EUROPEAN PATENT SPECIFICATION

Date of publication of the patent specification: 03.01.90
Application number: 8650131.3
Date of filing: 15.04.86

Holder fixed by vacuum for industrial use.

Priority: 26.04.85 SE 8502049
Date of publication of application: 17.12.86 Bulletin 86/46
Publication of the grant of the patent: 03.01.90 Bulletin 90/1
Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
FR-A- 2 249 859
FR-A- 2 511 921
GB-A- 1 041 653

Proprietor: Astra-Tech Aktiebolag, Arstaångsvägen 1A, S-117 43 Stockholm(SE)
Inventor: Lundbäck, Stig, Östra Tynningö, S-185 00 Vaxholm(SE)
Representative: Hjertman, Ivan T. et al, AB ASTRA Patent and Trade Mark Department, S-151 85 Södertälje(SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 69(1) European patent convention).
Description

The invention relates to a holder fixed by vacuum for industrial use, of the kind described in the preamble of claim 1 (FR-A 2 249 826).

When automatically handling materials in the manufacturing industry, transport of materials, of parts under manufacture, and of finished products is very common. In most cases, this concerns displacement of parts under manufacture, which are lacking specific arrangements for the lifting means to be attached. At present, a commonly used way of lifting, holding attached, and displacing laterally such workpieces is by attachment of suction cups which are rigidly connected to the set-up for carrying out the respective function. The suction cups are attached by suction to suitable, preferably flat or slightly bent, surfaces of the workpiece to be held attached, displaced laterally, or lifted, by means of the negative pressure in the suction cups and in the evacuation system connected to them, and they are effected to loose their hold in that the negative pressure is removed by valve-controlled pressurizing.

The suction cups presently used for this purpose are of a very simple design such as the arrangement described in FR-A 2 511 921. It consists of a rigid shaft with a centrally located bore extending through its entire length provided with a flexible circumferential sealing element and with a valve located at the front end of the bore which is activated after the sealing lip has made contact with the object to be kept attached. The shaft widens conically at its front end and, in attached position, abuts against the object kept fixed. The flexible sealing element is not peripherally supported against the shaft when the arrangement is in active state.

Another known arrangement is the suction holder of FR-A 2 249 826. This holder has been specifically designed to allow attachment to objects at high temperatures. It differs, i.a. from the suction cup according to FR-A 2 511 921 in that it has no valve which automatically opens when the holder is becoming attached to an object to be kept fixed. On the other hand, the holder is provided with peripherally arranged support means securing attachment of the flexible and radially segmented metal sealing element in a working state.

The absence of valve means in a holder or suction cup providing air to be sucked into it while in an idle position is a technical drawback in terms of reliability of attachment. It can be overcome by over-dimensioning the means for providing negative pressure but this will increase cost and create excessive noise and, thereby, occupational health problems. It can also be overcome, at extra cost, by arranging actively controlled valve means in the system providing negative pressure or by using at least two independent negative pressure systems.

The design of suction cups or holders with a circumferential flexible sealing lip of the specific design disclosed in FR-A 2 511 921 not incorporating support means makes them unstable, especially under heavy load.

Whereas the suction holder of FR-A 2 249 826 is provided with such support means, it lacks the valve means of FR-A 2 511 921, and vice versa.

The object of the invention is a holder fixed by vacuum for industrial use which is self-sealing in an idle state and which allows an object to be kept firmly attached at relatively low negative pressures.

The object of the invention has now surprisingly been achieved by the design of a holder which comprises these properties and does so without the use of advanced controlling and regulating technology, and without the need for over-dimensioning of suction pumps.

