Composite sintered material having sandwich structure.

Priority: 01.11.84 JP 228998/84
Date of publication of application: 07.05.86 Bulletin 86/19
Publication of the grant of the patent: 07.08.91 Bulletin 91/32
Designated Contracting States: DE FR GB SE
References cited:
GB-A- 2 024 843
GB-A- 2 085 769
US-A- 4 403 015

Proprietor: SUMITOMO ELECTRIC INDUSTRIES LIMITED
No. 15, Kitahama 5-chome, Higashi-ku
Osaka-shi, Osaka 541(JP)

Inventor: Hara, Akio
c/o Itami Works of Sumitomo Industries, Ltd.
1-1, Koyakita 1-chome Itami-shi, Hyogo(JP)
Inventor: Yamamura, Akihiro
c/o Itami Works of Sumitomo Industries, Ltd.
1-1, Koyakita 1-chome Itami-shi, Hyogo(JP)

Representative: Haft, Berngruber, Czybulka
Postfach 14 02 46 Hans-Sachs-Strasse 5
W-8000 München 5(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

Field of the Invention

5 The present invention relates to a composite sintered material having a sandwich structure.

More particularly, the present invention relates to a composite sintered material composed of a hard layer of a sintered diamond compact sandwiched between a pair of substrates, which is suitably used as a material for drill.

Background of the Invention

10 The sintered diamond compact (which will be hereinafter referred to as "PCD") has been developed as a material for cutting tools of a long life time and has been in these years widely used as an indispensable material for tools for machining the materials which are hard to work. The usage of PCD, however, is restricted to certain articles, because the production process thereof is too severe to produce a piece of PCD of a complicated configuration.

Particularly in the case of the drilling tool which is fabricated by fitting a blade tip of PCD in the groove of the top end of a shank and brazing the same thereto, PCD is hard to be brazed to the shank generally of steel, and then a substrate of a sintered alloy, etc. is bonded to a layer of PCD so that the blade tip is fixed to the shank by brazing the substrate to the shank.

With a blade tip of this type, however, the brazed surface is not so large that it is not fixed to the shank so rigidly. Accordingly, it has been earnestly required to provide a PCD sandwiched with a pair of substrates of sintered alloy, etc.

Further in preparing a tipped drill from a PCD blade tip having a substrate on only one surface thereof, it is necessary to fix a pair of blade tips precisely symmetrically to each other about the rotating center of the drill. But, with a PCD blade tip in which the PCD layer is sandwiched between a pair of substrates, such a complicated positioning of the blade tips is no longer necessary.

GB-A 2 024 843 discloses a drawing die wherein a diamond sintered body is surrounded by a cermet consisting of (Mo, W)C. The cermet contains 5 to 30 Vol.-% of an iron group metal, and the diamond content of the sintered body can be as low as 70 Vol.-%. A thin partition can be interposed between the cermet and the diamond body, which partition consists of a IV or V group metal or a nitride thereof. US-A 4,403,015 discloses a composite having a sintered diamond compact, containing more than 20 Vol.-% of diamond, and an intermediate layer interposed between the diamond compact and a cermet, which intermediate layer contains CBN.

GB-A 2 085 769 discloses a composite of a hard layer of sintered boron nitride or diamond sandwiched between a pair of cermet substrates. Experiments revealed that many cracks developed in the hard layer of such a sandwich structure and thus, it is practically impossible to produce such a composite without cracks.

Summary of the Invention

40 Accordingly, it is an object of the present invention to provide a composite sintered material containing a PCD layer sandwiched between a pair of substrates which can be easily brazed to a shank and do not show any cracking when used as tip of a drill.

It is another object of the present invention to provide a composite sintered material having sandwiched structure which can be produced at high production yield.

It is still further object of the present invention to provide a composite sintered material suitably used as a blade tip for drill of a long life time.

According to the present invention, there is provided a composite sintered material having a sandwich structure comprising: a hard layer composed of sintered diamond compact containing exclusively 5 to 15 Vol.-% of an iron group metal and the balance of diamond particles; a pair of intermediate layers each having a thickness of 10 to 500 μm and bonded respectively to one of the opposite surfaces of said hard layer, each of said intermediate layers consisting essentially of 80 to 20% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of nitride, carbide, boronitride, boride and mutual solid solution thereof of the elements of the IVa, Va and VIA groups of the Periodic Table; and a pair of substrates bonded respectively to one of the surfaces of said intermediate layers to form a sandwich construction with the hard layer, each of said substrates being a sintered alloy containing 5 to 2% by weight of Co and/or Ni and the balance being WC and/or MoC.

