor for detecting the presence of carbon dioxide in which a detection element, which may be any of the types shown by Figs. 1, 3, 4, 5 and 6, is housed; 16 is an apparatus for measuring electrical resistance (impedance) which is connected to the wire leads 3, 31, and 32; and 17 is a line through which the gas flows.

In the flow sheet shown in Fig. 7, the gas to be analyzed is passed through the line 17 and is allowed to enter into the dehumidifier 13, in which the moisture contained in the gas is removed. Thereafter, it is introduced into the heater 14 and then into the sensor 15 for the detection of the presence of carbon dioxide. If carbon dioxide is present in the gas, the measuring apparatus 16 will record a significant increase.
in the electrical resistance of the detection element, indicating the presence of carbon dioxide. In the case where the gas is heated to a sufficiently high temperature by the heater 14, the relative humidity of the gas could be reduced to an extremely low level even when a substantial amount of moisture is contained therein. In such a case, the influence of the moisture can be limited to a virtually negligible level and, therefore, the dehumidifier 13 may not be required.

Fig. 3 shows an example of a carbon dioxide detection element provided with the thin layer 1 which is to be heated upon measurement. In the element, the heater 5 is provided in the refractory substrate or base 4, and the thin layer 1 provided with the electrodes 2 at the both ends thereof is formed on the heater 5. The thin layer 1 is heated by the heater 5 and is brought into contact with a gas to be examined. If the gas contains carbon dioxide, the electrical resistance of the thin layer 1 increases significantly to indicate the presence of carbon dioxide in the gas examined.

Fig. 4 shows an example in which a heat-resistant electrical insulator 6 is provided between the thin layer 1 and the heater 5 which is provided on the heat-resistant substrate or base 41. In the case where an element of this type or an element of the type shown in Fig. 6, which is provided with a built-in heater, is used, the heater 14 shown in Fig. 7 need not be used.

The electrical resistance increases with the increase in the concentration of carbon dioxide contained in the gas, irrespective of the type of the element used therefor. It is therefore possible to measure the concentration of the carbon dioxide.

The increase in the electrical resistance of the element will be small in the case where the hydroxyapatite used therefor is represented by the following formula (I):

$$M_{10}(ZnO)(OH)_{2}$$

(II)

wherein M is an element selected from the group consisting of Ca, Ba, Sr, Pb and Cd; and Z is an element selected from the group consisting of P, As, and V, and is incorporated with a compound (a minor component) represented by the formula (II), wherein M is an element selected from the group consisting of Sc, Y, Ti, Bi, V, Ni, Mn, Fe, Sn, Rb, Na, K and Cs; and Z is an element selected from the group consisting of Si, Ge, Cr, Mn, Al and B. In such a case, a simpler electrical circuit can be applied to the detection element, irrespective of the type of the element used.

The present invention will further be explained by means of the following, non-limiting Examples.

Example 1
(1) Preparation of Sample 1-1) Reference sample
One gram of powders of a high purity hydroxyapatite (AN 630425, manufactured by Central Glass Co., Ltd.) was charged into a pellet molding machine and pressed at a pressure of 200 kg/cm² to form a pellet having a diameter of 20 mm. The pellet was heated in air at a temperature of 900°C for a period of 2 hours by means of an electric furnace to give a sintered material.

The thus obtained sintered material was cut into sections with a size of 15 mm (in length) by 10 mm (in width) and then polished. A ruthenium oxide paste was coated on the cut piece to form an electrode, and a platinum wire lead was bonded thereto. The paste was allowed to dry in a drier at a temperature of from 90°C to 100°C. Thereafter, the wired piece was baked in air at a temperature of 850°C for a period of 15 minutes to give a carbon dioxide gas detection element provided with electrodes as shown in Fig. 5.

