Hydraulic chair lift mechanism.

Proprietor: KIMBALL INTERNATIONAL INC.
1600 Royal Street
Jasper Indiana 47546 (US)

Inventor: Slaats, Mathew A.
822 West 9th Street
Jasper Indiana 47546 (US)
Inventor: Strange, Patrick E.
R.R. No. 2
Jasper Indiana 47546 (US)

Representative: Rackham, Stephen Neil et al
GILL JENNINGS & EVERY 53-64 Chancery Lane
London WC2A 1HN (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
A disadvantage of these prior art structures is that the sliding seals needed to seal the piston in the chamber are subject to wear and leakage and, as hydraulic fluid leaks out of the mechanism, the volume of hydraulic fluid in the mechanism is reduced. The pressurized gas in the outer chambers will then occupy a greater volume, thereby reducing its pressure and causing the upward speed of the mechanism to decrease and the upward force on the support and chair seat to be reduced, both of which results are undesirable. Furthermore, the lost hydraulic fluid needs to be replaced from time to time so that the mechanism requires servicing, which is undesirable. It is therefore desirable to provide a pneumatic lifting mechanism wherein no sliding seals are provided and which is not subject to leakage and loss of hydraulic fluid.

A further disadvantage of the prior art structures has been that the control for adjusting the lifting mechanism has been located adjacent to the mechanism. The prior art arrangements have necessitated the occupant of the chair to lean over and reach far under the chair seat, or have necessitated long control arms to adjust the chair height. It is desirable to provide a lifting mechanism wherein the control can be located in the chair arm or adjacent the seat so that it is more easily operable.

Yet further disadvantage of the prior art structures has been the provision of rather complicated valves to control the transfer of hydraulic fluid between the chambers. It is therefore desirable to provide a mechanism including a valve which is simple yet reliable and effective.

U.S. Patent No. 4,445,671 discloses an adjustable pneumatic mechanism for an article of furniture which prevents rapid dropping of the support platform. A pressure sensitive valve is provided which allows fluid to flow in one direction, but which prevents fluid flow in the opposite direction if excessive pressures are encountered in the hydraulic mechanism. Thus, if a heavy weight is placed on the platform, causing a high pressure to be developed in the hydraulic fluid, the valve will shut and prevent rapid descent of the mechanism and potential injury to the operator. The disadvantage of this structure is that the valve mechanism is rather complicated. It is therefore desired to provide a lifting mechanism wherein a simple and reliable control valve allows for a larger rate of fluid flow in one direction than in the reverse direction so that the ascent of the hydraulic mechanism is accomplished at a rapid rate, whereas the descent of the mechanism will occur much more slowly, thereby preventing injury to the operator and also permitting the operator to stop the descent of the mechanism at the exact desired point.

In some of the prior art pneumatic lifting mechanisms, only a gas rather than an incompressible hydraulic fluid is used to provide the lifting functions of the mechanism. These types of mechanisms are subject to leakage of gas from the mechanism and also result in a spongy action.
of the mechanism since the gas is compressible. It is desired to provide a very positive lifting mechanism not subject to leakage of the working fluid or having spongy action and wherein the hydraulic working fluid is incompressible.

In still other prior art mechanisms a manual or electric pump is provided to pump hydraulic fluid to the expanding chamber to cause the lifting action. Such pumps are subject to failure and are also costly. It is therefore desirable to provide a mechanism wherein no pumps are needed to transfer fluid between the two chambers.

Hydraulic and pneumatic actuators which include a rolling diaphragm are also known. U.S.-A. 3386345 discloses a rolling diaphragm device comprising a plunger axially slidable within a generally cylindrical casing and a rolling diaphragm sealedly connected to the casing and bearing against the plunger. This specification particularly discusses the provision of a bearing arrangement in the plunger so that the part of the plunger remote from the diaphragm can rotate with respect to it so that the diaphragm is not stressed unduly by any twist applied to the plunger.

According to this invention in a hydraulic lift mechanism for supporting an article of furniture the second fluid filled chamber is at least partly defined by a flexible wall to accommodate variations in volume of the second fluid filled chamber.