That means, each of said intermediate layers consists of a material which has a thermal expansion
coefficient of 3.0×10^{-6} to $6.0 \times 10^{-6}/^\circ\text{C}$ and prevents the soaking of the iron group metal therethrough in the course of the sintering of the hard layer.

The pair of substrates bonded respectively to one of the surfaces of said intermediate layers to form a sandwich construction with the hard layer has a thermal expansion coefficient lower than $6.0 \times 10^{-6}/^\circ\text{C}$.

In case, the composite sintered material is intended for use as a blade tip for a drill, it is preferable that it has a thermal expansion coefficient lower than $4.6 \times 10^{-6}/^\circ\text{C}$.

According to the present invention, each of the intermediate layers consists essentially of 80 to 20% by weight, more preferably 80 to 50% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of nitride, carbide, carbonitride, boride and mutual solid solution thereof of the elements of the IVa, Va, VIA groups of the Periodic Table.

According to a preferred embodiment of the present invention, each of the intermediate layers consists of a material obtained by sintering a mixture containing 80 to 50% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of TiN, TiC and the mutual solid solution thereof.

High pressure boron nitride includes cubic boron nitride and wurtzite boron nitride.

Another embodiment of the invention in which the substrates are composed of W or Mo metal is outlined in the appended claim 4.

Brief Description of the Invention

Fig. 1 is a sectional view of a composite sintered material according to the present invention;

Fig. 2 shows a stack of layers of materials charged in a capsule for preparing a composite sintered material according to an embodiment of the invention;

Fig. 3 shows a stack of layers charged in a capsule for preparing a composite sintered material according to another embodiment of the invention;

Fig. 4 (a) is a side view of a twist drill which comprises a blade tip made from a composite sintered material according to the present invention, and Fig. 4 (b) is another side view of the above twist drill;

Fig. 5 (a) is an enlarged side view of the top portion of the twist drill shown in Figs. 4 (a) and (b), and Fig. 5 (b) is a top view of the above twist drill;

Fig. 6 (a) is a side view of a glass cutting tool prepared from a composite sintered material of the present invention, and Fig. 6 (b) is a front view thereof; and

Fig. 7 (a) is a side view of a drawing roll prepared from a composite sintered material of the present invention, and Fig. 7 (b) is a front view thereof.

Detailed Description of the Invention

As explained in the above, it is preferred to use a PCD blade tip sandwiched by a pair of substrates for rigidly fixing the same to the shank. In Japanese Patent laid-open NO. 57-66805, corresponding with GB-A-2088769, there is disclosed a composite sintered material in which a layer of PCD or sintered boron nitride is bonded between a pair of plates of cermet. Thus, we prepared such a composite sintered material with PCD.

The experiments revealed that many cracks are developed in the PCD layer and thus it is practically impossible to produce such a composite sintered material without cracks.

The reason why the cracks occur in the PCD layer is considered as follows:

For producing a composite sintered material composed of a PCD layer sandwiched between a pair of substrates, a layer of a diamond powder containing a bonding agent in the form of piece or powder is set between a pair of substrates made of a sintered alloy or metal and then sintered at high temperatures and under ultra high pressure to sinter the diamond layer and at the same time bond the thus obtained PCD layer to the substrates. After the sintering is completed, however, the ultra high pressure is released and the sintered material is then cooled down. At this time, there arises a thermal stress due to the difference in the thermal expansion coefficient between the PCD layer and the substrates. If there is a large difference of the thermal expansion coefficient between the PCD layer and the substrates, the residual stress is proportionally larger so that it causes cracking in the PCD layer.

In case that the PCD layer is bonded at only one surface thereof to a substrate, the thermal stress due to the difference of the thermal expansion coefficient is absorbed by the deformation of the sintered material so that there does not occur serious cracking in the PCD layer.

In case that the PCD layer is sandwiched between a pair of substrates, however, a thermal stress is generated in the tensile direction in both of the opposite surfaces of the PCD layer to cause cracking in the
PCD layer itself.
In order to prevent the cracking, we have tried to produce a composite sintered material of which the layers have an adjusted thermal expansion coefficient.