1-2) Sample incorporated with sodium carbonate.
Into 100 ml of distilled water maintained at 20°C was dissolved 3.5 g of sodium carbonate (Na₂CO₃). In the resulting aqueous sodium carbonate solution was immersed the detection element prepared in 1-1) above, the immersing treatment being effected in two stages: at a reduced pressure of 1/10 atm. for a period of 30 minutes and then at atmospheric pressure for 16 hours. The resulting element was placed in a drier, and dried at a temperature of from 90°C to 100°C for a period of 2 hours to give a carbon dioxide gas detection element incorporated with sodium carbonate.

Aqueous sodium carbonate solutions having different sodium carbonate concentrations were prepared. Carbon dioxide detection elements prepared as in 1-1) above were immersed in one of the sodium carbonate solutions and treated in the same manner as above to give carbon dioxide gas detection elements incorporated with different amounts of sodium carbonate.

1-3) Sample incorporated with sodium carbonate.
Into 20 ml of 3N HCl maintained at 20°C was dissolved 3.31 g of calcium carbonate (CaCO₃). The pH of the resulting solution was adjusted to from 9 to 10 by the addition of 2N ammonia water. Thereafter, distilled water was added thereto to make its total volume 100 ml.

In the resulting aqueous calcium carbonate solution was immersed a detection element prepared as in 1-1) above and then treated in the same manner as in 1-2) above to give a carbon dioxide gas detection element incorporated with calcium carbonate.

Aqueous calcium carbonate solutions containing different amounts of calcium carbonate were prepared in the same manner as above. The carbon dioxide detection element prepared in 1-1) above was immersed in each of the calcium carbonate solutions and treated in the same manner as above to give a carbon dioxide gas detection element incorporated with a different amount of calcium carbonate.
(2) Test Method

2-1) Measurement of electrical resistance

(i) Reference sample
The reference sample prepared in 1-1) above was placed in an electric furnace maintained at 600°C and its electrical resistance (Ro) in air was measured.

(ii) Sample incorporated with sodium carbonate
The sample incorporated with sodium carbonate prepared in 1-2) above was placed in the electric furnace, in place of the reference sample, and its electrical resistance (R) was measured under the same conditions as in (i) above. The ratio of the electrical resistance (R/Ro) was calculated.

The above measurement was repeated, using the samples incorporated with different amounts of sodium carbonate prepared in 1-2) above, and the ratio R/Ro was calculated for each sample.

(iii) Sample incorporated with calcium carbonate
The ratio R/Ro was measured for each of the samples incorporated with calcium carbonate prepared in 1-3) above, in the same manner as in (ii) above.

2-2) Determination of sensitivity to carbon dioxide gas

(i) Reference Sample
A reference sample was placed in an electric furnace maintained at 500°C and its electrical resistance (Ro) in air was measured. Thereafter, the air in the electric furnace was replaced with pure carbon dioxide gas heated to the same temperature. The change in the electrical resistance of the sample was measured for the period of time shown in Figs. 8 and 9, and the ratio R/Ro was calculated.

The above measurement was repeated, except that the temperature of the electric furnace was maintained at 600°C, and the ratio R/Ro at 600°C was also calculated.

(ii) Sample incorporated with sodium carbonate
The above measurement conducted at 500°C and 600°C was repeated in the same manner as above, using a sample subjected to the immersing treatment in a solution of 3.50 g of sodium carbonate in 100 g of water, instead of the reference sample, and the ratio R/Ro was calculated.

(iii) Sample incorporated with calcium carbonate
The above measurement conducted at 500°C and 600°C was repeated in the same manner as above, using the sample subjected to the immersing treatment in a solution of 3.31 g of calcium carbonate in 100 ml of water, instead of the reference sample, and the ratio R/Ro was calculated.

(3) Test Results

3-1) Electrical resistance
Sample incorporated with sodium carbonate:
Results obtained are shown in Fig. 8.

In Fig. 8, the ordinate indicates the ratio (R/Ro) of the electrical resistance (R) of the sample incorporated with sodium carbonate to that (Ro) of the reference sample; and the abscissa indicates the amount of sodium carbonate used in the immersing treatment in the preparation (indicated as grams of sodium carbonate contained in 100 ml of water used for the treatment).