The present invention, in one form thereof, comprises a base, a first chamber which may comprise a rigid walled chamber containing a hydraulic fluid and a pressurized gas, a second variable volume chamber partly defined by a flexible diaphragm, supported by the base and containing a hydraulic liquid, and a support member carrying a platform. A conduit interconnects the two chambers and includes a control valve for permitting fluid to transfer between the two chambers. When the valve is opened and no force acts downwardly on the second chamber, the fluid will transfer under gas pressure from the first chamber to the second chamber. As the volume of fluid in the second chamber increases, the fluid volume will occupy more space and the second chamber will be forced to expand in the upward direction thereby placing an upward force on a support member and support platform and urging those parts upwards.

The invention, in one form thereof, further comprises a chair having a base and a seat. A lifting mechanism is disposed between the base and the seat. The mechanism comprises a first chamber and a second flexible walled chamber. The chambers are interconnected by a conduit. The chambers contain hydraulic fluid and the conduit has a control valve therein for enabling and disabling fluid transfer between the two chambers. The second chamber contains a pressurized gas for forcing hydraulic fluid out of the first chamber into the second chamber when the control valve is opened and no downward force acts on the second chamber. The second chamber is confined against downward and side-ward expansion. As the volume of fluid contained in the second chamber increases and the chamber expands upwardly an upward force is generated by the expanding volume thereby forcing the chair seat upwardly. The control valve has a higher fluid flow rate in one direction than in the reverse direction whereby the rate of upward travel of the chair seat is greater than the downward travel rate thereby preventing injury to the occupant and allowing the occupant accurately to position the chair seat. The control is located in an arm of the chair to permit the user to easily adjust the chair seat height. Furthermore, the first chamber is located in the arm of the chair whereby the mechanism in the base of the chair is not bulky and occupies little space.

An advantage of the present invention is that the mechanism operates without the use of sliding seals thereby eliminating potential leakage, reducing the need for service and extending the life of the mechanism.

Another advantage of the mechanism of one form of the present invention is that the control can be located remotely from the mechanism in any desired position in the article of furniture.

Yet another advantage of the mechanism according to one form of the present invention is that the first chamber can be located remotely from the mechanism thereby permitting the mechanism to occupy little space in the base of the furniture article.

Still another advantage of one form of the present invention is the provision of a simple and reliable valve having two flow rates whereby the upward and downward movement of the article of furniture occurs at two different rates of speed, thereby preventing injury to the occupant of the furniture and allowing accurate adjustment of its height.

A still further advantage of the mechanism according to one embodiment of the present invention is the simplicity of construction.

A yet further advantage of the mechanism according to one embodiment of the present invention is that rotation of the article of furniture is effected in the bottom portion of the base mechanism whereby the chambers and the control valve rotate together with the furniture, thereby allowing the control valve and the first chamber to be located remotely from the base of the chair.

Particular embodiments of mechanisms in accordance with this invention will now be described with reference to the accompanying drawings, in which:-

Figure 1 is a perspective view of a chair incorporating a preferred embodiment of the present invention with a remotely located pressurized tank;

Figure 2 is a sectional view of the pneumatic lifting mechanism of Figure 1 taken along the line 2—2 of Figure 1;

Figure 3 is a perspective view of a chair incorporating an embodiment of the present invention wherein the tanks are in concentric relationship;
Figure 4 is a sectional view of the pneumatic lifting mechanism of Figure 3 taken along the line 4-4 of Figure 3.

Figure 5 is a sectional view of the hydraulic lifting mechanism of Figure 4 taken along the line 5-5.

Figure 6 is a sectional view of an embodiment of the present invention wherein the tanks are disposed in stacked relationship; and,

Figure 7 is a sectional view of the embodiment of Figure 6 with the expandable tank in its expanded position.

Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.

The exemplifications set out herein illustrate a preferred embodiment of the invention, in one form thereof, and as preferred parts of the scope of the disclosure or the scope of the invention in any manner.

Referring to Fig. 1, a chair assembly 10 is shown comprising a base 12 including casters 14. A seat 16 is supported on the base and has an arm 18. The pneumatic lifting mechanism 20 is shown located below the seat 16 and intermediate the seat 16 and base 12. Mechanism 20 comprises a lower cylindrical housing cover 24 and an upper cylindrical housing cover 34. A sealed tank or chamber 26 is shown located in arm 18 and a hollow conduit 28 is shown leading from tank 26 to mechanism 20. A control 30 is shown located on the side of arm 18 for controlling the operation of mechanism 20 as further explained hereinbelow. A reciprocable support shaft 32 is provided at the upper end of mechanism 20 for reciprocably supporting a support platform 36 upon which chair seat 16 rests.