First we noted that the thermal expansion coefficient of the sintered alloy is determined mainly by the ratio between the amounts of the hard phase of carbide and the bonding phase of the iron group metal, and that the lesser is the amount of the bonding phase, the lower becomes the thermal expansion coefficient of the sintered alloy.

Table 1 shows the relationship between the Co content and the thermal expansion coefficient of WC-Co sintered alloy.

<table>
<thead>
<tr>
<th>Co (wt %)</th>
<th>thermal expansion coefficient (°C^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.7 x 10^-6</td>
</tr>
<tr>
<td>10</td>
<td>5.1 x 10^-6</td>
</tr>
<tr>
<td>6</td>
<td>4.7 x 10^-6</td>
</tr>
<tr>
<td>5</td>
<td>4.6 x 10^-6</td>
</tr>
<tr>
<td>4</td>
<td>4.5 x 10^-6</td>
</tr>
<tr>
<td>3</td>
<td>4.4 x 10^-6</td>
</tr>
<tr>
<td>2</td>
<td>4.3 x 10^-6</td>
</tr>
</tbody>
</table>

On the other hand, the thermal expansion coefficient of the PCD layer is dependent also upon the amount of the bonding material as shown in Table 2.

<table>
<thead>
<tr>
<th>Co (vol %)</th>
<th>thermal expansion coefficient (°C^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>4.7 x 10^-6</td>
</tr>
<tr>
<td>30</td>
<td>4.2 x 10^-6</td>
</tr>
<tr>
<td>20</td>
<td>4.0 x 10^-6</td>
</tr>
<tr>
<td>15</td>
<td>3.9 x 10^-6</td>
</tr>
<tr>
<td>10</td>
<td>3.8 x 10^-6</td>
</tr>
<tr>
<td>5</td>
<td>3.7 x 10^-6</td>
</tr>
</tbody>
</table>

Further, our experiments and calculation revealed that, if the difference of the thermal expansion coefficient between the PCD layer and the substrate is lower than 0.8 x 10^-6, there would not be cracking in the PCD layer and thus it would become possible to produce a composite sintered material of PCD having a sandwich structure at a high production yield.

Accordingly, for preventing the occurrence of cracks, the sintered alloy used as a substrate should
generally contain lower than 10 wt % of bonding agent.

In the case of a composite sintered material for use as a blade tip of drills, the PCD layer should contain 15 to 5 vol % of Co for obtaining a sufficiently high cutting performance, while the sintered alloy constituting a substrate therefor should contain 5 to 2 wt % of Co.

Further, in order to lower the thermal expansion coefficient of the PCD layer, it is preferable to incorporate Mo alloy and W alloy such as Mo carbide or W carbide in the PCD layer.

On the other hand, however, it is impossible with the sintering technics of the present stage to produce at a high production yield a sintered diamond by sintering only diamond powder without the addition of bonding agent such as iron group metal.

There has been a second problem to be resolved in order to obtain a composite sintered material. That is, in the ordinary production of PCD, the diamond powder is put adjacent to a sintered alloy so that the iron group metal contained in the sintered alloy is melted and the diamond powder is impregnated therewith during the sintering of high temperature. Otherwise, a powder of iron group metal is mixed to the diamond powder in advance of the sintering or a thin plate of iron group metal is put adjacent to the compact of the diamond powder. In this case also, the diamond powder is impregnated with the melted iron group metal during the sintering.

As described in the above, in order to produce a composite sintered material without cracking, it is necessary to lower the content of the iron group metal in the sintered alloy, while the diamond powder should contain a relatively high amount of the bonding metal in order to ensure a good sintered property. But, it is difficult to control the content of the iron group metal of the sintered alloy independently of that in the resulting PCD layer.

That is, when a diamond powder containing a high amount of iron group metal is put adjacent to a sintered alloy, the iron group metal is melted during the sintering and the sintered alloy is impregnated with the melted iron group metal, so that the content of the iron group metal in the substrates becomes higher with the result that the difference in the thermal expansion coefficient between the resulting PCD and the substrates becomes larger and cracking tends to readily occur in the course of the cooling thereof after the sintering.

On the other hand, if a diamond powder of which the content of iron group metal is also low is put adjacent to the sintered alloy and then sintered, the sintering cannot be conducted with a high production yield.

