Active display matrix addressable without crossed lines on any one substrate and method of using the same.

Priority: 19.02.85 US 702996

Date of publication of application: 10.09.86 Bulletin 86/37

Publication of the grant of the patent: 28.03.90 Bulletin 90/13

Designated Contracting States: DE FR GB IT NL SE

References cited:
EP-A-0 145 520
DE-A-3 325 134
US-A-4 094 582
US-A-4 448 491

Proprietor: Ovonic Imaging Systems, Inc.
1896 Barrett Street
Troy Michigan 48084 (US)

Inventor: Zvi, Yaniv
27610 Arlington Court
Southfield Michigan 48076 (US)
Inventor: Shui-Chih, Alan Lien
1555 Crestline
Troy Michigan 48084 (US)
Inventor: Chapelle, Walter E.
13701 Meadowood
Southfield Michigan 48076 (US)
Inventor: Mohshi, Yang
330 Coachman Drive Apartment 38
Troy Michigan 48083 (US)

Representative: Müller, Hans-Jürgen, Dipl.-Ing. et al
Müller, Schupfner & Gauger Lucile-Grahn-
Strasse 38 Postfach 80 13 69
D-8000 München 80 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The invention concerns a light influencing display including first and second surfaces and a plurality of pixels arranged in rows and columns. Such image displays are already known by US—A—4 448 431. The image display known is sandwiched between a substrate having a driving semiconductor array and a substrate having an electrode film, the substrates facing each other. In the image display known a space member, a light intercepting member or a member functioning as both, a spacer member and a light intercepting member is disposed on a non-image display portion. Or at least one of the substrate having the electrode film is provided with an overcoating layer and an undercoating layer. The image display known may be in a projection type, transparent type or reflection type and the display mode may be DSM, TN, phase change mode, DAP, hybrid aligned nematic (HAN) or the like. The device comprises driving thin film transistors (TFT) arranged on a substrate, made of, for example, glass, for constituting the cell, in a matrix form with a high density, for example of two several lines/mm.

EP—A—0145520 (which constitutes prior art in the sense of Article 94(3) EPC) discloses a light influencing display provided with a plurality of pixels, wherein each pixel is connected via a respective thin film transistor (TFT) to a pair of parallel conductive leads formed on a same surface.

However, such very high density patterns do have some disadvantages. For example, some of the control devices having three terminals fail because of some irregularities during production or so on.

It is an objective of the present invention to avoid that pixels comprising the control devices fail.

According to the invention this problem can be solved easily if a separate conductive control strip or lead, respectively, formed on the first surface in association with each row of pixels extends in the direction of its associated row and is connected to the control terminals of the control devices in that row and that separate pairs of said three terminal control devices are associated with said pixels so that one of said three terminal control devices of each one of said pairs provides redundancy, as claimed in claim 1.

In other words: each bottom pixel electrode is to provide redundancy. If one of the two control devices, in particular transistors, does not work changes are good that the other one will. As a result the respective pixel will be able to continue to operate.

During fabrication of a display having pixels a pair of such control devices, in particular transistors, each of them is tested. If both work, one of them is disconnected by means of e.g. a laser which blows its associated fuse, disconnecting it from operation. If both control devices are functional, it is desirable to remove one of them from operation since each of the control devices allows a small amount of leakage current when turned off and two control devices have twice as much leakage as one. If, however, during testing, it is found that one of the transistors is faulty, that control device is removed from operation and the other one is allowed to remain in operation so that its associated pixel can continue to function.

In one embodiment of the invention the first and second isolating surfaces are the surfaces of two opposing substrates formed of a material such as glass, and a light influencing display material, such as liquid crystal material, is placed between the first and second electrodes of each pixel. Preferably the control devices associated with each pixel are transistors, such as thin film field effect transistors having channel regions formed of a deposited semiconductor material, such as an amorphous alloy of silicon, including hydrogen and/or fluorine as density of state reducing elements.

In some embodiments of the invention, at least one of the control devices has a laser blowable fuse connected to one or two of its electrodes so as to enable that control device to be removed from effective operation. Also in some embodiments of the invention, the voltage supply lead associated with one pixel group functions as a control lead associated with another pixel group.

In preferred embodiments of the invention, the pixels in each pixel group are arranged in a row and the voltage supply and control leads associated with each pixel row form two non-crossing parallel conductive lines extending in the direction of that row. In fact, it is preferred that the pixels are arranged in an x—y array so that each pixel belongs to both a pixel row and a pixel column. Preferably, the data lead is connected to the second pixel electrode of all the pixels in a given pixel column, so that by selectively supplying the proper voltage through a control lead associated with a selected pixel row and by supplying a voltage through a data lead connected to a selected pixel column, the pixel at the intersection of the selected row and column has a voltage applied across it.

In one alternate embodiment of the invention, each pixel row has associated with it one voltage supply lead and one control lead in addition to the voltage supply and control leads of any other pixel row, so that each additional row requires two additional conductive leads. In a different alternate embodiment of the invention, the voltage supply lead associated with one pixel row also functions as the control lead associated with an adjacent pixel row, so that each additional row only requires one additional conductive lead.

The present invention also relates to subassemblies for use in light influencing displays of the type described above. Such subassemblies comprise the elements formed on the first insulative surface in the embodiments of the invention described above.