Sample incorporated with calcium carbonate:
Results obtained are shown in Fig. 9.

In Fig. 9, the ordinate indicates the ratio (R/Ro) of the electrical resistance (R) of the sample incorporated with calcium carbonate to that (Ro) of the reference sample; and the abscissa indicates the amount of calcium carbonate used in the immersing treatment in the preparation (indicated as grams of calcium carbonate used therefor).

It can be understood from Figs. 8 and 9 that the electrical resistance of the samples measured at 600°C is markedly reduced due to the incorporation of sodium carbonate or calcium carbonate into the hydroxyapatite. It can be seen through the comparison of the results shown in Figs. 8 and 9 that the reduction in electrical resistance of the samples incorporated with sodium carbonate is slightly superior to that of the samples incorporated with calcium carbonate.

3-2) Sensitivity to carbon dioxide gas
Results obtained in the measurement at 500°C are shown in Fig. 10, and the results obtained in the measurement at 600°C are shown in Fig. 11.

In Figs. 10 and 11, the ordinate indicates the ratio (R/Ro) of the electrical resistance (R) in carbon dioxide gas to that (Ro) in air; and the abscissa indicates the time (in minutes) elapsed between the measurement and the time when the air in the furnace was replaced with a pure carbon dioxide gas.

In Figs. 10 and 11, the continuous curves 101 and 111 show the results with the reference sample; the dotted curves 102 and 112 show the results with the sample incorporated with sodium carbonate; and the chained curves 103 and 113 show the results with the sample incorporated with calcium carbonate.

It can be understood from Figs. 10 and 11 that the increase in electrical resistance due to the presence of carbon dioxide gas in contact with the detection element becomes more significant as a result of the incorporation of sodium carbonate or calcium carbonate and, therefore, carbon dioxide contained in a gas can be detected with an increased sensitivity. The improvement in sensitivity to carbon dioxide in a gas in the sample incorporating with calcium carbonate is more significant than that in the sample incorporated with sodium carbonate. It can be seen by comparing the results in Figs. 10 and 11 that the sensitivity for detecting carbon dioxide gas at 600°C is higher than that at 500°C. However, in the comparison with the reference sample, the improvement in the sensitivity at 500°C is greater than that at 600°C. The presence of carbon dioxide gas can, therefore, be well detected at a temperature not higher than 500°C, e.g., at a temperature of from 300 to 500°C.
Example 2

The effect of the incorporation of calcium chloride into the hydroxyapatite on the sensitivity for detecting carbon dioxide gas.

(1) Preparation of Sample

1-1) Reference sample

Into 45 ml of ethanol was dissolved 20 g of butylcarbinol. Twenty grams of powdered, high purity hydroxyapatite (AN 830425, manufactured by Central Glass Co., Ltd.) was added to the solution and well admixed to form a uniform dispersion. The thus prepared dispersion was shaped into a sheet having a thickness of 200 μm by a doctor blade method. The resulting sheet was then cut into a piece of 1 cm x 1 cm. The piece was placed on electrodes on an alumina plate prepared by forming comb-shaped electrodes 23 and 23, as shown in Fig. 12, of ruthenium oxide on an alumina substrate or base 42 with a size of 2.5 cm x 2.5 cm by means of a screen printing. After drying at room temperature, it was placed in an electric furnace filled with air. The temperature in the furnace was raised to 500°C and maintained at the same temperature for a period of 2 hours, and then it was raised to 800°C and maintained at the same temperature for a period of 2 hours. To the electrodes of the thus prepared sintered thin plate sample were bonded wire leads. To give a carbon dioxide gas detection element.

1-2) Sample incorporated with calcium chloride

Into 50 ml of distilled water was dissolved 1.84 g (0.02 mole) of calcium chloride, and the pH of the resulting solution was adjusted to between 9 and 10 by adding aqueous ammonia. Thereafter, distilled water was added to the solution to make its total volume 100 ml. The carbon detection element prepared as in 1-1) above was immersed in the resulting calcium chloride solution (concentration of calcium chloride: 0.2 mol/l) under a reduced pressure of 1/10 atm for a period of 30 minutes and then at atmospheric pressure for a period of 16 hours. It was dried in a drier at a temperature of from 90°C to 100°C, and then provided with wire leads at the electrodes thereof to give a carbon dioxide gas detection element (Ca-1).