More particularly, the object of the invention has been achieved in form of a holder fixed by vacuum, connected to a vacuum pump or to a vacuum reservoir and which can be permanently or temporarily attached to a lifting arrangement or to an arrangement for lateral displacement or just for keeping fixed, and abutting with its front side against the object to be displaced, lifted, or kept fixed, in the following called workpiece, and which comprises a rigid back-piece and at least partially flexible sealing means, and an essentially rigid central distance-maintaining element, which sealing means comprise a sealing ring ending in a sealing lip, which when fixed at the workpiece abuts against a preferentially flat or moderately curved surface workpiece, so that a volume in communication with the vacuum source and defined by said surface and sealing means is delimited, whereby said distance-maintaining element and said sealing lip are movably arranged relatively to each other under the influence of a resilient force operating through spring means, which strives to separate the distance-maintaining element from a plane defined by the sealing lip, from a working position to an idle position, which characterized in that said movement is arranged for activation of valve means for closing the vacuum connection to said volume, in such a way that the distance-maintaining element adopts the same position in relation to the back-piece both in the working position and in the idle position, and that said sealing lip is seated on a movable ring, which is supported against the back-piece in the working position.

In a system for lifting, displacement or fixation of larger workpieces where a number of suction cups are routinely used, the use of a self-sealing holder according to the invention dispenses with the need to use multiple separate systems or over-dimensioned vacuum pumps in order to attain acceptable safety. Holders according to the invention will also operate considerably more silently than systems provided with suction cups according to known technology. When attaching the holder to the workpiece, a minor force is needed for activation. This force is produced by moving the holder with part of the lifting arrangement towards the surface of the workpiece or by adapting its weight or its weight in combination with the part of the lifting arrangement rigidly connected to it, so that activation is achieved by its own weight when it rests against the surface of the workpiece.

The holder is preferentially attached to flat or moderately curved surfaces. By variation of the
position of the sealing ring which ends in a sealing lip in relation to the distance-maintaining element, as well as by curved design of the surface of the distance-maintaining element facing at surface of the object, even objects lacking suitable flat or moderately curved surfaces can be held attached. In this and other instances, e.g. when fixing the holder at objects with surfaces not to be scratched or hurt in other ways, the surface or the distance-maintaining element can be made of or be coated with an elastic resilient material.

Conduction of vacuum to the holder according to the invention is achieved by means of a flexible vacuum hose, but may of course be done in metal tubes or in channels in the part of the arrangement for lifting or keeping attached which is rigidly connected to the holder.

The holder may be rigidly or removably connected to an arrangement for lifting, for lateral displacement, for keeping attached only, or to an arrangement combining two or all of these functions.

In case the holder is to be used for lifting or fixation purposes that necessitate rapid attachment and disengagement, the attachment is advantageously carried out in an active way by externally controlled force impact, while disengagement is obtained by putting the holder under pressure by a pressurized air pulse generated in an arrangement of known type, which is arranged between the holder and the vacuum source, and which simultaneously with the pressure pulse temporarily closes the part of the vacuum system facing the vacuum source. If the frequency of repeated working steps does not necessitate such a disengagement effected by a pressure pulse, the arrangement of a simple aeration valve between the holder and the vacuum system suffices, preferentially in combination with an arrangement for temporary closing the part of the conduction system facing the vacuum source.

The invention will now be described with reference to a preferred but not limiting embodiment. Figure 1 shows an exploded view of a holder fixed by vacuum consisting of three components. Figure 2 shows a cross-sectional view of a holder in an idle position, and Figure 3 shows a cross-sectional view of a holder in an active position, i.e. with the holder attached to the object, which is to be lifted, displaced laterally, or only is to be kept fixed.