The present invention has two alternate embodiments for use with liquid crystal displays.
for periodically reversing the polarity of the voltages supplied across the pixels of such displays, so as to reduce the deterioration of such pixels which would result from a prolonged net direct current flow across them. In the first alternate method the preselected voltage supplied to the second current path terminals associated with the selected pixel group is held constant and the polarity of the data voltages applied to the second pixel electrodes is periodically reversed. In the second alternate method, the preselected voltage supplied to the second current path terminals associated with the selected pixel groups is periodically changed between a more positive voltage and a more negative voltage. In this embodiment the data voltages supplied to the second pixel electrodes are substantially limited to voltages below the preselected voltage when the preselected voltage is at the more positive level, and are substantially limited to voltages above the preselected voltage when the preselected voltage is at the more negative level. In a preferred embodiment of the invention, the control devices are thin film field effect transistors and the current path terminals are sources and drains of such transistors, and the control terminals are the gates of such transistors. In such an embodiment, the “on” signal supplied to the gate electrodes of the selected pixel group is a voltage sufficiently higher than the preselected voltage supplied to the source electrodes of the selected group so as to turn on the transistors of the selected group “on”. In such an embodiment, the “off” signal supplied to the gate electrodes associated with the non-selected pixel groups is sufficiently low to keep the transistors of those non-selected pixel groups “off”. Preferably, this “off” signal is a voltage which is sufficiently low to keep the transistors of the non-selected pixel groups “off”, even when the voltage on the first pixel electrode connected to the first current path terminals of those transistors is less than the preselected voltage supplied to the source electrodes of such transistors by twice the largest data voltage applied across the pixels.

In the drawings, which form an integral part of the specification of the present application and which are to be read in conjunction therewith, and in which like reference numerals are employed to designate similar components in various views:

Figure 1 is a representational partial top plan view of a single substrate subassembly for a light influencing display.

Figure 2 is a representational partial top plan view of a second substrate for use in conjunction with the first substrate shown in Figure 1 for constructing a light influencing display.

Figure 3 is a representational partial top plan view of a light influencing display formed by placing the substrate shown in Figure 2 on top of the substrate shown in Figure 1, with the combination column address and pixel electrode lines Y1, Y2 and Y3 of the second substrate shown in dotted lines;

Figure 4 is a partial cross-sectional side view of the light influencing display shown in Figure 3, taken along the lines 4—4 shown in Figure 3;

Figure 5 is an electrical schematic diagram of the electrical circuitry shown in Figure 3;

Figure 6 is a set of wave diagrams showing the voltages supplied to the X and Y lines shown in Figures 3 and 5;

Figure 7 is a schematic representation of the distribution of “on” and “off” pixels which result when the embodiment shown in Figures 3 and 5 is supplied with the wave forms shown in Figure 6;

Figure 8 is a schematic circuit diagram identical to that shown in Figure 5 except that all the sources of its transistors, instead of being tied to ground as in Figure 5, are tied to a common variable voltage source Vna;

Figure 9 is a set of wave diagrams showing the voltages supplied by the voltage supply Vna and to the x and y lines in Figure 8 to produce the pixel pattern shown in Figure 7;

Figure 10 is a representational partial top plan view of a single substrate subassembly for use in a light influencing display, which is similar to that shown in Figure 1 except that the gate and source lines connected between adjacent rows of pixels are combined;

Figure 11 is a schematic circuit diagram of the light influencing display produced when a top substrate, such as that shown in Figure 2 is combined with the bottom substrate shown in Figure 10;

Figure 12 is a set of wave diagrams showing the signals supplied to the x lines and y lines of the circuit shown in Figure 11 in order to produce the pixel pattern shown in Figure 7; and

Figure 13 is a partial top plan view showing the layout of a single row of pixel electrodes and their associated transistors and gate and source voltage supply lines according to an embodiment of the invention in which each pixel has associated with it two thin film field effect transistors, each of which has laser blowable fuse links which can be blown to remove its associated transistor from operation.

Referring now to Figure 1, a portion of a single substrate subassembly for use in a light influencing display is shown. The subassembly 10 includes substrate 12 which has an insulative surface and a plurality of pixel rows 14, 15 and 16 formed on the surface of that substrate. Each of the rows 14, 15 and 16 has a plurality of first pixel electrodes 20 formed on the substrate surface. These first pixel electrodes are arranged in an x—y matrix with the electrodes 20 being aligned in pixel columns 17, 18, and 19 as well as the pixel rows 14, 15, and 16. For purposes of simplification the x—y array is a 3x3 matrix. It should be understood, however, that much larger arrays of pixels will be used, such as, for example, an array of 640 columns by 400 rows of picture elements.

Each of the first pixel electrodes 20 has associated with it a separate three terminal control device 22, each of which has a control terminal 24 and two current path terminals. The two current
path terminals include a first current path terminal 26 and a second current path terminal 28. In the preferred embodiment shown, the three terminal control devices 22 are thin film field effect transistors, with the control terminals 24 being gate electrodes, the first current path terminals 26 being drain electrodes and the second current path terminals 28 being source electrodes. In this specification, for purposes of simplicity, the electrodes 26 are always called the drains, and the electrodes 28 are always called the sources, of the transistors 22, regardless of the direction of current flow through the transistors. The structure of the transistors 22 is shown in a simplified representational form in Figure 1, but is shown in considerably more detail in Figure 4 explained below.