A carbon dioxide gas detection element (Ca-2) was prepared in the same manner as above, except that a solution containing 0.02 mol/l of calcium chloride was used instead of the solution containing 0.2 mol/l of calcium chloride.

A carbon dioxide gas detection element (Ca-3) was prepared in the same manner as above, except that a solution containing 0.002 mol/l of calcium chloride was used instead of the solution containing 0.2 mol/l of calcium chloride.

(2) Test Method

2-1) Measurement of sensitivity of reference sample

The reference carbon dioxide detection element prepared in 1-1) above was placed in an electric furnace maintained at 400°C by a temperature controller and filled with air, and the electrical resistance (R_o) of the reference element in air was measured. Thereafter, the air in the electric furnace was replaced with air containing 0.1%, 1.0% or 10% of carbon dioxide, and the electrical resistance (R_o) of the reference element was measured in each of the gases. The ratio R_o/R_o, i.e., [electrical resistance of the reference element measured in air containing carbon dioxide gas]/[electrical resistance of the reference element measured in air], was calculated for each case.

2-2) Sensitivity of element incorporated with calcium chloride

The carbon dioxide detection element (Ca-1) was placed in an electric furnace maintained at 400°C by a temperature controller and filled with air, and the electrical resistance (R_o) of the element in air was measured. Thereafter, the air in the electric furnace was replaced with air containing 1% of carbon dioxide, the electrical resistance (R_o) of the element was measured, and the ratio R_o/R_o was calculated therefrom.

The carbon dioxide gas detection elements (Ca-2) and (Ca-3) were subjected to the same measurement as above to measure their electrical resistances R_o and R, and the ratio R_o/R_o was calculated therefrom.

(3) Test Results

3-1) Reference sample

Results as shown in Fig. 13 were obtained.

In Fig. 13, the ordinate indicates the ratio R_o/R_o, i.e., [electrical resistance of the reference sample measured in air containing carbon dioxide gas]/[electrical resistance of the reference sample measured in air]; and the abscissa indicates the period of time elapsed after the replacement of the air in the electric furnace with air containing carbon dioxide.

In Fig. 13, the continuous curve 201 shows the results obtained in the air containing 0.1% of carbon dioxide; the dotted curve 202 the results in the air containing 1% of carbon dioxide; and the chained curve 203 the results in the air containing 10% of carbon dioxide.

3-2) Sample incorporated with calcium chloride

Results as shown in Fig. 14 were obtained.

In Fig. 14, the ordinate indicates the ratio R_o/R_o, i.e., [electrical resistance of the sample incorporated with calcium chloride measured in air containing carbon dioxide]/[electrical resistance of the sample incorporated with calcium chloride measured in air]; and the abscissa indicates the period of time elapsed after the replacement of the air in the electric furnace with air containing carbon dioxide.

In Fig. 14, the continuous curve 301 shows the results obtained by the carbon dioxide detection element (Ca-3); the dotted curve 302 the results by the carbon dioxide detection element (Ca-2); and the chained curve 303 the results by the carbon dioxide detection element (Ca-1).
Example 3

The effect of the incorporation of calcium chloride and platinum into the hydroxyapatite on the sensitivity for detecting carbon dioxide gas.

(1) Preparation of Samples
Ruthenium oxide electrodes were formed by means of a screen printing on the same alumina substrate as in Example 2 having a size of 2.5 cm x 2.5 cm, and a platinum paste was coated on the electrodes. A piece of the hydroxyapatite sheet prepared in 1-1) in Example 2 was placed on the electrodes and treated in the same manner as in 1-1) in Example 2 to give a thin plate sample. Wire leads were attached to the electrodes of the thin plate sample to give a carbon dioxide gas detection element incorporated with platinum.