The various components of the embodiment are best seen from Fig. 1. Distance-maintaining element 1 has a surface 4 adapted to the workpiece, in the present case a flat surface. Surface 4 is covered by a thin layer of rubber, not shown in the Figures. The outer form of the distance-maintaining element 1 in addition to that is determined by the described cooperation with the other components of the holder, especially with lip 14. The distance-maintaining element 1 has in its part facing backpiece 3 a stem-like part, at the end of which an external thread 5 is arranged fitting into an internal thread 6 located in backpiece 3, whereby element 1 can be secured at the backpiece by screwing on. The depth of screw both in backpiece 3 and on stem 5 is adapted to give the correct distance between surface 4 and other parts of the holder, especially sealing lip 19 on ring 9. The stem part 5 penetrates a hole 18 in an intermediate element 2, which incorporates i.a. sealing ring 9. Backpiece 3 is provided with attachment means 7 in order to be attached to the lifting, transport or attachment arrangement. To backpiece 3, there is also attached a vacuum hose connected to a vacuum pump or vacuum reservoir (not shown). The attachment of hose 8 to backpiece 3 leads to a volume in the upper part of the backpiece, form where there are arranged a number of holes 20 around the part of attachment of the central distance-maintaining element, which holes provide communication of said volume to the surface of backpiece 3 facing intermediate element 2.

When the three parts shown in Fig. 1 are mounted, the configuration shown in Fig. 2 is obtained. Thereby, the central portion of the intermediate element 2, which surrounds the stem portion of the central distance-maintaining element 1, is fixed in direction of that stem portion, in part by the abutting surface 30 on the portion of the central distance-maintaining element 1 situated in direction of its frontal part, in part by the corresponding portion of backpiece 3 facing intermediate element 2. For sake of clarity, only Fig. 1 has been provided with reference numbers but a comparison is anyway easy to make.

In the example shown, part 1 and 2 are rotationally symmetric. This simplifies manufacture but is not absolutely necessary.

Part 2, which is made of rubber or some similar elastic material has a relatively rigid outer circular portion 8 with a circumferentially arranged sealing lip 13 which, in an active position, is sealing against the workpiece. To start with, the function in an idle position will be described to Fig. 2.

It is obvious that the comparatively rigid central portion of the intermediate element 2, which portion is provided with a hole 18, will abut at the sealing lip 15 in backpiece 3. The frontal part of the central portion is connected to the frontal part of the intermediate element by concentrically arranged holes 11, at which frontal part is arranged another sealing lip 14. This other sealing lip will abut at the back side of the distance-maintaining element 1, and both lip 14 and lip 15 will seal a first volume V1 under vacuum around the central portion of the distance-maintaining element 1, in that a certain bending of the central portion of the intermediate element 2 is occurring, to which also contributes that flange 17 of the intermediate element 2 is abutting elastically against lip 18 at backpiece 3. With the configuration in Fig. 2, only said volume V1 around the central portion of distance-maintaining element 1 will be under vacuum, notwithstanding the occurrence of insignificant leakage.

When the holder provided with vacuum, in a state according to Fig. 2, is brought into contact with the workpiece, the following occurs. When the circumferential lip is pressed against the workpiece, the force will affect flange 17 via the comparatively rigid ring 9, which flange is resiliently deformed, whereby the central portion of part 2 is more extensively deformed and lip 14 eases away from the rear side of distance-maintaining element 1.
A second room \(V_3 \) defined by the peripheral portion of intermediate element 2, by the portion of the workpiece delimited by ring 9 with sealing lip 13, and by the peripheral part of central distance-maintaining element 1, communicates with the vacuum source via the first volume \(V_1 \) mentioned above. Because by holes 12 are provided in the peripheral part of intermediate element 2, a third volume \(V_2 \) will become provided with vacuum, which volum is located between the peripheral portions of intermediate element 2 and backpiece 3, whereby sealing lips 13 and 16 are sealing between backpiece 3 and the surface of the workpiece. Thereby, the configuration shown in Fig. 3 is obtained. From Fig. 3 it is to be seen that backpiece 3 and ring 9 are functioning as a coherent entity, although an elastic deformational force affects ring 9 in radial direction from backpiece 3 through flange 17, which deformational force however is negligible in comparison with the pneumatic forces. A break force affecting the attachment between the suction cup and the surface of the object held attached will result in a deformation of intermediate element 2, until the abutment of lip 13 ceases and air enters. Thereby the holder falls off and flange 14 resiliantly moves back, and the position shown in Fig. 2 with the valve sealed once again in effect is obtained.