The subassembly 10 includes a conductive control lead 30 formed on the surface of substrate 12 and connected to the control terminal of each of the control devices 22 associated with each pixel row 14, 15, and 16. In the figures, the control leads 30 associated with the rows 14, 15 and 16 are labeled X1, X2 and X3, respectively. The subassembly 10 further includes a separate conductive voltage supply lead 32 associated with each pixel row. The voltage supply leads 32 are electrically separate from the control leads 30. Each of the voltage supply leads are formed on the surface of substrate 12 and are connected to the second current path terminal 28 of each of the control devices of its associated pixel row. The leads 30 and 32 associated with each pixel row extend parallel to each other in the direction of that row. Even though the voltage supply leads 32 are electrically connected to a common conductive lead 33, they are considered separate for purposes of circuit layout because each of them extends along a different row.

Referring now to Figure 2, a second substrate assembly 40 is shown. This second assembly is designed for use in conjunction with the subassembly 10 shown in Figure 1 to form a light influencing display as shown in Figures 3 and 4. The second substrate assembly 40 comprises a substrate 42 having an insulating surface upon which electrically separate columns of pixel electrodes are formed.

When a display is to be back-lighted, both substrates 12 and 42 should be made of a transparent material such as glass. When, however, a display is intended to operate in the reflective mode, one of the two substrates can be made out of an opaque material. In the embodiment shown in the Figures, the displays are designed to be operated in the back-lighted mode, and both substrates 12 and 42 are made of glass. In such an embodiment, the substrate assembly 40 includes a plurality of transparent conductive strips and data leads 44, respectively, formed on its lower surface. Such transparent conductive strips 44 can be formed by photolithographic means of a transparent conductive oxide such as indium tin oxide. In such a back-lighted embodiment the pixel electrodes 20, formed on the first substrate 10, are also formed by photolithographic means out of a transparent conductive oxide such as indium tin oxide, and the conductive leads 30, 32 and 33, and the transistor gate, source and drain electrodes of that substrate are formed by photolithographic means out of conductive metal.

Referring now to Figures 3 and 4, a light influencing display 50 according to one embodiment is assembled by placing the second substrate assembly 40 over the first substrate assembly 10 so that the conductive strips 44 (which are shown in dotted lines in Figure 3) overlie the pixel electrodes 20. The upper substrate assembly 40 is positioned so that the conductive strips Y1, Y2 and Y3 overlie the bottom pixel electrodes 20 associated with the pixel columns 17, 18 and 19, respectively. The portion of each conductive strip which opposes a given bottom pixel electrode 20 is spaced from, and is substantially parallel to, that bottom electrode 20, and forms an upper, or second, electrode surface in opposition to that given bottom electrode. The conductive strips 44 not only act as second pixel electrodes, but they also each act as conductive data leads for supplying voltages to the pixel electrode surfaces they include.

Referring now to Figure 4, before the assembly of the light influencing display 50 is complete, a thin layer of light influencing material 52 is placed between its two substrates 12 and 42. As is well known in the art of flat panel displays, when a voltage is applied between a bottom electrode 20 on the substrate 12 and its opposing top electrode formed by the conductive strip 44 on the upper substrate 42, that voltage changes the optical properties of the light influencing material 52 located between those two electrodes. This combination of a bottom pixel electrode 20, the portion of the conductive strip 44 which opposes it, and the light influencing material in between forms a pixel 51. In the embodiment shown, the light influencing material 52 is a liquid crystal material. The application of a voltage between the electrodes of a given pixel changes the orientation of the liquid crystal molecules between those electrodes, changing the effect of the liquid crystal material upon light passing through it. As is well known in the art of flat panel displays, many types of liquid crystal displays require polarizing and alignment layers in association with their pixels. Such polarizing and alignment layers have not been shown in Figure 4 for purposes of simplification since the nature of such layers is well known in the art of liquid crystal displays.

Figure 4 shows a cross sectional view of a thin film field effect transistor 22 formed upon the substrate 12. Thin film field effect transistors can be formed in a variety of methods which are known in the art of thin film transistors. The embodiment shown in Figure 4 includes a transistor 22, in which a gate electrode 24 is formed upon the insulative substrate 12 by photolithographic means. Also formed in the same photolithographic step is the x line 30 to which each
The metal layer is then patterned by photolithographic means to form separate source and drain electrode 28 and 26 for each transistor 22. Also formed during this patterning step are the metal voltage supply leads 32 which are connected to the sources 28. The drain 26 is patterned to overlie a small portion of the bottom pixel electrode 20 so as to make electrical contact with that electrode, and the source 28 and drain 26 are both patterned so that there is a gap between them directly over the gate 24. After the source and drain have been patterned, they are used as masks in an etching process which etches away the top N+ sublayer 57 located in the gap between them. This is done to prevent the relatively high conductivity of the N+ sublayer from short circuiting the field effect transistor channel 58 formed in layer 56 between the source and drain.

After the source 28 and drain 26 have been formed and the portion of the N+ sublayer between them has been etched away, an electrically insulating passivation layer 60, formed of material, such as silicon nitride, silicon dioxide, or polyimide, is coated over the entire bottom substrate. The layer 60 protects the electrodes of transistor 22 and the bottom pixel electrodes 20 from electrolysis with the liquid crystal material of the display in which they are used. In addition, since it provides an insulator between the bottom pixel electrode 20 and the top electrode surfaces formed by the strip conductors 44, the layer 60 substantially reduces electrolytic current flow between those top and bottom electrode surfaces, thus greatly reducing the deterioration of the electrode surfaces on the top substrate as well as those on the bottom substrate. It should also be noted that in displays in which alignment layers (not shown in the Figures) are placed over the top and bottom electrode surfaces, such alignment layers also provide the electrode surfaces with protection from electrolysis.

