Metal passivation additive.

Priority: 13.04.84 US 599840

Date of publication of application: 23.10.85 Bulletin 85/43

Publication of the grant of the patent: 25.05.88 Bulletin 86/21

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
US-A-4 263 130
US-A-4 400 307

Proprietor: PHILLIPS PETROLEUM COMPANY
5th and Keeler
Bartlesville Oklahoma 74004 (US)

Inventor: Boston, Ernest Benton
No. 9 Perkins
Phillips, TX 79071 (US)

Representative: Dost, Wolfgang, Dr. rer. nat.,
Dipl.-Chem. et al
Patent- und Rechtsanwälte Bardehle-
+ Pagenberg-Dost-Altenburg & Partner Postfach
86 06 20
D-8000 München 86 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to the cracking of hydrocarbons. In particular it relates to the treatment of cracking catalyst to passivate metal. It also relates to an additive useful in the passivation of metals in a catalytic cracking operation. It further relates to the preparation of a catalyst composition useful in the presence of metals in a catalytic cracking operation.

Hydrocarbon feed stock containing higher molecular weight hydrocarbons is cracked by contacting it at an elevated temperature with a cracking catalyst whereby distillates such as gasoline and higher boiling hydrocarbon fuels, for example kerosene, diesel fuel, burning oils and the like are produced. Cracking catalyst, when used to crack feedstock that contain metals, accumulates a deposit of these metals. These metals usually consist of vanadium, iron, and nickel. This accumulation decreases the yield of gasoline from the cracking operation and increases the yield of hydrogen and coke. Therefore, there is a need for a cracking process or a modified cracking catalyst which will prevent or reduce the deleterious effects of these metal contaminants.

Prior inventions have used antimony compounds to aid in the passivation of metals in these hydrocarbon feed streams. US—A—4,321,129, incorporated by reference, shows the use of antimony and tin compounds. US—A—4,025,458 and US—A—4,190,552, show antimony compounds alone, are useful for the passivation of metals. With the increased metal content of crude oils today, it is important that the passivation compounds be inexpensive as possible in order to produce large volumes of gasoline and other higher boiling hydrocarbon fuels.

US—A—4,263,130 discloses the use of antimony tris (hydroxy carbyl sulfide) for treating a catalyst to passivate therein contaminating metals.

The object of this invention is to provide a passivation additive for metals deposited on cracking catalyst. Another object of this invention is to provide a metals passivation agent for hydrocarbon feed streams. A further object of this invention is to provide an inexpensive metals passivation agent for use in hydrocarbon cracking operations.

In accordance with the instant invention and as defined in the claims, antimony hydroxyhydroxyarbylthiol complexes have been found to be useful as metal passivation agents.

The antimony compound useful in accordance with this invention for passivating metals on cracking catalyst, can be either one or a mixture of different antimony compounds of the general formula below:

\[\text{Sb}[\text{SR(OH)}_{n}]_3 \]

where each R is hydrocarbyl containing not more than 18 carbon atoms and can be an alkyl, alkenyl, cycloalkyl, cycloalkenyl or aryl radical or a combination of radicals or a combination of radicals such as alkanyl, aralkyl, alkenylaryl and the like wherein the alkyl, alkenyl, etc. groups are substituted by one, two or three hydroxy groups depending on the value of n; and n can be 1 to 3 with the hydroxyl groups attached to any of the carbon atoms. Examples of such compounds are antimony tris(2-hydroxyethylthiolate), antimony tris(2-hydroxypropylthiolate), antimony tris(2,3-dihydroxypropyl-1-thiolate), antimony tris(2-hydroxybenzenthiolate).

The compound of the instant invention is prepared by reacting antimony oxide and hydroxyhydroxyarbylthiol at an elevated temperature. This temperature can range from 20° to about 200°C, preferably around 100°C. The resulting clear liquid antimony hydroxyhydroxyarbylthiol complex can then be used in the instant invention.