Mechanism 20, in a preferred embodiment, is shown in Fig. 2 as follows. A thrust bearing 38 is located in a lower portion of the mechanism, adjacent base 12 for rotatably supporting the lifting mechanism and the chair seat. Thrust bearing 38 rests on a bottom portion 50 of cylindrical housing portion or shroud 24. Rotating shaft 40 extends upwardly from an enlarged portion 42 located in the bottom portion of housing portion 24, and has an upper portion 44 secured in aperture 45. A sleeve bearing 48 having a flange thereon is positioned between housing cover portions 24 and 34 to act as a bearing surface therebetween. Housing portion 34 or shroud can therefore rotate with respect to housing portion 24. Housing portions 24 and 34 are preferably cylindrical in shape. A guide tube 46 extends upwardly from a supporting bottom portion 52 of housing portion 34 to prevent lateral movement of shaft 40. A telescoping tube member 56 is slidably reciprocably received within housing portion 34. Spacer 54 is inserted between housing portion 34 and inner tube 56 and serves as a sleeve bearing surface therebetween. Thus, housing portion 24, bottom 50 and the bottom race of bearing 38 are stationary. Housing portion 34, top race of bearing 38, shaft 42, bottom portion 52, tube 46, support member 62, and telescoping tube 56 rotate together and are supported by bearing 38.

A bottom portion 58 of telescoping inner tube 56 has an aperture 60 provided therein to provide clearance between support member 62 and bottom portion 58 as bottom portion 58 travels upwardly. While bearing 38 has been shown located in the lower portion of the mechanism, it should be understood that bearing 38 can also be located upwardly in the mechanism. For instance, aperture 45 could be provided with a ball bearing so that upper portion 44 of shaft 40 is stationary and member 62 rotates with respect to shaft 40.

A diaphragm or sock 64 is provided in the upper portion of cover 34 and is sealingly connected to an upper portion of support member 62. Diaphragm 64 is in the form of a rolling sock or flexible bag and encloses a volume which is variable. The volume of the bag is increased by rolling the sides thereof so that the sides no longer fold in upon themselves as shown in Fig. 6 but instead are extended as shown in Fig. 7 and further described hereinafter. Support member 62 has an aperture 45 therein for rotatably receiving portion 44 of shaft 40. The upper portion of support member 62 has an undercut portion 74 whereby the edge portion of diaphragm 64 is captured thereby and retained therein by means of a crimp ring 68 to make a sealing connection between diaphragm 64 and support member 62.

The opposite end of diaphragm 64 is sealingly connected by means of a crimp ring to a plug 70 received in the upper opening of diaphragm 64. Plug 70 has an undercut portion 76 whereby diaphragm 64 is sealingly captured in this undercut portion and is secured to plug 70 by means of a crimp ring 72. It can be seen that this arrangement provides for the flexible bag 64 to have a variable volume 71. The advantage of this novel rolling sock chamber 64 is the provision of a variable volume chamber without the need for sliding seals as required by the prior art structures and as described hereinabove. The sock or bag 64 is sealed to plug 70 and support member 62 by means of a very simple and reliable sealing structure without the need for moving parts. The rolling action of diaphragm 64 permits the elimination of sliding seals yet retains the advantages of a variable volume chamber in a lifting mechanism.

Incompressible hydraulic fluid 66 is provided for filling the volume 71. Flexible walled chamber 62 is confined in tube 56 and supported by member 62. The expansion of volume 71 must therefore take place in the upward direction when incompressible hydraulic fluid is added to volume 71. As the volume expands chamber 64 in the upward direction, the expansion will generate an upward lifting force on support shaft 32 and platform 36 to lift chair seat 16.

Similarly, when a downward force acts on platform 36, and is transmitted by shaft 32 to bag 64, the hydraulic fluid will be forced out of bag 64 to return to chamber 26 and thereby allowing seat
16 to descend. As explained hereinafter, a valve is used to control transfer of fluid between the chambers.