The thus prepared element was immersed in a solution containing 0.2 mol/l of calcium chloride in the same manner as in 2-1) in Example 2 to give a carbon dioxide gas detection element (Ca-Pt-1).

Carbon dioxide gas detection elements (Ca-Pt-2) and (Ca-Pt-3) were prepared in the same manner as above, except that a solutions containing 0.02 mol/l and 0.002 mol/l of calcium chloride was used, respectively, instead of the solution containing 0.2 mol/l of calcium chloride.

(2) Test Method
The electrical resistances Ro and R of the carbon dioxide gas detection elements (Ca-Pt-1), (Ca-Pt-2) and (Ca-Pt-3) were measured in the same manner as in 2-2) in Example 2, and the ratio R/Ro of the electrical resistance was calculated therefrom.

(3) Test Results
Results as shown in Fig. 15 were obtained.

In Fig. 15, the ordinate indicates the ratio R/Ro, i.e., electrical resistance of the sample incorporated with calcium chloride and platinum measured in the air containing carbon dioxide gas/ electrical resistance of the sample incorporated with calcium chloride and platinum measured in air); and the abscissa indicates the period of time elapsed after the replacement of the air in the electric furnace with the air containing 1.0% of carbon dioxide.

In Fig. 15, the continuous curve 401 shows the results obtained by the carbon dioxide gas detection element (Ca-Pt-3); the dotted curve 402 the results by the element (Ca-Pt-2); and the chained curve 403 the results by the element (Ca-Pt-1).

Example 4

The effect of the incorporation of calcium chloride, palladium chloride and platinum into the hydroxyapatite on the sensitivity for detecting carbon dioxide gas.

(1) Preparation of Sample
Into 50 ml of distilled water were dissolved 1.84 g (0.02 mol) of calcium chloride and 0.1 g (5 x 10^{-4} mol) of palladium chloride, and the pH of the resulting solution was adjusted to 9 to 10 by adding aqueous ammonia. Thereafter, distilled water was added to the solution to make its total volume 100 ml. The carbon dioxide gas detection element prepared in (1) in Example 3 was immersed in the resulting solution (concentration of calcium chloride: 0.2 mol/l, and concentration of palladium chloride: 5 x 10^{-6} mol/l) under a reduced pressure of 1/10 atm. for a period of 30 minutes and then at atmospheric pressure for a period of 16 hours. It was dried in a drier at a temperature of from 90°C to 100°C, and then provided with wire leads at the electrodes to give a carbon dioxide gas detection element (Ca-Pd-Pt-1).

A carbon dioxide gas detection element (Ca-Pd-Pt-2) was prepared in the same manner as above, except that a solution containing 0.2 mol/l of calcium chloride and 5 x 10^{-4} mol of palladium chloride was used instead of the solution containing 0.2 mol/l of calcium chloride and 5 x 10^{-5} mol/l of palladium chloride.

A carbon dioxide gas detection element (Ca-Pd-Pt-3) was prepared in the same manner as above, except that a solution containing 0.2 mol/l of calcium chloride and 5 x 10^{-5} mol/l of palladium chloride was used instead of the solution containing 0.2 mol/l of calcium chloride and 5 x 10^{-4} mol/l of palladium chloride.

(2) Test Method
The electrical resistances Ro and R of the carbon dioxide gas detection elements (Ca-Pd-Pt-1), (Ca-Pd-Pt-2) and (Ca-Pd-Pt-3) were measured in the same manner as in 2-2) in Example 2, and the ratio R/Ro of the electrical resistance was calculated therefrom.

(3) Test Results
Results as shown in Fig. 16 were obtained.

In Fig. 16, the ordinate indicates the ratio R/Ro, i.e., electrical resistance of the sample incorporated with calcium chloride, palladium chloride and platinum measured in the air containing carbon dioxide gas/ electrical resistance of the sample incorporated with calcium chloride, palladium chloride and platinum in air); and the abscissa indicates the period of time elapsed after the replacement of the air in the electric furnace with the air containing carbon dioxide.