Thus, in order to obtain good functioning, the surface 4 of the distance-maintaining element 1 in the position shown in Fig. 2 must be inwardly drawn in relation to lip 13 on the ring 9.

The described embodiment has found to function well. For example, at a negative pressure of 0.1 kp/cm², a prototype with a diameter of 30 mm for ring 9 has been shown to be able to lift a workpiece with flat surfaces weighing 300 g. When the holder is made with larger dimensions and, eventually, for a higher negative pressure, the portions of the intermediate element 2 that must be relatively rigid have to be strengthened e.g. by reinforcements. When the holder is manufactured in large dimensions, it might be advantageous not to make the intermediate element 2 in one single piece, but rather by assembling several parts which are adapted to each other dimension-wise and with respect to material properties.

The connection between distance-maintaining element 1 and backpiece 3 may also be arranged in form of a press-stud connection or in a similar way, provided that the load affecting the holder is small, and when it is desirable to make the distance-maintaining element 1 and the intermediate element 2 easily exchangeable, e.g. in order to facilitate cleaning.

Claims

1. Holder for industrial use, for attachment of the holder to the object to be lifted, transported, or merely not fixed by means of vacuum from a vacuum source, and abuttable with its frontal side against said object, comprising a rigid backpiece (3), an at least partially flexible sealing means (2), and an essentially rigid distance-maintaining element (1) surrounded by the flexible sealing means, which sealing means comprises a sealing ring (9) ending in a sealing lip (13), which when being fixed to said object abuts against a preferably flat or moderately curved surface of that object, in that a volume \(V_2 \) connected to the vacuum source is delimited and defined by said surface and said sealing means, whereby said central distance-maintaining element and said sealing rim are movably arranged relative to each other under the effect of a resilient force acting via resilient means (17) which movement strives to separate the central distance-maintaining element (1) and a plane (13) defined by the sealing lip (13) from each other, from an active position to an idle position, characterized in that said movement is arranged to activate valve means (14) for closing of the vacuum supply to said volume (\(V_2 \)), in the way that the central distance-maintaining element in both active and idle positions adopts the same position relative to the backpiece, and that the sealing lip (13) is seated on a movable ring (9) which is supported against the backpiece (3) in the active position.

2. Holder according to claim 1, characterized in that the holder is connected to a vacuum source through a flexible vacuum hose.

3. Holder according to claim 1, characterized in that there are arranged one or several valves at the connection between the holder and the vacuum source, which allow the system between the holder and the valve to be pressurized intentionally.

4. Holder according to claims 1–3, characterized in that the sealing element (2) is manufactured from several parts with different material properties.

5. Holder according to one of the preceding claims, characterized in that the sealing means (2) is made of rubber or a rubber-like material.

Patentansprüche

1. Halter zur industriellen Verwendung zur Befestigung des Halters an dem zu hebenden, zu transportierenden oder einfach nur fixiert zu haltenden Gegenstand mittels eines Vakuums aus einer Vakuumquelle, welcher mit seiner Stirnseite in Anlage an diesen Gegenstand bringbar ist, umfassend ein starres Rückenstück (3), ein zumindest teilweise biegsames Dichtungsmittel (2) und ein im wesentlichen starres Distanzhalterelement (1), welches vom biegsamen Dichtungsmittel umgeben ist, welches Dichtungsmittel einen Dichtungsring (9) umfaßt, der in einem Dichtungsrand (13) endet, der, wenn er an diesem Gegenstand fixiert ist, an einer vorzugsweise flachen oder mäßig gekrümmten Oberfläche dieses Gegenstandes anliegt, so daß ein mit der Vakuumquelle verbundenes Volumen \(V_2 \) von dieser Oberfläche und diesem Dichtmittel begrenzt bzw. festgelegt ist, wobei das zentrale Distanzhalterelement und dieser Dichtungsrand unter der Wirkung einer über nachgiebige Mittel (17) wirkenden Federkraft in bezug aufeinander beweglich angeordnet sind, welche Bewegung beschränkt ist, das zentrale Distanzhalterelement (1) und eine vom Dichtungsrand (13) festgelegte Ebene (13) voneinander zu trennen, und zwar aus einer Aktivposition in eine Ruheposition, dadurch gekennzeichnet, daß diese Bewegung so ausgelegt ist, daß Ventilmittel (14) zum
Verschließen der Vakuumzufuhr zum Volumen V_2 so aktiviert werden, daß das zentrale Distanzhalterelement sowohl in der Aktiv- als auch in der Ruheposition in bezug auf das Rückenstück dieselbe Position einnimmt, und daß der Dichtringrand (10) auf einem beweglichen Ring (9) sitzt, der in der Aktivposition am Rückenstück (3) abgestützt ist.