Continuing to refer to Fig. 2, it can be seen that an aperture 29 is provided in plug 70 for allowing ingress and egress of hydraulic fluid to and from volume 71. A threaded fitting 78 is provided for engagement with threaded portion 80 of plug 70. Another threaded fitting 82 is provided in top support member 81 at right angles to fitting 78. Annular upstanding ridges 86 are provided on portion 84 of fitting 82 to engage with tube 28 and to secure tube 28 to fitting 82 as is conventional. Tube 28 is shown with a break therein to indicate that tube 28 can be of any desired length. In the described embodiments chamber 26 has rigid walls and is otherwise located remotely from mechanism 20. However, it should be understood that tank 26 may have either a fixed or variable volume and may have either flexible or rigid walls, since the function of tank 26 is to serve as holding reservoir for hydraulic working fluid. Tank 26 can be located at any location in the chair or remote therefrom. As illustrated in Fig. 1, the tank is located in the arm 18 of the chair. However, it should be understood that tank 26 can be located at any convenient location either within the article of furniture or outside of it. For instance, if the article furniture in which the mechanism is to be used were a table, tank 26 could conveniently be mounted underneath the table top.

Chamber 26 is sealed with the exception of an opening through which tube 28 extends by means of a fitting 90. Chamber 26 contains incompressible hydraulic fluid 108 above which pressurized gas 104 is provided. A fitting 102 is sealingly secured in a top portion of the tank for permitting hydraulic fluid gas to be inserted into tank 26. A control valve 30 is provided for the mechanism and in this embodiment is shown as being completely housed in tank 26. It should be understood that the valving mechanism can be provided at any convenient location such as for instance in tube 28.

Continuing now with reference to Fig. 2, it can be seen that valving mechanism 30 comprises an ON/OFF valve 88, a connecting tube 92, a check valve 94 and a bypass orifice 100. Check valve 94 includes a check valve ball 96 to seal orifice 98 when fluid flow is into tank 26. In the preferred embodiment, orifice 100 is much smaller than orifice 98. It should be readily apparent to those skilled in the art that different types of check valves and ON/OFF valves may be used with this mechanism. Orifice 100 is a small passage for bypassing check valve 94.

In the operation of valving mechanism 30, it can be seen that, when valve 88 is opened, liquid is allowed to pass through tube 92. If in the illustrated embodiment the flow of liquid is in the upward direction, fluid pressure on ball 96 will move it away from orifice 98 whereby fluid will enter tube 92 through orifice 98 and orifice 100. However, when the flow of fluid is in the opposite or downward direction pressure on ball 96 will cause it to seat in orifice 98 thereby closing off the orifice so that fluid can only pass from tube 92 into chamber 26 by, means of bypass orifice 100. Valving mechanism 30 therefore comprises a reliable and simple valve structure having a greater fluid flow rate in one direction than the opposite direction.

It should be noted that location of the orifices in valving mechanism 30 allows only incompressible hydraulic fluid to be transferred from tank 26 to volume 66. If gas were admitted into bag 64, the chair seat suspension would have a spongy feel to it, which is undesirable, as explained hereinafter.

In operation, the mechanism functions as follows. Some hydraulic liquid is admitted into bag 64 and fills the volume 71 in bag 64. The remainder of the hydraulic liquid 106 is admitted into chamber 26. Pressurized gas 104 is admitted into chamber 26. When valve 88 is opened, and seat 16 is not occupied the pressure of the gas 104 on incompressible fluid 106 will force the fluid through orifice 100 and orifice 98 into tube 92 from whence it will pass through valve 88, tube 28 and into bag 64. As a greater liquid volume 66 occupies rolling sock diaphragm 64, it will force diaphragm 64 to expand upwardly, enlarging volume 71 and thereby pressing on plug 70 and forcing top support member 81 upwardly together with shaft 32 and support platform 36. Chair seat 16 will therefore move upwardly until valve 88 is closed. When valve 88 is closed, the seat cannot move downwardly because of the incompressibility of fluid 66 in bag 64. As explained hereinabove, bag 64 is constructed to have flexible walls. However, the walls should not stretch, and the material of which diaphragm 64 is constructed must therefore be chosen to be of sufficient thickness to prevent stretching under pressure of fluid in the bag. However, the material must be flexible enough to allow the bag to flex and act as a rolling sock to vary the size of volume 71. A preferable material for diaphragm 64 is neoprene rubber since this material is sufficiently flexible and is resistant to oil. The hydraulic fluid used is preferably water mixed with hydraulic oil.