In Fig. 16, the continuous curve 501 shows the results obtained by the carbon dioxide gas detection element (Ca-Pd-Pt-3); the dotted curve 502 the results by the element (Ca-Pd-Pt-2); and the chained curve 503 the results by the element (Ca-Pd-Pt-1).

Example 5

The effect of a heating-and-cooling treatment on the sensitivity of an element incorporated with calcium chloride, palladium chloride and platinum.

(1) Preparation of Sample
A carbon dioxide gas detection element (Ca-Pd-Pt-1) was prepared in the same manner as in (1) in Example 4, using a solution containing 0.2 mol/l of calcium chloride and 5 x 10^{-3} mol/l of palladium chloride.
(2) Test Method

The carbon dioxide gas detection element (Ca-Pd-Pt-1) was placed in an electric furnace maintained at 400°C by means of a temperature controller, and the electrical resistance (R₀) of the element in air was measured. Thereafter, the air in the electric furnace was replaced with air containing 0.1% of carbon dioxide, and the change in the electrical resistance (R₁) of the element was measured with a lapse of time.

The carbon dioxide gas detection element (Ca-Pd-Pt-1) was placed in an electric furnace maintained at 400°C by means of a temperature controller, and the electrical resistance (R₀) of the element in air was measured. The element was taken out of the furnace and allowed to cool to room temperature. The element was again placed in the electric furnace, and the air in the furnace was replaced with air containing 0.1% of carbon dioxide. The change in the electrical resistance (R₂) of the element was measured with a lapse of time.

(3) Test Results

Results as shown in Fig. 17 were obtained.

In Fig. 18, the ordinate indicates the ratio R₂/R₀ or R₂/R₀, i.e., [electrical resistance of the element measured in air containing carbon dioxide gas]/[electrical resistance of the element measured in air]; and the abscissa indicates the period of time elapsed after the replacement of the air in the electric furnace with the air containing carbon dioxide gas.

In Fig. 18, the continuous curve 701 shows the results obtained with respect to the detection element in which the treatment with carbon dioxide gas was not carried out; and the dotted curve 702 shows the results obtained with respect to the detection element in which the treatment with carbon dioxide gas was carried out.

It can be understood by comparing the results shown in Figs. 14 to 16 that the sensitivity of carbon dioxide gas detection elements utilizing a hydroxyapatite can be improved by the incorporation of calcium chloride, and the improvement in sensitivity becomes remarkably when calcium chloride and platinum are incorporated therein.

It can also be understood that the improvement becomes more significant when calcium chloride, palladium chloride and platinum are incorporated therein.

It can further be understood by comparing the results shown in Figs. 17 and 18 that the sensitivity of a carbon dioxide gas detection element can be improved further when it is given a heat history, or subjected to a heating-and-cooling treatment, and that the improvement becomes more significant when it is given a heat history, wherein it is heated in a gas containing carbon dioxide and then cooled.

While a preferred embodiment of the invention has been shown and described in detail, it will be apparent that various modifications and alternatives may be made thereto without departing the scope of the invention as claimed.

Claims

1. A detection element specific for carbon dioxide gas formed from a composite material comprising:
 an inorganic carbonate or an inorganic halide, and a hydroxyapatite according to formula (I):
 \[M_{16}(ZO_{4})_{6}(OH)_{2} \]
 (I)
 wherein M is an element selected from Ca, Ba, Sr, Pb, and Cd; and Z is an element selected from P, As, and V.