3. Halter nach Anspruch 1, dadurch gekennzeichnet, daß ein oder mehrere Ventile an der Verbindung zwischen dem Halter und der Vakuumquelle angeordnet sind, die ein vorsätzliches Unter- Druck-Setzen des Systems zwischen dem Halter und dem Ventil gestatten.

Revendications

1. Dispositif de prise pour usage industriel, pour fixation du dispositif de prise à l’objet à soulever, transporter ou simplement à maintenir immobilisé au moyen d’une dépression venant d’une source de dépression, et venant en butée par son côté frontal contre ledit objet, comprenant une semelle de fixation rigide (3), des moyens d’étanchéité (2) au moins partiellement souples, et un élément d’écarter (1) sensiblement rigide, entouré par des moyens d’étan- chéité souples, lesdits moyens d’étanchéité comprenant un anneau d’étanchéité (9) se terminant en une lèvre d’étanchéité (13) qui, lorsqu’elle est fixée sur ledit objet, vient en butée contre une surface de cet objet, de préférence plane ou modérément incurvée, dans lequel un volume V_2, relié à la source de dépression est délimité et défini par ladite surface et lesdits moyens d’étanchéité, de telle sorte que ledit élément d’écarter central et ledit bord d’étan- chéité soient disposés de façon mobile l’un par rap- port à l’autre sous l’effet d’une force élastique agis- sant par l’intermédiaire de moyens élastiques (17) dont le mouvement provoque la séparation récipro- que de l’élément d’espacement central (1) et d’un plan (13) défini par la lèvre d’étanchéité (13), à partir d’une position active jusqu’à une position de repos, caractérisé en ce que ledit mouvement est prévu pour actionner des moyens en forme de soupape (14) pour fermer l’arrivée de la dépression audite vo- lume (V_2), de manière que l’élément d’écarter central, à la fois en position active et de repos, adopte la même position par rapport à la semelle et que la lèvre d’étanchéité (13) porte sur un anneau mobile (9) qui est supporté contre la semelle (3) en position active.

2. Dispositif de prise selon la revendication 1, ca- ractérisé en ce que le dispositif est relié à une source de dépression par l’intermédiaire d’un tuyau à vi- de soupape.

3. Dispositif de prise selon la revendication 1, ca- ractérisé en ce qu’il est prévu une ou plusieurs sou- papes sur le raccordement entre le dispositif de pri- se et la source de dépression, pour permettre au système, entre le dispositif de prise et la soupape d’être mis sous pression intentionnellement.

4. Dispositif de prise selon l’une quelconque des revendications 1 à 3, caractérisé en ce que l’élé- ment d’étanchéité (2) est fabriqué à partir de plu- sieurs pièces dont les matériaux possèdent des pro- priétés différentes.

5. Dispositif de prise selon l’une quelconque des précédentes revendications, caractérisé en ce que les moyens d’étanchéité (2) sont réalisés en caout- chouc ou en un matériau analogue au caoutchouc.