If it is desired to lower chair seat 16, a weight is placed on the chair seat such as for instance by means of an occupant of the chair and valve 88 is opened. The weight of the occupant will cause pressure on the fluid in volume 71 causing it to flow through opening 79 in plug 70, through tube 28 and valve 88 into tube 92. The fluid pressure on ball 96 will cause ball 96 to seat in orifice 98 whereby the fluid can only pass into tank 26 through orifice 100. Orifice 100 is sized so that the flow through it is sufficiently slow to allow the downward speed of the chair seat to be comfortable for the chair occupant. In addition, the flow should be sufficiently slow so that the occupant can choose the exact position in which he wants to stop the descent of seat 16. If the fluid flow in the downward direction of the chair were made too fast, great coordination would be needed by
the occupant to stop the downward movement of the chair at the precise desired point.

What has therefore been provided is a very simple and efficient mechanism for raising and lowering the chair seat. No sliding seals are used in the construction of the mechanism whereby leakage is eliminated. Furthermore, no pumps are needed in order to provide upward movement of the mechanism since the pressurized gas 104 provides the pumping function. Additionally, the control can be located anywhere in the chair including the arm portion of the chair or the side of the chair seat where it is easily accessible to the user. The mechanism can also be incorporated in articles of furniture other than chairs, such as for instance tables, since the tank can be located anywhere in a convenient location so that the mechanism will not be bulky and take up too much space. It can also be seen that in the illustrated chair embodiment the entire upper structure including housing 34, tube 28 and tank 26 rotates with the chair seat. By this arrangement the control and tank can be located remotely in the chair.

The function provided by compressed gas 104 in chamber 26 is to force hydraulic fluid from chamber 26 into bag 64. In some cases it may be possible that alternative embodiments can be provided wherein the fluid transfer function is provided by other means. For instance, a pump could be provided to transfer fluid through conduit 28. Alternatively, chamber 26 could be expandable and means could be provided to expand and collapse chamber 26 so as to transfer fluid between the two chambers.

Turning now to Figs. 3, 4, and 5 an alternate embodiment of the invention is shown as follows. The chambers for containing the hydraulic liquid are arranged concentrically rather than remotely from each other as shown in Fig. 1. Thus, by reference to Fig. 3 it is shown that the arm 18 of the chair does not contain a tank. Tube 28 loops from mechanism 20 upwardly along the bottom of the seat portion of chair 16 and then back to mechanism 20. Control valve 30 in house loop 28 is located at the side of the chair seat portion for easy accessibility by the seat occupant.

Lower cylindrical housing cover 24 and bottom portion 50 thereof are stationary. Stationary support column 40 extends upwardly from the bottom portion in which thrust bearing 38 is provided. End 44 of shaft 40 is received in recess 45 of support member 62. Guide tube 46 surrounds shaft 40 to prevent lateral movement thereof. Diaphragm 64 is enclosed in cylindrical member 56. Diaphragm 64 is sealingly connected to support member 62 with crimp ring 68 and to plug 70 with crimp ring 72. Circumferential chamber 108 surrounds cylinder 56 and is spaced therefrom by means of ring spacers 114, three of which are provided in the illustrated embodiment. Spacers 114 form sleeve bearing surfaces for telescoping cylinder 56. Chamber 108 comprises two cylindrical walls including inner wall 112 and outer wall 110. An upper wall 111 and a lower wall 113 complete chamber 108. Chamber 108 is sealed and contains hydraulic fluid 106 and pressurized gas 104 as indicated. Chamber 108 also has a fitting 102 to allow the addition of hydraulic fluid and pressurized gas to the chamber. A fitting 116 is also provided in an aperture in top wall 111 of chamber 108 for transfer of hydraulic fluid to the chamber. Conduit 28 connects to fitting 116 in a conventional manner such as by the inclusion of ridges on the fitting for engagement with conduit 28. Flexible conduit 28 connects to connector 84 having ridges 88 thereon as explained hereinabove in connection with Fig. 2. Chamber 108 is rotatably received in housing cover 24 and is spaced therefrom by means of spacer 48 which forms a sleeve bearing. Spacers 48 can be constructed of plastic as explained hereinabove in connection with Fig. 2.