According to the present invention, these problems have been resolved by employing an intermediate layer to prevent the transfer of the iron group metal from the PCD layer to the substrate, so that a composite sintered material having a sandwich structure can be produced with the layers each having an adjusted thermal expansion coefficient.

As shown in Fig. 1, the composite sintered material according to the present invention consists essentially of a layer of PCD, a pair of intermediate layers 3 and 3' and a pair of substrates 2 and 2' which are respectively bonded to one of the opposite surfaces of the PCD layer 1 through the intermediate layer.

That is, the intermediate layers 3 and 3' are employed to prevent the iron group metal contained in the diamond powdor from transferring to the substrates 2 and 2'.

The thermal expansion coefficient of the substrates 2 and 2' is preferably as close as possible to that of the PCD layer 1 which is shown in Table 2. Thus, the sintered alloy constituting the substrates 2 and 2' should be lower than 6.0 x 10^{-6}\degree C.

As described in the above, the content of the iron group metal in the PCD layer 1 is between 5 and 15 vol %, in order that the composite sintered material can be used as a cutting tool. In the case that the sintered alloy of WC and/or MoC constitute the substrates 2 and 2', then these substrates should contain 2 to 5 wt % of Co and/or Ni so that the difference in the thermal expansion coefficient therebetween is less than 0.6 x 10^{-6}.

The intermediate layer 3 and 3' should also have a thermal expansion coefficient as close as that of the PCD layer 1 and the substrates 2 and 2'. In this regard, the intermediate layers 3 and 3' should have a thermal expansion coefficient of 3.0 to 6.0 x 10^{-6}\degree C. If this condition is not satisfied, the thermal stress due to the difference in the thermal expansion coefficient becomes larger than the bonding strength between the PCD layer 1 or the substrates 2 and 2' and the intermediate layers 3 and 3', so that the sandwich structure of the composite sintered material is broken.

The contact angle of the melted iron group metal or the alloy thereof with the intermediate layer 3 and 3' should be lower than 20\degree during the sintering of the composite material. When the contact angle is lower than 20\degree, for example, close to zero degree, the iron group metal contained in the diamond powder 1 readily soaks through the intermediate layer 3 and 3' and transfers into the substrates 2 and 2', so that the
content thereof in the substrates 2 and 2' becomes higher to result in a large difference in the thermal expansion coefficient between the PCD layer 1 and the substrates 2 and 2'.

The thickness of the intermediate layers 3 and 3' should be between 10 and 500 μm. With the intermediate layers 3 and 3' of a thickness smaller than 10 μm, the transfer of the iron group metal from the PCD layer 1 to the substrates 2 and 2' cannot be prevented effectively. On the other hand, a thickness larger than 500 μm generates a large thermal stress in the interface with the PCD layer 1 or the substrates 2 and 2' and causes the deformation or cracking of the resulting composite sintered material.

Further, with the intermediate layers 3 and 3' of a large thickness, the intermediate layers 3 and 3' should have a thermal expansion coefficient close to that of the PCD layer 1 and the substrate 2 and 2', so that the chemical composition of the employable materials as the intermediate layers 3 and 3' is restricted.

Further, the intermediate layers having a thickness larger than 500 μm would be easily exposed when the composite sintered material is machined in order to fix the same to other part of a working machine by brazing. The intermediate layers 3 and 3' are generally composed of a material which is hard to be brazed, and thus the exposure thereof should be not be made.

Although the present invention has been explained mainly with reference to the substrates of sintered alloy, the metals W or Mo can be employed as a material for the substrates 2 and 2', as far as they have a thermal expansion coefficient close to that of the PCD layer 1.

The present invention will be explained in more detail by way of Example which illustrates the present invention for representing the effect of the present invention. Thus, the example should not be construed to restrict the scope of the invention.

Example 1

A diamond powder 1 containing iron group metal, a pair of layers 3 and 3' of materials for the intermediate layers and a pair of layers 2 and 2' of materials for the substrates were stacked in a capsule as shown in Fig. 2. The capsule was charged to a ultra-high pressure and high temperature generator and sintered therein under 55,729 bar (55,000 atm.) at 1400°C.

The occurrence of the cracking was observed with the obtained composite sintered material and the results thereof are shown in Table 3 together with their chemical composition.