A light blocking layer 62 formed of metal approximately 0.1 μm thick is deposited over the substrate and is patterned to cover, and prevent light from hitting, the semiconductor material 56. This light blocking layer is used because amorphous alloys of silicon are photconductive and thus the transistor 22 would have its operating characteristics altered unless ambient light was blocked from hitting its semiconductor material by such a light blocking layer. The capacitance between the electrodes of transistor 22 and the metal light blocking layer 62 can be decreased by increasing the thickness of the passivation layer 60 or by reducing the overlap between the light blocking layer 62 and the source 28 and drain 26. This capacitance problem can be avoided all together by forming the insulative passivation layer 60 of a light blocking material. In some embodiments however, it might actually be desired to have some capacitance between the source and drain electrodes of the transistors 22. Such capacitance might be desired to partially compensate for the capacitance between the gate and the drain of
such transistors. In such embodiments the metal of the light blocking layer 62 can be used to capacitively couple the source and drain by having that layer patterned to overlap each of those two electrodes.

The transistor 22 operates in the normal manner of an N channel enhancement mode thin film TFT. That is, when a voltage which is sufficiently positive relative to the lowest voltage placed on either its source or its drain electrode is applied to its gate electrode, a conductive channel is formed in the portion of the semiconductor layer 56 between its source and drain, greatly increasing the conductivity between those electrodes. In the absence of such a positive gate voltage, the low conductivity of the relatively intrinsic amorphous silicon alloy of layer 56 makes the circuit path between the source and drain have a very high resistance, substantially electrically isolating those two electrodes.

Referring now to Figure 5, a schematic diagram of the 3×3 pixel array of Figure 3 is shown. The circuit elements formed on the bottom substrate 12 are shown in solid lines in Figure 5 and the circuit elements formed by the strip conductors 44 on the upper substrate 42 are shown in dotted lines. Each of the pixels 51 formed by a bottom electrode 20 and a portion of the strip conductor 44 has associated with it a capacitance, as indicated in Figure 5. The sources of all of the transistors 22 are connected to ground through the second conductive leads 32.

Figure 6 shows the voltage waveforms applied to the circuit shown in Figure 5 to cause its pixels to form the pattern shown in Figure 7. In the embodiment shown, the pixels 51 are light transmissive unless a voltage is applied across them, in which case they become light blocking or dark. The waveforms X₁, X₂, and X₃ are voltage waveforms which are supplied through the control leads 30 to the gates 24 of the transistors in the row 14, 15 or 16, respectively. Similarly the waveforms Y₁, Y₁, and Y₃ are voltages applied through the strip conductors 44, which function as data leads, to the pixels 51 in the columns 17, 18 and 19, respectively, and through the capacitive couplings of those pixels to the drains 26 of their associated transistors 22. The source electrodes of all the transistors 22 are connected through the voltage supply leads 32 to ground.

In operation, each of the transistors 22 in a given row 14, 15, or 16 is turned on when its respective X line 30 is supplied with a positive “on” gate voltage, which for the TFTs of the preferred embodiment is approximately 10 V. Once the transistors 22 of a given row are turned on, the conductivity between the sources 28 and drains 26 of that row is greatly increased, effectively connecting the bottom pixel electrodes 20 of that row to ground. When a given row is selected in such a manner, a plurality of selected data voltages are applied in parallel to the second pixel electrodes of the row by means of the data leads, or Y lines, formed by the conductive strips 44. This causes each of the pixels 51 in the selected row to be charged to a voltage equal to the difference between the data voltage on its associated Y line and the ground voltage on its source line 32. For example, during the first third of each p-mode, when the address line X₁ is high, the Y address line Y₁ is supplied with an “on” data voltage of approximately +5 V, and the Y address lines Y₂ and Y₃ are supplied with “off” data voltages of 0 V. As a result, the left pixel of the top row is turned on, whereas the remaining two pixels of that row remain off. In the embodiments described in Figure 7 and the rest of this specification, the pixels which are turned on are made opaque or dark, and the pixels which are left off remain transparent or light. It is to be understood, however, that the present invention is also applicable to displays which behave just the opposite, that is, in which pixels that have a voltage applied across them turn transparent and those without a voltage applied across them remain opaque.

During the period when the first row is selected and has its transistors turned on, the address lines X₁ and X₃, which are connected to the other non-selected pixel rows, are supplied with a negative potential of −5 V. This negative potential extends below ground by −5 V and insures that each of the transistors in non-selected rows remain off. In fact this voltage is sufficiently low to insure that the transistors in the non-selected rows remain off, even when the voltage on their associated bottom pixels 20, which are connected to their drains 26, is less than ground by twice the “on” pixel voltage of 5 V. This is necessary for the following reason. If a given pixel is charged to +5 V when its row is selected by placing its bottom pixel electrode 20 at ground and its Y line at +5 V, this charge causes its bottom pixel electrode to remain 5 V below the voltage on its Y line for as long as that 5 V charge remains on the pixel. Since the leakage of charge across the pixel through the liquid crystal material, is relatively small during the period between the pixel’s recharging, and since the transistor associated with the pixel is supposed to be turned off when its row is non-selected, a substantial portion of the +5 V charge remains on the pixel during the period when it is non-selected. Thus, if the Y line drops to 0 V during the selection of another row, the voltage on the pixel’s bottom electrode 20 drop to approximately −5 V. Even more extreme, if during the n-mode, described below, the Y line drops to a minus “on” pixel voltage of −5 V, its bottom pixel electrode will drop to approximately −10 V. Because this large negative voltage is connected to their drain, the transistors in non-selected rows should be supplied with a negative gate voltage to insure that they remain off. Since the gate threshold voltage of the transistors of the preferred embodiment is more than 5 V, the “off” gate voltage of −5 V is sufficient to keep the non-selected transistors off even when the voltage on their drains, reaches −10 V.