Fig. 5 shows a sectional view taken along the line 5-5 of Fig. 4 and shows that all parts sectioned by line 5-5 are cylindrical. In operation, cylindrical inner tube 56 moves as a unit with top support member 81 as fluid is added or removed from volume 68 of bag 64. Rings 114 form bearing surfaces between wall 112 of chamber 108 and tube 56. Control valve 30 comprises a simple pinch-off valve 118, as illustrated. However, it should be understood that valve 30 can comprise any one of a variety of valves including the two speed valve of the embodiment of Fig. 2. Thus, as valve 118 is squeezed by the operator to open the same, fluid will transfer from pressurized chamber 108 through fitting 116 and tube 28 into volume 71. However, if a weight is placed upon the chair seat such as by an occupant, the flow of liquid will be in reverse from volume 71 to chamber 108 when valve 118 is opened.

It should be noted that fitting 116 extends into the bottom portion of chamber 108 so that only liquid will be transferred between the two chambers. It should also be noted that bag 64 contains only liquid. As explained hereinabove, if gas were admitted into bag 64 the seat support would have a spongy feel to it, which is undesirable.

Turning now to Fig. 6, an alternate embodiment of the invention is shown wherein the two chambers are disposed in stacked relationship. Then in this embodiment the entire lifting mechanism can be located in the base of the chair or the like. A base 12 is again shown attached to lower cylindrical housing cover 24. Shaft 40 is provided for supporting support member 62 to which a bottom portion of diaphragm 64 is secured by crimp ring 68 as explained hereinabove. The mechanism is shown in its lowermost position. A thrust bearing 38 is provided in the lower portion of housing cover 24 for supporting bottom portion 52 of upper cylindrical housing cover 34. The top portion of diaphragm 64 is secured to plug 70 by means of crimp ring 72. Plug 70 has an aperture 79 therein for permitting hydraulic fluid to flow into and out of volume 71.

Disposed superjacent plug 70 is a separator
member 120 having an aperture 121 therein to allow a tube 124 to extend therethrough for enabling hydraulic fluid to be transferred to and from volume 71. A chamber 123 located above separator 120 has side walls 126 to form the sealed chamber 123 including a top wall portion 122. Tubes 116 and 124 are sealingly received in apertures 125 and 127 in top wall 122 for connection to tube 28. Tube 16 extends into the bottom portion of chamber 123 whereby only hydraulic fluid will be transferred between volume 71 and chamber 123. Shaft 32 is secured to top support surface 128 and conduit 28 extends through an opening 130 in upper portion 132 of cylindrical wall 126.

In operation, as pinch-off valve 118 is operated, hydraulic fluid transfers under pressure of gas 104 through tube 116, conduit 28 and tube 124 into volume 71 thereby causing bag 64 to exert an upward force on plug 70 and separator 120. The upward force is transmitted to cylindrical wall 126 whereby cylindrical wall 126, separator 120 and top support surface 128 will rise upwardly. When an occupant is seated in chair seat 16, a downward force on platform 36 and shaft 32 causes a force to be transmitted to plug 70 thereby squeezing bag 64 and forcing the hydraulic fluid to flow in a reverse direction through tube 124, conduit 28 and tube 116 back into chamber 123 and allowing shaft 32 to descend.

It should be understood that while valve 118 is shown schematically as a simple pinch-off valve, it can comprise any one of a variety of valves including the two speed valve of the embodiment of Fig. 2 to control fluid flow through conduit 28 and to enable the transfer of fluid between volume 71 and chamber 123.

As explained above, in some cases it may be possible that alternative means could be provided to transfer fluid from chamber 23 to volume 71, for instance, a pump could be provided. Alternatively, chamber 123 could be constructed to have a variable volume and means could be provided to expand and shrink the volume.

Fig. 7 discloses the embodiment of Fig. 6 with expandable bag 64 in its expanded position. By comparing Fig. 6 with Fig. 7 it can be seen that volume 71 in Fig. 7 is much larger than volume 71 of Fig. 6 and that the bottom portion of bag 64 is not folded back upon itself to the same extent as shown in Fig. 6. It can also be seen that cover 34 and chamber 123 have moved upwardly as a unit under pressure from the hydraulic fluid in volume 71 to support shaft 32 and platform 36 in an elevated position. By reference to this figure it can also be seen that conduit 28 has moved upwardly together with the remainder of the working parts of the mechanism. The walls of bag 64 are in contact with the inside of tank wall 126 so that volume 71 can expand only in the upward direction.