The Co distribution in the intermediate layers 3 and 3' of the specimens according to the present invention was examined by the x-ray microanalyser (XMA). This examination revealed that the Co content in the intermediate layers 3 and 3' was much lower than that in the PCD layer 1, which means that Co was not soaked through the intermediate layers.
Example 2

As shown in Fig. 3, a disc of WC-4%Co sintered alloy having a diameter of 30mm and a thickness of 3mm was coated with a powder mixture of TiN containing 60% of CBN and then put in a capsule to
constitute a substrate 2' and an intermediate layer 3' respectively. 2 grams of a diamond powder having a particle size of 5 to 10 μm and a plate of Co having a diameter of 30mm and a thickness of 200 μm was put on the upper surface of the intermediate layer 3' to constitute the PCD layer 1 and the bonding agent therefor respectively. Further, another disc of WC-4%Co having a same shape as the above disc but coated with the powder mixture of 60% CBN-TiN on the lower surface was put in the capsule on the upper surface of the Co plate 4 to constitute a substrate 2 and an intermediate layer 3.

The capsule was then charged in a hot press machine and sintered under 55,729 bar (55,000 atm) at 1400°C for 15 minutes.

Any of the obtained composite sintered materials did not present any cracking. The specimens were cut transversely. The microscopic observation on the transverse section revealed that the Co plate 4 had been melted and filled completely between the diamond particles and that the intermediate layer 3 and 3' were scarcely soaked with Co.

Example 3

Layers of materials for the PCD layer 1, the substrates 2 and 2' and the intermediate layers 3 and 3' respectively having a chemical composition as shown in Table 4 were sintered in the same manner as in Example 1. The CBN powder had a particle size of about 4 μm. The result of the observation of the cracking is also shown in Table 4.

Further, a twist drill of 6mm in diameter as shown in Fig. 4 was prepared from each of the specimens A to F and mounted on a drilling machine for drilling holes in an alloy of 20% Si-Al at 1500 rpm.

The twist drills made from the specimens A, B, D and F operated satisfactorily for 50,000 to 70,000 hits until they had to be exchanged because of wearing, while the drills made from the specimens C and D had to be exchanged because of wearing respectively after 5,000 hits and 20,000 hits.
<table>
<thead>
<tr>
<th>Substrate</th>
<th>PCD Layer</th>
<th>Number of Specimens in which Cracking was Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WC-5%Co</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>WC-5%Co</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>WC-5%Co</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>WC-5%Co</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>WC-5%Co</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>WC-5%Co</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CBN-10A</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

Example 4

A diamond powder having a particle size of 1 to 20 μm and containing 10wt% of 5%Fe-45%Ni-50%Co, and WC-5%Co sintered alloy were used respectively as a material for the PCD layer 1 and for the
substrates 2 and 2' together with mixtures of powder for the intermediate layers 3 and 3' of which the chemical compositions are shown in Table 5.

These materials were charged in a capsule as shown in Fig. 2 and sintered under 55,729 bar (55,000 atm) at 1400°C.

Any of the thus sintered composite materials did not present any cracking.

Table 5

<table>
<thead>
<tr>
<th>CBN (vol %)</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>TiTa (CN)</td>
</tr>
<tr>
<td>60</td>
<td>20% TiC + 20% TiN</td>
</tr>
<tr>
<td>50</td>
<td>40% TiN + 10% WC</td>
</tr>
<tr>
<td>20</td>
<td>TiB2 + Ti2AlN + TiN</td>
</tr>
<tr>
<td>60</td>
<td>TiCN</td>
</tr>
</tbody>
</table>

Example 5

As shown in Fig. 3, 2.0g of a mixture of a diamond powder of a particle size between 1 and 10 μm and 10wt% of a powder of WC-10%Co of a particle size of 1 to 2 μm was put in a capsule as the PCD layer 1 and a pair of Co plate 4 each having a thickness of 0.2mm were put on the opposite surfaces of said PCD layer 1. Further, on both of the lower and upper side of the stacked layers 1 and 4, 0.25g of a powder of 60vol%CBN - 40vol%TiN and a disc of WC-4%Co having a diameter of 30mm and a thickness of 3mm were put as the intermediate layers 3, 3' and the substrates 2 and 2'. The thus obtained stacked layers in the capsule were charged in a ultra-high pressure and high temperature generator of Garde type and maintained under 55 kbar at 1500°C for 15 minutes to thereby obtain a composite sintered material having a diameter of 30mm and a height of 6.5mm.