In the second third of each p-mode period, the second X line, X₂ is supplied with a positive or “on”, gate voltage and all the other X lines are
supplied with an "off" gate voltage of -5 V. As shown in Figure 6, during this period the line Y1 is held at 0 V and the lines Y2 and Y3 are supplied with "on" voltages of +5 V. Thus, as is shown in Figure 7, the first pixel in the row X2 remains off, and thus transparent, whereas the second and third pixels in that row are turned on, and thus are light blocking. Similarly, during the last third of the p-modes the last row X3 has a positive "on" gate voltage supplied to its transistors, and the other rows have negative or "off" gate voltages supplied to their transistors. During this time, the line Y1 is supplied with a zero "off" voltage, the line Y2 is supplied with a positive "on" voltage and line Y3 is supplied with a zero "off" voltage. Thus, the first and third transistors of that row remain off, and only the middle transistor of that row is turned on.

As is well known in the art of liquid crystal displays, it is important to periodically reverse the polarity of the voltages supplied across individual pixels. This is because a prolonged net dc current flow damages such pixels. For this reason the voltage driving scheme used to power the display shown schematically in Figure 5 is divided into alternating positive and negative modes, indicated by the labels p-mode and n-mode in Figure 6. In this driving scheme the voltages applied through the X lines, X1, X2 and X3 to the gates of the transistors 22 are the same during both the p and n modes. However, the polarity of the voltages applied to the Y lines, Y1, Y2 and Y3 during the n-mode are reversed in polarity relative to those applied during the p-mode. Thus the voltages supplied to the X lines turn on the transistors of the display in the same manner during both the p- and n-modes, but during the n-mode the pixels 51 which are to be turned on are supplied with a negative "on" voltage of -5 V, rather than a positive "on" voltage of +5 V.

In a typical embodiment, the device alternates between the p- and n-modes at 60 times a second, the rate used to alternate between fields of a standard video signal. As a result, a pixel which is turned on has the polarity of the voltage applied across it rapidly varied, preventing any net dc current flow through the liquid crystal material associated with that pixel. Furthermore, since the entire pixel array has each of its pixels rewritten 60 times a second, there is no perceived flicker on the display.

Referring now to Figure 8, a schematic diagram is shown of an alternate embodiment. This embodiment is identical to that shown in Figure 5, except that the sources 28 of all of its transistors are connected through its voltage supply lines 32 and the common conductive lead 33 shown in Figures 1 and 3 to a variable preselected voltage supplied by a common voltage supply Vcr. Figure 9 shows the voltage waveforms used to drive the circuitry of Figure 8 to produce the pixel pattern shown in Figure 7. As is shown in Figure 9, the output of the common voltage supply Vcr, which is connected to the sources of all the transistors 22, is repeatedly alternated between two voltages, a more negative voltage and a more positive voltage. The output of Vcr is held to a more negative ground voltage during each p-mode and it is held to a more positive voltage of +5 V during each n-mode.

During the p-mode the apparatus shown in Figure 8 and the waveforms shown in Figure 9 operate identically to the apparatus shown in Figure 5 and the waveforms shown in Figure 6. It is in the n-mode that the voltage driving scheme shown in Figure 8 differs from that shown in Figure 6. As described above, the voltage driving scheme shown in Figure 6 reverses the voltage polarity across its pixels by simply switching the polarity of the "on" data voltages supplied to its Y lines from a +5 V during its p-mode to a -5 V during its n-mode. In the voltage driving scheme shown in Figure 9, on the other hand, the change in polarity across the pixels 51 is accomplished by both (a) a change in the common voltage supply Vcr from the more negative ground voltage to the more positive voltage of +5 V and (b) a reversal of the "on" and "off" data voltages supplied to the Y data lead lines 44, changing the "on" data voltage from +5 V to ground and changing the "off" data voltage from ground to +5 V. During the n-mode, when the sources of all of the transistors 22 are supplied with the more positive voltage of +5 V, the Y lines 44 discharge, or turn off, pixels in selected rows by supplying their upper electrode with +5 V, and they charge those pixels to a negative "on" voltage by supplying their upper electrodes with zero volts, which is 5 V less than the voltage supplied to the bottom pixel electrodes in a selected row.

During the n-mode, the gate voltage supplied on the lines Xo, X2 and X3 to turn on the transistors of a selected row is +15 V, which is slightly higher than the +10 V used for this purpose during the p-mode. This is merely to insure that during the n-mode, when the sources 28 of the transistors in a selected row are supplied with +5 V that the voltage supplied to the gate 24 of those transistors is sufficiently higher than that source voltage to keep the selected transistors fully on.

Referring now to Figures 10 and 11 an alternate embodiment is shown. Figure 10 is a partial top plan view of a bottom substrate subassembly similar to that shown in Figure 1, except that in Figure 10, the voltage supply and control leads located between the pixel rows 14, 15 and 16 are combined into one common conductive lead 72. This greatly simplifies the wiring associated with an x-y pixel array, reducing almost in half the number of address lines required on the bottom substrate subassembly in large x-y arrays. As is shown in Figures 10 and 11, the top X line 72 is labeled X91, indicating that it is connected to the gates of the first row of pixels. The second X line 72 is labeled X92-93, indicating that it is connected to both the sources of the first pixel row and the gates of the second pixel row. Similarly, the third X line 72 shown in those figures is labeled X93-94.
indicating that it is connected to both the sources of the second pixel row and the gates of the third pixel row. Finally, the bottom most X line 72 is labeled X_{33} indicating that it is connected to the sources of the third pixel row.