The operation of bag 64 is similar in all embodiments. In the interest of clarity, the expanded position of bag 64 has only been shown for the embodiment of Fig. 7. However, by reference to the embodiments of Figs. 1-5 it can be seen that bag 64 operates the same way in those embodiments as in the embodiment shown in Figs. 6 and 7.

Claims

1. A hydraulic lift mechanism for adjustably supporting an article of furniture (10) comprising:
 a. a base (12);
 b. a telescoping support member (81) movable between extended and retracted positions;
 c. a first fluid filled chamber (28);
 d. a second fluid filled chamber (7) inside the telescoping support member (81), the volume (71) of the second chamber being variable, and the support member (81) telescoping in response to variations in the variable volume (71) of the second fluid filled chamber;
 e. conduit means (28) connecting the first chamber (26) to the second chamber; and,
 f. control means (30) in the conduit means for selectively enabling the conduit means (28) to transfer fluid between said chambers:
 characterised in that the second fluid filled chamber (7) is at least partly defined by a flexible wall (64) to accommodate variations in volume (71) of the second fluid filled chamber.

2. A mechanism according to claim 1 wherein the first chamber (26) contains both a liquid and a gas, the gas being under compression, and the conduit means (28) being connected to permit only liquid to pass between said chambers.

3. A mechanism according to claim 1 or 2, wherein the control means (30) enables liquid to be transferred through the conduit means (28) at a first rate in a first direction and at a second rate in a second direction.

4. A mechanism according to claim 1, 1 or 2, wherein the control means comprises a valve (88) including means for enabling fluid flow from the first chamber (26) to the second chamber at a first flow rate and for enabling fluid flow from the second chamber to the first chamber (26) at a second flow rate, said first flow rate being greater than said second flow rate.

5. A mechanism according to any one of the preceding claims, wherein the article of furniture is a chair (10) and the control means (30) is located in a portion of the chair remote from the base (12) and support member (81).

6. A mechanism according to claim 5, wherein the first fluid filled chamber (26) is located in an arm (18) of the chair.

7. A mechanism according to any one of the preceding claims, wherein the second chamber is defined by a flexible rolling diaphragm (64) sealingly secured to a closure member (70), the closure member (70) including an aperture (79) connected to one end of the conduit means (28).

8. A mechanism according to any one of the preceding claims, wherein the liquid is a hydraulic liquid and wherein only liquid is transferred between said two chambers.

9. A mechanism according to any one of the preceding claims, includes a bearing means (38) rotatably supporting the telescoping support member (81).
Patentansprüche

1. Hydraulische Hubvorrichtung zum verstellbaren Tragen eines Möbelstückes (10), umfassend: eine Basis (12); ein teleskopierbares Tragelement (81), das zwischen einer ausgefahrenen und einer eingefahrenen Position bewegbar ist; eine erste, mit einem flüssigen Medium gefüllte Kammer (26); eine zweite, mit einem flüssigen Medium gefüllte Kammer, die sich innerhalb des teleskopierbaren Tragelementes (81) befindet, deren Volumen (71) variabel ist, und wobei sich das Tragelement in Abhängigkeit von Veränderungen des variablen Volumens (71) in der zweiten, mit einem flüssigen Medium gefüllten Kammer teleskopiert; eine Leitung (28), die die erste Kammer (26) mit der zweiten Kammer verbindet; und eine Regelleinrichtung (30) in der Leitung, um die Leitung (28) in einstellbarer Weise zu verlassen, flüssiges Medium zwischen den Kamern zu übertragen, dadurch gekennzeichnet, daß die zweite mit flüssigem Medium gefüllte Kammer (7) wenigstens teilweise von einer flexiblen Wand (64) begrenzt ist, um Veränderungen des Volumens (71) der zweiten, mit flüssigem Medium gefüllten Kammer Rechnung zu tragen.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die erste Kammer (26) sowohl eine Flüssigkeit als auch ein Gas enthält, daß das Gas unter Druck steht, und daß die Leitung (28) derart angeschlossen ist, daß sie lediglich den Austausch von Flüssigkeit zwischen den Kamern zuläßt.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es die Regelleinrichtung (30) der Flüssigkeit erlaubt, durch die Leitung (28) in einer ersten Menge sowie in einer ersten Richtung, und in einer zweiten Menge und in einer zweiten Richtung miteinander zu strömen.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Regelleinrichtung ein Ventil (88) aufweist, das eine Einrichtung enthält, um ein Strömen des flüssigen Mediums aus der ersten Kammer (26) zur zweiten Kammer bei einem ersten Durchsatz zu erlauben, und um ein Strömen des flüssigen Mediums aus der zweiten Kammer zur ersten Kammer (26) bei einem zweiten Durchsatz zu erlauben, wobei der erste Durchsatz größer als der zweite Durchsatz ist.