2. A detection element according to claim 1
wherein the hydroxyapatite is in a porous, sintered state.
3. A detection element according to claim 1 or 2 wherein the composite material further comprises a noble metal.
4. A detection element according to any of claims 1 to 3 wherein the inorganic halide is an inorganic chloride.
5. A detection element according to any of claims 1 to 4 wherein the composite material is provided as a thin layer on a base formed from a refractory substance.
6. A process for producing a detection element for carbon dioxide gas comprising immersing a hydroxyapatite into an aqueous solution of an inorganic carbonate, followed by drying; said hydroxyapatite being represented by formula (I):

$$M_{10}(ZnO_4)_{4}(OH)_2$$

(1)

wherein M is an element selected from Ca, Ba, Sr, Pb and Cd; and Z is an element selected from P, As, and V.
7. A process according to claim 6 wherein the immersion of the hydroxyapatite into the aqueous solution of an inorganic carbonate is carried out in the presence of a noble metal.
8. A process according to claim 6 wherein the immersion of the hydroxyapatite into the aqueous solution of an inorganic carbonate is carried out under reduced pressure and then at atmospheric pressure.
9. A process according to any of claims 6 to 8 comprising providing the hydroxyapatite in a porous sintered state.
10. A process for producing a detection element for carbon dioxide gas comprising immersing a hydroxyapatite into an aqueous solution of an inorganic halide, followed by drying; said hydroxyapatite being represented by formula (I):

$$M_{10}(ZnO_4)_{4}(OH)_2$$

(1)

wherein m is an element selected from Ca, Ba, Sr, Pb, and Cd; and Z is an element selected from P, As, and V.
11. A process according to claim 10 wherein the immersion of the hydroxyapatite into the aqueous solution of an inorganic halide is carried out in the presence of a noble metal.
12. A process according to claim 10 wherein the immersion of the hydroxyapatite into the aqueous solution of an inorganic halide is carried out under reduced pressure and then at atmospheric pressure.
13. A process according to any of claims 10 to 12 comprising providing the hydroxyapatite in a porous sintered state.
14. A process according to any of claims 10-13 comprising the step of exposing the hydroxyapatite at least once to a conditioning gas containing carbon dioxide whilst maintaining it at a temperature of from 100°C to 600°C for at least 30 minutes.

Patentansprüche

1. Ein für Kohlendioxidgas spezifisches Nachweiselement, das aus einem Verbundmaterial, umfassend:
ein anorganisches Carbonat oder ein anorganisches Halogenid, und
einen Hydroxyapatit gemäß Formel (I):

$$M_{10}(ZnO_4)_{4}(OH)_2$$

(1)

worin M ein Element, ausgewählt aus Ca, Ba, Sr, Pb und Cd; und Z ein Element, ausgewählt aus P, As und V, ist, gebildet ist.
2. Nachweiselement nach Anspruch 1, worin der Hydroxyapatit in einem porösen, gesinterten Zustand ist.
3. Nachweiselement nach Ansprüchen 1 oder 2, worin das Verbundmaterial zusätzlich ein Edelmetall enthält.
4. Nachweiselement nach einem der Ansprüche 1 bis 3, worin das anorganische Halogenid ein anorganisches Chlorid ist.
5. Nachweiselement nach einem der Ansprüche 1 bis 4, worin das verbundmaterial als eine dünne Schicht auf einer Unterlage ausgeführt ist, die aus einer hitzebeständigen Substanz gebildet ist.
6. Verfahren zur Herstellung eines Nachweiselementes für Kohlendioxidgas, umfassend das Eintauchen eines Hydroxyapatits in eine wässrige Lösung eines anorganischen Carbonats, und das anschließende Trocknen, wobei der Hydroxyapatit durch die Formel (I) dargestellt ist:

$$M_{10}(ZnO_4)_{4}(OH)_2$$

(1)

worin M ein Element, ausgewählt aus Ca, Ba, Sr, Pb und Cd; und Z ein Element, ausgewählt aus P, As und V, ist.
7. Verfahren nach Anspruch 6, worin das Eintauchen des Hydroxyapatits in die wässrige Lösung eines anorganischen Carbonats in Anwesenheit eines Edelmetalls ausgeführt wird.
8. Verfahren nach Anspruch 6, worin das Eintauchen des Hydroxyapatits in die wässrige Lösung eines anorganischen Carbonats unter vermindertem Druck und dann bei Atmosphärendruck ausgeführt wird.
10. Verfahren zur Herstellung eines Nachweiselementes für Kohlendioxidgas, umfassend das Eintauchen eines Hydroxyapatits in eine wässrige Lösung eines anorganischen Carbonats, und das anschließende Trocknen, wobei der Hydroxyapatit durch die Formel (I) dargestellt ist:

$$M_{10}(ZnO_4)_{4}(OH)_2$$

(1)

worin M ein Element, ausgewählt aus Ca, Ba, Sr, Pb und Cd; und Z ein Element, ausgewählt aus P, As und V, ist.
11. Verfahren nach Anspruch 10, worin das Eintauchen des Hydroxyapatits in die wässrige...
Lösung eines anorganischen Halogenids in Anwesenheit eines Edelmetalls ausgeführt wird.

12. Verfahren nach Anspruch 10, worin das Eintauchen des Hydroxyapatits in die wässrige Lösung eines anorganischen Halogenids unter vermindertem Druck und dann bei Atmosphärendruck ausgeführt wird.

Revendications

1. Élément détecteur spécifique pour du bioxyde de carbonate gazex, cet élément étant formé à partir d’une matière composite comprenant:
 un carbonate minéral ou un halogénure minéral, et une hydroxyapatite répondant à la formule (I):

\[M_{10}(ZO_4)_{6}(OH)_2 \] (I)

dans laquelle M représente un élément chimique choisi parmi Ca, Ba, Sr, Pb et Cd; et Z représente un élément chimique choisi parmi P, As et V.

2. Élément détecteur selon la revendication 1, dans lequel l’hydroxyapatite est en un état fritté et poreux.

3. Élément détecteur selon la revendication 1 ou 2, dans lequel la matière composite comprend en outre un métal noble.

4. Élément détecteur selon l’une quelconque des revendications 1 à 3, dans lequel l’halogénure minéral est un chlorure minéral.

5. Élément détecteur selon l’une quelconque des revendications 1 à 4, dans lequel la matière composite est présente sous forme d’une mince couche sur une base formée en une substance réfractaire.

6. Procédé pour produire un élément pour la détection du bioxyde de carbonate gazex, comprenant l’immersion d’une hydroxyapatite dans une solution aqueuse d’un carbonate minéral, opération suivie d’un séchage, ladite hydroxyapatite étant représentée par la formule (I):

\[M_{10}(ZO_4)_{6}(OH)_2 \] (I)

dans laquelle M représente un élément chimique choisi parmi Ca, Ba, Sr, Pb et Cd; et Z représente un élément chimique choisi parmi P, As et V.

7. Procédé selon la revendication 6, dans lequel l’immersion de l’hydroxyapatite dans la solution aqueuse d’un carbonate minéral est effectuée en présence d’un métal noble.

8. Procédé selon la revendication 6, dans lequel l’impression de l’hydroxyapatite dans la solution aqueuse d’un carbonate minéral est effectuée sous pression réduite puis à la pression atmosphérique.

10. Procédé pour produire un élément pour la détection du bioxyde de carbonate gazex, ce procédé comprenant l’immersion d’une hydroxyapatite dans une solution aqueuse d’un halogénure minéral, opération suivie d’un séchage, ladite hydroxyapatite étant représentée par la formule (I):

\[M_{10}(ZO_4)_{6}(OH)_2 \] (I)

dans laquelle M représente un élément chimique choisi parmi Ca, Ba, Sr, Pb et Cd; et Z représente un élément chimique choisi parmi P, As et V.

13. Procédé selon l’une quelconque des revendications 10 à 12, comprenant la fourniture de l’hydroxyapatite en un état fritté poreux.

14. Procédé selon l’une quelconque des revendications 10 à 13, comprenant l’étape consistant à exposer l’hydroxyapatite au moins une fois à un gaz de traitement de conditionnement contenant du bioxyde de carbonate, tout en maîtrisant l’hydroxyapatite à une température comprise entre 100 et 600°C pendant au moins 30 min.