The bottom substrate subassembly shown in Figure 10 is combined with a top substrate assembly such as that shown in Figure 2 in a manner similar to that shown in Figures 3 and 4. When this is done, the resultant light influencing display has a circuit diagram similar to that shown in Figure 11, in which each of the bottom pixel electrodes 20 on the bottom substrate subassembly forms a light influencing pixel 51 in conjunction with its associated transparent Y conductive strip 44. The display shown in Figure 11 is identical to that shown in Figure 5 except that the control and voltage supply lines between the pixel rows have been combined, as described above.

Figure 12 describes the voltage waveforms which are supplied to the X lines 72 and the Y lines 44 shown in Figure 11 in order to make its 3×3 matrix have the pattern shown in Figure 7. The voltages supplied to the Y lines shown in Figure 12 are identical to those supplied to the Y lines shown in Figure 6. Similarly the voltage supplied to the X line X_{21} in Figure 12 is identical to that supplied to the X line X_1 in Figure 6. This is because the X line X_{21} being connected only to the gates of transistors in the row below it, functions just like the line X_1 in Figure 6. The voltages supplied to the lines X_{21-32} and X_{22-33} however, are slightly different than those supplied to the lines X_1 and X_2 in Figure 6, because the lines X_{21-32} and X_{22-33} act both to supply gate voltages to the rows below them and to supply source voltages to the row above them. These lines are capable of performing both functions because these functions occur at different times.

During most of each scanning cycle, the connection of each of these combined source — gate lines to the sources of the transistors in the row above it is without consequence, because those transistors are turned off, effectively isolating their drains and associated bottom pixel electrodes from their sources. It is only during the brief period when the transistors in the row immediately above such a line are selected by the application of "on" gate voltages that the connection of such a combined source — gate line to the sources of the transistors in that row is of significance. During this period a zero or ground voltage is supplied to the combined source — gate line so that a ground voltage is supplied through the selected transistors to their associated bottom pixel electrodes, enabling each pixel in the selected row to charge up to the voltage supplied on its associated Y line.

During the rest of the time, when other pixel rows are selected, the combined source — gate line acts only as a gate voltage supplying line, and the voltages supplied to it are identical to those supplied to the corresponding X lines in Figure 6. When the pixel row directly below a combined source — gate line is selected, that line is supplied with an "on" gate voltage of +10 V to turn on the transistors of the selected row. During periods in which neither the pixel row directly above nor directly below a given source — gate line is selected, the voltage supplied to that given line is held to a −5 V to insure that the non-selected transistors in the row directly beneath it remain off.

During the brief period when a source — gate line supplies a ground source voltage to the transistors in the selected row directly above it, it also supplies a ground gate voltage to the transistors in the non-selected row immediately below it. This undesirably high gate voltage for a non-selected row has the effect of enabling transistors in the row immediately beneath the source — gate line to discharge when the bottom pixel electrodes 20 connected to the drains of such transistors are driven to a large negative voltage, such as −10 V, as described above in the explanation of why a −5 V gate voltage is normally supplied to the transistors of non-selected rows. However, this brief period in which non-selected rows receive a slightly higher than desired gate voltage has a relatively small effect on the RMS voltage applied to each pixel over each scanning cycle. Such a zero volt gate voltage is only applied to a given non-selected row during the brief period in which the row directly above it is selected. In a large display in which there are many lines, this possible loss of a pixel's charge only one line interval before it is to be rewritten is of little concern.

The voltage supplied to the line X_{33} is held at ground. This is because this line functions only to supply voltage to the sources of the transistors in the pixel row immediately above it, and thus it is free to remain at ground at all times.

Referring now to Figure 13, an embodiment of the invention is shown. This Figure shows a partial top plan view of a row of bottom pixel electrodes 20, with their associated gate voltage and source voltage supplying lines 30 and 32. This embodiment of the invention is substantially similar to that shown in Figure 1 except that there are two, that means a pair of transistors 22 and 22a associated with each bottom pixel electrode 20. The additional transistor 22a is constructed in the same manner as the transistor 22, shown in Figure 4. The only difference is that the transistor 22a is attached at the opposite end of the bottom electrode 20 than is the transistor 22. In addition there is a laser blowable fuse 82 located in the metal line which connects the conductive lead 32 to the source electrodes 28 of each of the transistors 22 and 22a and, similarly, there is a laser blowable fuse 84 located in the metal line which connects the conductive lead 30 to the gate electrodes 24 of each transistor.

The purpose of providing two transistors for each bottom pixel electrode 20 is to provide redundancy. If one of the two transistors does not work, chances are good that the other one will, and thus that the pixel will continue to be able to
operate. During fabrication of a display having pixels with two transistors, each of the transistors is tested. If both work, one of them is disconnected by means of a laser which blows its associated fuse 82, disconnecting it from operation. If both transistors are functional, it is desirable to remove one of them from operation, since each of the transistors allows a small amount of leakage current when turned off, and two transistors have twice as much leakage as one. If, however, during testing, it is found that one of the transistors is faulty, that transistor is removed from operation and the other transistor is allowed to remain in operation, so that its associated pixel can continue to function. The laser blowable fuses 84 enables the gates 24 of transistors which are not to be used to be removed from operation. This enables the gate capacitance associated with unused transistors to be removed from the lead 50 and, in cases in which a defective transistor has a short between its gate and drain, it enables the shorted gate electrode to be disconnected from operation.