The amount of antimony compound employed in accordance with this invention can be varied in reasonable ranges. The range for the amount of antimony compound employed is relative to the amount of cracking catalyst to be treated. Any amount sufficient to passivate contaminating metals can be employed. It is presently preferred to use the antimony compound at a weight of less than about 8 weight percent antimony, based on the weight of the cracking catalyst and generally in the range of from about .02 to about 2 weight percent antimony, based on the weight of the cracking catalyst.

The cracking catalyst can be contacted with the antimony compound in various ways. One way is to impregnate the cracking catalyst with a solution of the antimony compound in a solvent such as 2-hydroxyethylthiol. In another embodiment the antimony compound either neat or in a solvent is metered to the feed oil of the catalytic cracker upstream of the feed pump. This procedure effects thorough dilution and mixing of the feed oil with the antimony compound and avoids lay downs of this antimony compound on, for example, the heat exchanger walls.

The antimony compound if added to the hydrocarbon feed stock is added at a rate to maintain the concentration of antimony in or on the catalyst generally within the range of 0.0001 to about 8, in particular 0.001 to about 8, and preferably in the range of about 0.02 to about 2 weight percent based on the weight of cracking catalyst. The amount of antimony compounds actually employed depends on antimony compound desired to be deposited on the cracking catalyst and the rate of catalyst withdrawal and addition. Once the desired level of the antimony compound on the cracking catalyst has been reached, only a small amount of the antimony compound is necessary in the feed stocks to maintain the desired level of this compound on the catalyst at equilibrium conditions.

The feed stocks used for cracking processes are conventional hydrocarbon feed stocks, namely
petroleum, fuel oil, shale oil, gas oil, topped crudes, etc. The cracking step of the catalytic cracking process is carried out at elevated temperatures of about 427°C to about 649°C and pressures in the range from atmospheric pressure up to 200 atmospheres (20.3 MPa).

The catalyst used for the cracking step is a conventional cracking catalyst. These catalyst generally contain silica or silica-alumina. Such materials are frequently associated with zeolitic materials. These zeolitic materials can be naturally occurring, or they can be produced by conventional ion exchange methods such as to provide metallic ions which improve the activity of the catalyst. Zeolite-modified silica-alumina catalysts are particularly applicable in this invention.

Examples of cracking catalysts into or onto which antimony can be incorporated include hydrocarbon cracking catalyst obtained by admixing an inorganic oxide gel with an aluminosilicate and aluminosilicate compositions which are strongly acidic as a result of treatment with a fluid medium containing at least one rare earth metal cation and a hydrogen ion, or ion capable of conversion to a hydrogen ion. The unused catalytic cracking material employed will generally be in particulate form having a particle size principally within the range of about 10 to about 200 μm.

In order to facilitate the handling of viscous liquid antimony hydroxyhydrocarbythiolates, solvents can be employed to dilute these compounds. For example, excess hydroxyhydrocarbythiol, used in the preparation of the antimony hydroxyhydrocarbythiolates or even crude by-products such as dimers, for example, thioglycol, or higher homologs resulting from the manufacture of hydroxyhydrocarbythiol can be used as diluents.

These antimony compounds resist dilution by other solvents unless the antimony compounds are already diluted with hydroxyhydrocarbythiol. When at least 20 weight percent thiol is present, then polar solvents such as ethylene glycol, dimethylformamide, dimethylacetamide, tetrahydrofuran, and ethylene glycol monobutyl ether, 2-propanol, and water can be used.

In addition to the antimony compounds disclosed here compounds containing elements selected from groups IVA, VA and VIA of the periodic table can be employed to passivate contaminant metals on cracking catalysts.

Other uses for this antimony compound include as a hydraulic fluid additive or as a fire retardant for plastics.

Example I

This Example discloses the preparation of antimony tris(2-hydroxyethylthiolate). This compound was prepared by the stoichiometric reaction between antimony oxide, Sb₂O₃, and 2-mercaptoethanol, also called 2-hydroxyethylthiol, HSC₂H₅OH.

A 1L stirred round-bottom flask was charged with 291.5g (1.00 mole) Sb₂O₃ and 470 g (6.00 mole) HSC₂H₅OH, under a stream of nitrogen gas. An exothermic reaction occurred as the temperature of the mixture rose to 80°C. A mantel heater was used to raise and maintain the temperature at about 110°C for about 2 hours. The reaction mixture became a viscous yellow liquid with a small amount of suspended white solid. During the reaction, 37 mL water by-product was collected in a Dean-Stark condenser trap. The reaction mixture was filtered to remove solids.