All of the resulting composite sintered materials were free of cracking.

Example 6

A pair of discs each having a diameter of 30mm and a thickness of 3mm and containing 3wt% of Co, 2wt% of Ni and the balance being of (Mo, W)C were coated on one surface with about 0.2g of a mixture of 60% of CBN and the balance of TiN which had been prepared by using a solvent of methyl alcohol. As the PCD layer 1, 3g of a diamond powder having a particle size of 1 to 20 μm was used.

The capsule in which the above layers were stacked as shown in Fig. 2 was charged in a ultra-high pressure and high temperature generator and then sintered under about 55 kbar at 1400°C. The resulting composite sintered materials were free of cracking.

As described in the above, the present invention successfully provides a composite sintered material having a large surface to be brazed with a tool holder and being excellent in the mechanical properties and free from cracking, which is suitable particularly as a blade tip for drills.

As shown in Figs. 4 (a) and (b), the composite sintered material according to the present invention may be machined into a pentagonal form 5 such as a piece of the Japanese chess and fixed to the top end of a shank to obtain a twist drill.

Referring Figs. 5 (a) and (b), a twist drill containing a blade tip made from the composite sintered material of the present invention will be explained in more detail.

The composite sintered material of the present invention is first cut to a pentagonal shape to form a blade tip and applied with a brazing material 4 on the surfaces of the substrates. The blade tip 5 is then inserted by pressing into a groove which has been made on the top end of the shank 6. Then, the surface
of the blade tip is ground to remove a portion of the substrate and the intermediate layer to expose the PCD layer 1 to thereby form a pair of cutting faces in a symmetrical disposition to each other about the rotating center of the drill.

By employing the composite sintered material according to the present invention, it is easy to position the cutting faces symmetrically to each other about the rotating center of the drill.

Further as shown in Fig. 5 (b), the forces due to the cutting operation are applied through the substrates 2, 2’ and the intermediate layers 3, 3’ to the drill in a symmetrical direction to each other about the rotating center of the drill so that the stresses exerted in the drill is well balanced even in the cutting operation at high speed. Moreover, because the cutting faces are constructed by the PCD layer 1 which is integral with the composite sintered material, the influence of the cutting load is further released.

The composite sintered material of the present invention may be of course used as a blade tip not only for the twist drill but also for the straight fluted drill.

Further, the composite sintered material may be used as a material for articles such as a glass cutting tool and a drawing roll which must be fixed to the holder with a high strength.

Figs. 6 (a) and (b) show a glass cutting tool made from a composite sintered material of the present invention. Fig. 6 (a) is a side view of the glass cutting tool and Fig. 6 (b) is a front view thereof.

Further the composite sintered material of the present invention may be used as a drawing roll as shown in Figs. 7 (a) and (b). Fig. 7 (a) is a side view of the drawing roll and Fig. 7 (b) is a front view thereof.

Because these glass cutting tool and the drawing roll are made of a composite sintered material comprising a pair of substrates which are readily fixed to a holder, they are very convenient for practical use.

Claims

1. Composite sintered material having a sandwich structure comprising:
 a hard layer composed of sintered diamond compact containing exclusively 5 to 15 vol% of an iron group metal and the balance of diamond particles;
 a pair of intermediate layers each having a thickness of 10 to 500 μm and bonded, respectively, to one of the opposite surfaces of said hard layer, each of said intermediate layers consisting essentially of 80 to 20% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of nitride, carbide, carbonitride, boride and mutual solid solution thereof of the elements of the IVa, Va and VIa groups of the Periodic Table; and
 a pair of substrates bonded respectively to one of the surfaces of said intermediate layers to form a sandwich construction with the hard layer, each of said substrates being a sintered alloy containing 5 to 2% by weight of Co and/or Ni and the balance being WC and/or MoC,
 wherein said intermediate layers have a thermal expansion coefficient of 3.0 x 10^-6 to 6.0 x 10^-6 °C^-1 and said substrates have a thermal expansion coefficient which is lower than 6.0 x 10^-6 °C^-1.