Although Figure 13 only shows one row of such dual transistor pixel electrodes, it is to be understood that such a dual transistor arrangement is used in displays having multiple rows, and in displays, similar to that shown in Figure 10, having combined source–gate lines between rows of pixels.

From the foregoing it is apparent that a light influencing display can be constructed in which each pixel has a separately actuatable three terminal device associated with it and which does not require crossing address lines on any given substrate. Although the description of the preferred embodiments described above relates to liquid crystal displays, it is to be understood that the invention is applicable to other types of light influencing displays as well, such as electroluminescent and electrochromic displays. In the preferred embodiments described above, data voltages are supplied to all the pixels of a selected row in parallel. However, it should be understood that the present invention also applies to light influencing displays in which a data voltage is supplied to only one pixel in a selected row at a time, while the data leads connected to the other pixels in the selected row are allowed to have their voltages float. It should also be understood that the present invention is applicable to displays in which the pixels can show gray values as well as on and off values described above. Such gray values can be achieved by selecting the preselected voltage and the data voltage supplied to the electrodes of a given pixel so that the voltage applied across that pixel is sufficient to only partially change the optical properties of its light influencing material.

Claims

1. Light influencing display including first and second surfaces, a plurality of pixels (51) arranged in rows (14, 15, 16) and columns (17, 18, 19), each including a first electrode (20) formed on the first surface, an opposing second electrode formed on the second surface and light influencing material (52) between the first electrode (20) and the second electrode, wherein each of said pixels (51) a separate three terminal control device (22, 22a), formed of semiconductor material on the first surface, is associated each of the control devices (22, 22a) having two current path terminals (26, 28) and a control terminal (24) which controls the conductivity between those two current path terminals (26, 28), and a first current path terminal (26) of each control device (22, 22a) being connected to the first pixel electrode (20) of its associated pixel (51); wherein a separate conductive voltage supply lead (32) formed on the first surface in association with each row (14, 15, 16) of pixels (51) extends in the direction of its associated row and is connected to the second current path terminal (28) of the said control devices (22, 22a) associated with its row; and wherein a separate conductive data lead (44) formed on the second surface in association with each column (17, 18, 19) of pixels (51) extends in the direction of its associated column and is connected to and/or forms the second pixel electrodes in that column, characterized in that a separate conductive control lead (30) formed on the first surface in association with each row (14, 15, 16) of pixels (51) extends in the direction of its associated row and is connected to the control terminals (24) of the control device (22, 22a) in that row; and that separate pairs of said three terminal control devices (22, 22a) are associated with said pixels (51) so that one of said three terminal control devices (22, 22a) of each one of said pairs provides redundancy,

2. Light influencing display according to claim 1, characterized in that at least one of said pair of control devices (22, 22a) formed in association with each first pixel electrode (20) has a laser blowable fuse (82) connected to at least one of its electrodes to enable it to be removed from effective operation.

3. Light influencing display according to claim 1 or 2, characterized in that the laser blowable fuse (84) is located in the connection of said control lead (30) with said control terminal (24).

4. Light influencing display according to one of claims 1—3, characterized in that said control devices (22, 22a) are thin film field effect transistors and that said current path terminals (24, 28) are source electrodes and drain electrodes.

5. Light influencing display according to one of the preceding claims, characterized in that said semiconductor material of said three terminal control devices (22, 22a) is deposited as an amorphous semiconductor alloy.

6. Light influencing display according to claim 5, characterized in that said amorphous semiconductor alloy comprises silicon as a matrix element and hydrogen and/or fluorine as density of states reducing elements.
Patentansprüche

1. Lichtbeeinflussungs-Anzeigevorrichtung mit einer ersten und einer zweiten Oberfläche, einer Mehrzahl von Bildelementen (51), die in Reihen (14, 15, 16) und Spalten (17, 18, 19) angeordnet sind und jeweils eine auf der ersten Oberfläche gebildete erste Elektrode (20), eine dazu entgegengesetzte, auf der zweiten Oberfläche gebildete zweite Elektrode und Lichtbeeinflussungsmaterial (52) zwischen der ersten Elektrode (20) und der zweiten Elektrode aufweist, wobei jedem Bildelement (51) eine gesonderte, drei Anschlüsse aufweisende Steuervorrichtung (22, 22a) aus Halbleitermaterial auf der ersten Oberfläche zugeordnet ist und jede Steuervorrichtung (22, 22a) zwei Strompfadanschlüsse (26, 28) und einen Steueranschluß (24) hat, der die Leitfähigkeit zwischen diesen beiden Strompfadanschlüssen (26, 28) steuert, und wobei ein erster Strompfadanschluß (26) jeder Steuervorrichtung (22, 22a) mit einer ersten Bildelementelektrode (20) des zugeordneten Bildelementes (51) verbunden ist; wobei eine gesonderte leitfähige Speisspannungszuführung (32), die auf der ersten Oberfläche in Zuordnung zu jeder Elektrode (14, 15, 16) von Bildelementen (51) gebildet ist, in Richtung ihrer zugeordneten Reihe verläuft und an den zweiten Strompfadanschluß (28) der dieser Reihe zugeordneten Steuervorrichtungen (22, 22a) angeschlossen ist; und wobei eine gesonderte leitfähige Datenzuleitung (44), die auf der zweiten Oberfläche in Zuordnung zu jeder Spalte (17, 18, 19) von Bildelementen (51) gebildet ist, in Richtung ihrer zugeordneten Spalte verläuft und an die zweite Bildelementelektrode in dieser Spalte angeschlossen ist und/oder diese zwei Bildelementelektroden bildet, dadurch gekennzeichnet, daß eine gesonderte leitfähige Steuerzuleitung (30), die auf der ersten Oberfläche in Zuordnung zu jeder Reihe (14, 15, 16) von Bildelementen (51) geformt ist, in Richtung ihrer zugeordneten Reihe verläuft und an die Steuervorrichtungen (24) der Steuervorrichtung (22, 22a) in dieser Reihe angeschlossen ist; und daß gesonderte Paare der drei Anschlüsse aufweisenden Steuervorrichtungen (22, 22a) den Bildelementen (51) so zugeordnet sind, daß eine der drei Anschlüsse aufweisenden Steuervorrichtungen (22, 22a) jedes dieser Paare eine Redundanz bildet.