An infrared spectrum of the liquid product showed the absence of a SH stretching band around 2500 cm⁻¹ and the presence of a strong OH stretching band at 3460 cm⁻¹, consistent with antimony tris(2-hydroxyethylthiolate) structure.

In a second preparative run under the same conditions except that an excess of 2-mercaptoethanol was used to serve as a diluent, 55 mL water by-product (3 moles) was recovered. That amount of water is consistent with complete reaction of the antimony.

A third preparation of antimony tris(2-hydroxyethylthiolate) was made in an evacuated (20 mm) filter flask on a magnetic stirring hot plate. To 71.04 g (0.243 moles) Sb₂O₃ were added 174.4 g (2.23 moles) 2-mercaptoethanol. The temperature of the mixture was maintained between 80 and 130°C for two hours. A small amount of solid was filtered off to produce a clear yellow liquid product. Ethylene glycol, 2-butoxyethanol and water were found to be suitable diluents for the viscous yellow product.

Example II

A commercial cracking catalyst that had been used in a commercial fluid catalytic cracker until it had attained equilibrium composition with respect to metal accumulation (catalyst was being removed from the process system at a constant rate) was used to demonstrate passivation with antimony tris(2-hydroxyethylthiolate). The catalyst, being a synthetic zeolite combined with amorphous silica/alumina (clay), was predominately silica and alumina. Concentrations of other elements together with pertinent physical properties are shown in Table I.
Catalyst A was prepared by diluting antimony tris(2-hydroxyethylthiolate) and excess 2-hydroxyethylthiol with 2-propanol and adding it to 40 g of equilibrium cracking catalyst. Solvent was removed by heating, with stirring, on a hot plate at about 260°C. This treatment added 0.5 wt.% antimony to the catalyst.

Catalyst B was prepared by adding antimony tris(O,O-di-n-proplyphosphorodithioate) to 40 g of equilibrium cracking catalyst. Dry cyclohexane was added to dissolve the antimony compound and facilitate its distribution over the catalyst. After stirring, the mixture was heated at about 260°C until the solvent was evaporated. This catalyst contained 0.5 wt.% antimony.

Each catalyst was then prepared for testing by aging it. The catalyst in a quartz reactor was fluidized with nitrogen while being heated to 482°C, then it was fluidized with hydrogen while the temperature was raised from 482°C to 649°C. Maintaining that temperature, fluidization continued for 5 minutes with nitrogen, and for 15 minutes with air. The catalyst was then cooled to about 482°C; still being fluidized with air. The catalyst was then aged through 10 cycles, each cycle being conducted in the following manner. The catalyst at about 482°C was fluidized with nitrogen for 1 minute, and heated to 510°C during 2 minutes while fluidized with hydrogen, then maintained at 510°C for 1 minute while fluidized with nitrogen, then heated to about 649°C for 10 minutes while fluidized with air, and then cooled to about 482°C during 0.5 minutes while fluidized with air. After 10 such cycles it was cooled to room temperature while being fluidized with nitrogen.

The equilibrium catalyst and catalysts A and B were evaluated in a fluidized bed reactor using heavy oil as feedstock to the cracking step. A cracking reaction was carried out at 510°C at atmospheric pressure for 0.5 minutes and the regeneration step was conducted at about 649°C and atmospheric pressure for about 30 minutes using fluidizing air, the reactor being purged with nitrogen before and after each cracking step. Properties of a heavy crude used in the cracking steps are summarized in Table II.
TABLE II

API gravity at 15.6°C 18.2
Distillation (ASTM D 1160-61)
5% 729°F (387°C)
50% 991°F (533°C)
Conradson carbon 5.71 wt.%

Analysis for some elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Analysis, wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>12.1</td>
</tr>
<tr>
<td>Carbon</td>
<td>85.9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.8</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.45</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.15</td>
</tr>
<tr>
<td>Nickel</td>
<td>8.05 ppm</td>
</tr>
<tr>
<td>Vanadium</td>
<td>15.7 ppm</td>
</tr>
<tr>
<td>Copper</td>
<td>2.8 ppm</td>
</tr>
<tr>
<td>Iron</td>
<td>4.3 ppm</td>
</tr>
<tr>
<td>Sodium</td>
<td>10.9 ppm</td>
</tr>
</tbody>
</table>

Results of the tests using the equilibrium catalyst and catalysts A and B are summarized in Table III.