2. Composite sintered material set forth in claim 1 wherein each of said intermediate layer contains 80 to 50% by weight of high pressure boron nitride.

3. Composite sintered material set forth in claim 2 wherein each of said intermediate layer contains 80 to 50% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of TiN, TiC and the mutual solid solution thereof.

4. Composite sintered material having a sandwich structure comprising:
 a hard layer composed of sintered diamond compact containing 5 to 15 Vol.% of an iron group metal and the balance of diamond particles;
 a pair of intermediate layers each having a thickness of 10 to 500 μm and bonded respectively to one of the opposite surfaces of said hard layer, each of said intermediate layers consisting essentially of 80 to 20% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of TiN, TiC, the mutual solid solution thereof, Al and Si; and
 a pair of substrates bonded respectively to one of the surfaces of said intermediate layers to form a sandwich construction with the hard layer, each of said substrates being composed of W or Mo metal,
 wherein said intermediate layers have a thermal expansion coefficient of 3.0 x 10^-6 to 6.0 x 10^-6 °C^-1 and said substrates have a thermal expansion coefficient which is lower than 6.0 x 10^-6 °C^-1.

5. Composite sintered material set forth in claim 4 wherein each of said intermediate layer contains 80 to
50% by weight of high pressure boron nitride and the balance being TiN and/or TiC.

6. Composite sintered material set forth in claim 1, wherein each of said intermediate layer is made of a material obtained by sintering a mixture of 80 to 50% by weight of high pressure boron nitride and the balance being at least one member selected from the group consisting of TiN, TiC and the mutual solid solution thereof.

Revendications

1. Matériau composite fritté ayant une structure stratifiée, comprenant :
 une couche dure faite d'un comprimé de diamant fritté ne contenant que de 5 à 15% en volume d'un métal du groupe du fer, le reste étant des particules de diamant ;
 deux couches intermédiaires ayant chacune une épaisseur de 10 à 500 μm et liées respectivement à l'une des faces opposées de ladite couche dure, chacune de ces couches intermédiaires consistant essentiellement en de 20 à 80% en poids de nitride de bore haute pression, le reste étant au moins un composé choisi parmi le groupe consistant en nitrure, carbure, carbonitrure, borure et leurs solutions solides mutuelles, et les éléments des groupes IVa, Va et Vla du tableau périodique ;
 deux substrats liés respectivement à l'une des faces desdites couches intermédiaires de façon à réaliser une structure stratifiée avec la couche dure, chacun de ces substrats étant un alliage fritté contenant de 2 à 5% en poids de Co et/ou de Ni, le reste étant WC et/ou MoC,
 matériau dans lequel lesdites couches intermédiaires ont un coefficient de dilatation thermique allant de 3,0 x 10⁻⁶ à 6,0 x 10⁻⁶/°C et lesdits substrats ont un coefficient de dilatation thermique inférieur à 6,0 x 10⁻⁶/°C.

2. Matériau composite fritté selon la revendication 1, dans lequel chacune desdites couches intermédiaires comprend de 50 à 80% en poids de nitride de bore haute pression.

3. Matériau composite fritté selon la revendication 2, dans lequel chacune desdites couches intermédiaires comprend de 50 à 80% en poids de nitride de bore haute pression, le reste étant au moins un composé choisi parmi le groupe consistant en TiN, TiC et leurs solutions solides mutuelles.

4. Matériau composite fritté ayant une structure stratifiée, comprenant :
 une couche dure faite d'un comprimé de diamant fritté contenant de 5 à 15% en volume d'un métal du groupe du fer, le reste étant des particules de diamant ;
 deux couches intermédiaires ayant chacune une épaisseur de 10 à 500 μm et liées respectivement à l'une des faces opposées de ladite couche dure, chacune de ces couches intermédiaires consistant essentiellement en de 20 à 80% en poids de nitride de bore haute pression, le reste étant au moins un composé choisi parmi le groupe consistant en TiN, TiC, leurs solutions solides mutuelles, Al et Si ;
 deux substrats liés respectivement à l'une des faces desdites couches intermédiaires de façon à réaliser une structure stratifiée avec la couche dure, chacun de ces substrats étant composé du métal W ou Mo,
 matériau dans lequel lesdites couches intermédiaires ont un coefficient de dilatation thermique allant de 3,0 x 10⁻⁶ à 6,0 x 10⁻⁶/°C et lesdits substrats ont un coefficient de dilatation thermique inférieur à 6,0 x 10⁻⁶/°C.