2. Lichtbeeinflussungs-Anzeigevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß wenigstens eines der Paare von Steuervorrichtungen (22, 22a), die in Zuordnung zu jeder ersten Bildelementelektrode (20) gebildet sind, eine laserschmelzbar Sicherung (82) hat, die mit wenigstens einer ihrer Elektroden verbunden ist, so daß sie unwirksam gemacht werden kann.

3. Lichtbeeinflussungs-Anzeigevorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die laserschmelzbar Sicherung (84) in der Verbindung der Steuervorrichtung (30) mit dem Steueranschluß (24) liegt.

4. Lichtbeeinflussungs-Anzeigevorrichtung nach einem der Ansprüche 1—3, dadurch gekennzeichnet, daß die Steuervorrichtungen (22, 22a) Dünnfilm-Feldeffekttransistoren sind und daß die Strompfadanschlüsse (26, 28) Source- und Drain-Elektroden sind.

5. Lichtbeeinflussungs-Anzeigevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Halbleitermaterial der drei Anschlüsse aufweisenden Steuervorrichtungen (22, 22a) als amorphe Halbleiterlegierung abgeschieden ist.

Revendications

1. Affichage agissant sur la lumière comprenant une première et une seconde surfaces, un ensemble de pixels (51) disposés en rangées (14, 15, 16) et en colonnes (17, 18, 19), dont chacun comporte une première éléctrode (20) formée sur la première surface, une seconde éléctrode placée en face sur la seconde surface et un matériau agissant sur la lumière (52) entre la première élechter (20) et la seconde électrode, dans lequel à chacun des pixels (51) est associé un dispositif distinct de commande (22, 22a) à trois bornes constitué d'un matériau semi-conducteur sur la première surface, chacun des dispositifs de commande (22, 22a) comportant deux bornes de circulation du courant (26, 28) et une borne de commande (24) qui commande la conductivité entre ces deux bornes de circulation du courant (26, 28) et une première borne de circulation du courant (26) de chaque dispositif de commande (22, 22a) étant connectée à la première électrode (20) de pixel de son pixel associé (51); dans lequel une ligne conductrice distincte (32) d'application de la tension formée sur la première surface en association avec chaque rangée (14, 15, 16) de pixels (51) est orientée dans la direction de sa rangée associée et connectée aux secondes bornes (28) de circulation du courant des dispositifs de commande (22, 22a) associés à sa rangée; et dans lequel une ligne distincte (44) conductrice des données formée sur la seconde surface en association à chaque colonne (17, 18, 19) de pixels (51) est orientée dans la direction de sa colonne associée et est connectée aux secondes électrodes de pixels de cette colonne et/ou les forme, caractérisé par le fait qu'une ligne conductrice distincte de commande (30) formée sur la première surface en association avec chaque rangée (14, 15, 16) de pixels (51) s'étend dans la direction de sa rangée associée et est connectée aux bornes de commande (24) des dispositifs de commande (22, 22a) de cette rangée; et par le fait que des paires distinctes des pixels (51) de façon que l'un des dispositifs (22, 22a) de commande à trois bornes de chacune desdites paires assure la redondance.

2. Dispositif d'affichage agissant sur la lumière
selon la revendication 1, caractérisé par le fait qu'un un moins des dispositifs de commande (22, 22a) de ladite paire formée en association avec chaque première électrode (20) de pixel comporte un fusible (82) déclenchable par laser relié à au moins une de ses électrodes pour lui permettre d'être dégagée d'un fonctionnement utile.

3. Dispositif d'affichage agissant sur la lumière selon la revendication 1 ou 2, caractérisé par le fait que le fusible (82) déclenchable par laser est situé sur la connexion de ladite ligne de commande (30) à ladite borne de commande (24).

4. Dispositif d'affichage agissant sur la lumière selon l'une des revendications 1 à 3, caractérisé par le fait que lesdits dispositifs de commande (22, 22a) sont des transistors à film mince à effet de champ et par le fait que lesdites bornes (26, 28) de circulation du courant sont des électrodes sources et des électrodes drains.

5. Dispositif d'affichage agissant sur la lumière selon l'une des revendications précédentes, caractérisé par le fait que ledit matériau semiconducteur desdits dispositifs de commande (22, 22a) à trois bornes est déposé sous forme d'un alliage semiconducteur amorphe.

6. Dispositif d'affichage agissant sur la lumière selon la revendication 5, caractérisé par le fait que ledit alliage semiconducteur amorphe comprend du silicium servant d'élément matriciel et de l'hydrogène et/ou du fluor comme éléments réducteurs de la densité des états.
FIG. 9