TABLE III

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Catalyst:oil wt. ratio</th>
<th>Conversion vol. % of feed</th>
<th>Gasoline vol. % of feed</th>
<th>SCF H₂/bbl (m³ H₂/l) feed converted</th>
<th>Coke wt% of feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>equilibrium</td>
<td>7.1</td>
<td>77.9</td>
<td>56.0</td>
<td>792 (0.14)</td>
<td>15.6</td>
</tr>
<tr>
<td>A</td>
<td>7.1</td>
<td>78.1</td>
<td>58.6</td>
<td>476 (0.0847)</td>
<td>13.3</td>
</tr>
<tr>
<td>B</td>
<td>7.1</td>
<td>76.0</td>
<td>58.4</td>
<td>456 (0.0812)</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Comparison of the results from the average of two runs with catalyst A with those from untreated equilibrium catalyst show that the use of antimony tris(2-hydroxyethylthiolate) as a metals passivation agent significantly improved the performance of metals contaminated equilibrium catalyst. Lower yields of coke and hydrogen along with the increased gasoline yield are shown. The results indicate with some certainty that catalyst A is just as effective as catalyst B. Catalyst B is a commercially made passivation catalyst. This work indicates that antimony tris(2-hydroxyethylthiolate) as a metals passivation agent is as effective as the more expensive, commercially available antimony tris(O,O-Di-n-propylphosphorodithioate).

Claims

1. A process for modifying an active hydrocarbon cracking catalyst to passivate contaminating metals comprising contacting said catalyst with at least one antimony compound characterized in that antimony hydroxyhydrocarbylthiolate is used as said antimony compound.

2. The process of claim 1 characterized in that said antimony hydroxyhydrocarbylthiolate has the formula

\[\text{Sb}[\text{SR(OH)}]_n \]

wherein R is a hydroxy-substituted hydrocarbyl group having from 1 to 18 carbon atoms and n is 1, 2 or 3.
3. The process of claim 1 or 2 characterized in that said antimony compound is used to provide from 0,0001 to 8 weight percent of antimony, based on the weight of said cracking catalyst; in particular wherein said antimony compound is used to provide from 0,02 to 2 weight percent of antimony, based on the weight of said cracking catalyst.

4. The process of any of the preceding claims characterized in that said contaminating metals are at least one of vanadium, iron and nickel; in particular wherein said active hydrocarbon cracking catalyst is a synthetic zeolite catalyst.

5. The process of any of the preceding claims characterized in that said antimony compound is antimony triis (2-hydroxyethylthiololate).

6. The process of any of the preceding claims characterized in that said antimony hydroxyhydrocarbarylthiolate is impregnated into said cracking catalyst with a solvent; in particular wherein said solvent is chosen from hydroxyhydrocarbarylthiol, thiodiglycol and other dimers or higher homologs; in particular wherein other solvents chosen from ethylene glycol, dimethylformamide, dimethyleacetamide, tetrahydrofurane, ethylene glycol monobutyl ether, 2-propanol and water are also present.

7. A process for cracking a hydrocarbon feedstock which comprises contacting said hydrocarbon feedstock under cracking conditions with an active hydrocarbon catalyst having been modified with at least one antimony compound, characterized by using a cracking catalyst having been modified with an antimony hydroxyhydrocarbarylthiolate.

8. The process of claim 7 characterized in that said modified cracking catalyst has been obtained according to any of claims 1 to 6.

9. The process of claim 7 characterized in that said antimony hydroxyhydrocarbarylthiolate is added to said hydrocarbon feedstock; in particular wherein said antimony compound is as defined in any of claims 2, 3 and 5.