5. Matériau composite fritté selon la revendication 4, dans lequel chacune desdites couches intermédiaires comprend de 50 à 80% en poids de nitride de bore haute pression, le reste étant TiN et/ou TiC.

6. Matériau composite fritté selon la revendication 1, dans lequel chacune desdites couches intermédiaires est faite d'une matière obtenue par frittage d'un mélange comprenant de 50 à 80% en poids de nitride de bore haute pression, le reste étant au moins un composé choisi parmi le groupe consistant en TiN, TiC et leurs solutions solides mutuelles.

Patentansprüche

1. Schichtförmiger gesinterter Verbundkörper, umfassend eine harte Schicht, welche aus einem gesinter- ten Diamant-Preßkörper Zusammengesetzt ist, welcher ausschließlich 5 bis 15 Vol.-% eines Eisengruppen-Metalls und Diamant-Teilchen als Rest enthält;
ein Paar von Zwischenschichten, die jeweils eine Dicke von 10 bis 500 \(\mu\)m aufweisen und jeweils an eine der gegenüberliegenden Oberflächen der besagten harten Schicht gebunden sind, wobei jede der besagten Zwischenschichten im wesentlichen aus 80 bis 20 Gew.-% Hochdruckboronitrid besteht und der Rest wenigstens ein Bestandteil ist, der ausgewählt wird aus der Gruppe, die aus einem Nitrid, Karbid, Karbonitrild, Borid und einer gegenseitigen festen Lösung davon von den Elementen der Gruppen IVa, Va und Vla des Periodensystems besteht; und ein Paar von Substraten, die jeweils an eine der Oberflächen der besagten Zwischenschichten gebunden sind, um einen Schichtaufbau mit der harten Schicht zu bilden, wobei jedes der besagten Substrate eine gesinterte Legierung ist, die aus 5 bis 2 Gew.-% Co und/oder Ni besteht mit WC und/oder MoC als Rest, wobei die besagten Zwischenschichten einen Wärmeausdehnungskoeffizienten von 3,0 \(\times\) 10^{-6} bis 6,0 \(\times\) 10^{-6} und die besagten Substrate einen Wärmeausdehnungskoeffizienten, der kleiner als 6,0 \(\times\) 10^{-6}/°C ist, aufweisen.

2. Gesinterter Verbundkörper nach Anspruch 1, wobei jede der besagten Zwischenschichten 80 bis 50 Gew.-% Hochdruckboronitrid enthält.

4. Schichtförmiger gesinterter Verbundkörper, umfassend: eine harte Schicht, die aus einem gesinterten Diamant-Preßkörper zusammengesetzt ist, der 5 bis 15 Vol.-% eines Eisengruppen-Metalls und Diamant-Teilchen als Rest enthält; ein Paar von Zwischenschichten, die jeweils eine Dicke von 10 bis 500 \(\mu\)m aufweisen und jeweils an eine der gegenüberliegenden Oberflächen der besagten harten Schicht gebunden sind, wobei jeder der besagten Zwischenschichten im wesentlichen aus 80 bis 20 Gew.-% Hochdruckboronitrid besteht und der Rest wenigstens ein Bestandteil ist, der aus einer Gruppe ausgewählt wird, die aus TiN, TiC, der gegenseitigen Lösung davon, Al und Si besteht; und ein Paar von Substraten, die jeweils an eine der Oberflächen der besagten Zwischenschichten gebunden sind, um einen Schichtaufbau mit der harten Schicht zu bilden, wobei jedes der besagten Substrate aus W- oder Mo-Metall zusammengesetzt ist, wobei die besagten Zwischenschichten einen Wärmeausdehnungskoeffizienten von 3,0 \(\times\) 10^{-6} bis 6,0 \(\times\) 10^{-6}/°C und die besagten Substrate einen Wärmeausdehnungskoeffizienten, der kleiner als 6,0 \(\times\) 10^{-6}/°C ist, aufweisen.

5. Gesinterter Verbundkörper nach Anspruch 4, wobei jede der besagten Zwischenschichten 80 bis 50 Gew.-% Hochdruckboronitrid und als Rest TiN und/oder TiC enthält.

FIGURE 5

(a) (b)