5. Vorrichtung nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, daß das Möbelstück ein Stuhl (10) ist, und daß die Regelleinrichtung (30) in einem Bereich des Stuhls angeordnet ist, der von der Basis (12) und der Trageeinrichtung (81) entfernt ist.

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die erste, mit einem flüssigen Medium gefüllte Kammer (26) in einem Arm (18) des Stuhls angeordnet ist.

7. Vorrichtung nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Kammer von einer flexiblen, auf und abrollbaren Membran (64) begrenzt ist, die an einem Abschlußorgan dichtend befestigt ist, und daß das Abschlußorgan (70) eine Öffnung (79) aufweist, die an ein Ende der Leitung (28) angeschlossen ist.

8. Vorrichtung nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, daß die Flüssigkeit eine hydraulische Flüssigkeit ist, und daß lediglich Flüssigkeit zwischen den beiden Kamern ausgetauscht wird.

9. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, daß ein Lager (38) vorgesehen ist, das das teleskopierbare Tragelement (81) drehbar lagert.

Revendications

1. Dispositif de levage hydraulique pour supporter de manière réglable un article de mobilier (10) comprenant:
 une base (12); un élément de support télescopique (81) pouvant se déplacer entre une position déployée et une position rétractée; une première chambre remplie de fluide (26); une seconde chambre remplie de fluide placée à l’intérieur de l’élément de support télescopique (81), le volume (71) de la seconde chambre étant variable, et l’élément de support (81) effectuant un mouvement télescopique en réponse aux variations du volume variable (71) de la seconde chambre remplie de fluide; des moyens de conduit (28) reliant la première chambre (26) à la seconde chambre; et des moyens de commande (30) placés dans les moyens de conduit pour permettre sélectivement aux moyens de conduit (28) de transférer le fluide entre les chambres; caractérisé en ce que la seconde chambre remplie de fluide (7) est définie au moins partiellement par une paroi flexible (64) pour s’adapter aux variations de volume (71) de la seconde chambre remplie de fluide.

2. Mécanisme selon la revendication 1, caractérisé en ce que la première chambre (26) contient à la fois un liquide et un gaz, le gaz étant sous pression, et les moyens de conduit (28) étant branchés pour ne permettre que le passage du liquide entre les chambres.

3. Mécanisme selon l’une quelconque des revendications 1 et 2, caractérisé en ce que les moyens de commande (30) permettent au liquide d’être transféré par les moyens de conduit (28) à une première vitesse dans une première direction et à une seconde vitesse dans une seconde direction.

4. Mécanisme selon l’une quelconque des revendications 1 à 3, caractérisé en ce que les moyens de commande sont constitués par une soupape (88) comprenant des moyens pour permettre au fluide de circuler de la première chambre (26) vers la seconde chambre à une première vitesse de débit, et pour permettre au fluide de circuler de la seconde chambre vers la première chambre (26) à une seconde vitesse de débit, la première vitesse de débit étant supérieure à la seconde vitesse de débit.
5. Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce que l'article de mobilier est un fauteuil (10) et en ce que les moyens de commande (30) sont placés dans une partie du fauteuil éloignée de la base (12) et de l'élément de support (81).

6. Mécanisme selon la revendication 5, caractérisé en ce que la première chambre remplit de fluide (25) est placée dans un bras (18) du fauteuil.

7. Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce que la seconde chambre est définie par un diaphragme de roulement flexible (64) fixé de manière étanche à un élément de fermeture (70), l'élément de fermeture (70) comportant une ouverture (79) reliée à une extrémité des moyens de conduit (28).

8. Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide est un liquide hydraulique et en ce que seul du liquide est transféré entre les deux chambres.

9. Mécanisme selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de support (38) supportant en rotation l'élément de support télescopique (81).