Patentansprüche

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Antimon-hydroxyhydrocarbarylthiolat die Formel ausweist

\[\text{Sb}([\text{R(OH)}]_n) \]

wird, in den hydroxy-substituierten Hydrocarbyllrest mit 1 bis 18 Kohlenstoffatomen bedeutet und \(n \) den Wert 1, 2 oder 3 hat.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Antimonverbindung zur Erzielung von 0,0001 bis 8 Gewichtsprozent Antimon, bezogen auf das Gewicht des Crackkatalysators, verwendet wird, wobei insbesondere die Antimonverbindung zur Bereitstellung von 0,02 bis 2 Gewichtsprozent Antimon, bezogen auf das Gewicht des Crackkatalysators, verwendet wird.

5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Antimonverbindung um Antimon-tris(2-hydroxyethylthiolat) handelt.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der modifizierte Crackkatalysator gemäß einem der Ansprüche 1 bis 6 erhalten worden ist.

9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Antimon-hydroxyhydrocarbarylthiolat dem Kohlenwasserstoffausgangsmaterial zugesetzt wird, wobei die Antimonverbindung insbesondere der Definition von einem der Ansprüche 2, 3 und 5 entspricht.
Revendications

1. Procédé de modification d’un catalyseur de craquage d’hydrocarbures actif pour passer les impuretés métalliques comprenant la mise en contact du catalyseur avec au moins un composé de l’antimoine, caractérisé en ce que l’on utilise comme composé de l’antimoine un hydroxyhydrocarbylthiolate d’antimoine.

2. Procédé selon la revendication 1, caractérisé en ce que l’hydroxyhydrocarbylthiolate d’antimoine a pour formule

\[
\text{Sb}[(\text{SR}(\text{OH}))\text{n}]_3
\]

dans laquelle R représente un groupe hydrocarboné hydroxysubstitué ayant de 1 à 18 atomes de carbone et n est égal à 1, 2 ou 3.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l’on utilise le composé de l’antimoine de manière à obtenir de 0,0001 à 8 % en poids d’antimoine, exprimé par rapport au poids du catalyseur de craquage; en particulier en ce que l’on utilise le composé d’antimoine de manière à obtenir de 0,02 à 2 % en poids d’antimoine, exprimé par rapport au poids du catalyseur de craquage.

4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que les impuretés métalliques sont choisies parmi au moins l’un des éléments du groupe constitué par le vanadium, le fer et le nickel, et en particulier en ce que le catalyseur de craquage d’hydrocarbure actif est un catalyseur de zéolite synthétique.

5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le composé de l’antimoine est le tri(2-hydroxyéthylthiolate) d’antimoine.

6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on imprègne le catalyseur de craquage avec l’hydroxyhydrocarbylthiolate d’antimoine avec un solvant, et en particulier en ce que le solvant est choisi parmi des hydroxyhydrocarbylthiols, le thiodiglycol et d’autres dimères ou homologues supérieurs; et en particulier en ce que d’autres solvants choisis parmi l’éthylène glycol, le diméthylformamide, le diméthylacétamide, le tétrahydrofuran, l’éther oxyde monobutylique de l’éthyléneglycol, le 2-propanol et l’eau sont également présents.

7. Procédé de craquage d’une matière première contenant des hydrocarbures qui comprend la mise en contact de la matière première contenant des hydrocarbures dans des conditions de craquage avec un catalyseur actif pour les hydrocarbures ayant été modifié avec au moins un composé de l’antimoine, caractérisé en ce que l’on utilise un catalyseur de craquage ayant été modifié avec un hydroxyhydrocarbylthiolat d’antimoine.

8. Procédé selon la revendication 7, caractérisé en ce que l’on a obtenu le catalyseur de craquage modifié conformément à l’une quelconque des revendications 1 à 6.

9. Procédé selon la revendication 7, caractérisé en ce que l’on ajoute l’hydroxyhydrocarbylthiolat d’antimoine à la matière première hydrocarbonée; et particulier en ce que le composé de l’antimoine est tel qu’on l’a défini selon l’une quelconque des revendications 2, 3 et 5.