Drill for generating a hole in a work piece.

Priority: 09.04.84 SE 8401964

Date of publication of application: 16.10.85 Bulletin 85/42

Publication of the grant of the patent: 08.06.88 Bulletin 88/23

Designated Contracting States: DE FR GB IT NL

References cited:
DE-A-2 823 104
DE-C- 652 450
FR-A-1 087 899
FR-A-2 535 635
GB-A- 444 036

Proprietor: Santrade Ltd.
Alpenquai 12 P.O. Box 321
CH-6002 Luzern (CH)

Inventor: Isaksson, Bertil
Bessemergatan 6L
S-811 33 Sandviken (SE)

Representative: Taquist, Lennart et al
Sandvik AB Patents & Licences Fack
S-811 81 Sandviken 1 (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
The present invention relates to a drill for generating a hole in a work piece, preferably in a composite of at least a first material and a second material having a higher modulus of elasticity than the first material. The drill comprises a shank portion having a mainly cylindrical envelope surface, a first and a second passage and cutting portions. The first passage extends mainly axially along the center line of the drill and it has a generally circular cross-section. The second passage opens the first passage towards the envelope surface of the drill.

The cutting portions comprise a generally circumferentially extending first cutting edge configured as an arc disposed at a longitudinally front edge of said envelope surface and lying flush with said envelope surface. The first cutting edge terminates at a second cutting edge which extends generally longitudinally rearwardly from said front edge and which lies flush with said envelope surface. The second cutting edge is situated at a circumferentially forward end of said first cutting edge with reference to a direction of rotation of said shank portion about said center line. The second cutting edge is formed at the intersection of the envelope surface and a chip surface, said surfaces enclosing an internal acute angle. A third cutting edge extends from the envelope surface of the drill generally radially inwards such that an extension line of the third cutting edge as seen in top view forms a chord in the circular periphery of the first passage. The third cutting edge is arranged mainly axially inside the general position of the first cutting edge.

Known drills for drilling of composite materials have a shape similar to those of drills for wood comprising a centering tip and cutting edges arranged symmetrically therearound. A disadvantage with these drills is that they tear off the fibers arranged in the composite material, especially at the exit part of the hole when the drill penetrates the material. The fibers will therefore be forced outwardly at the exit part of the hole so that the hole obtains a very fringly end and/or delamination in the surrounding fiber layers. Furthermore the areas between the cutting tips and the centering tip will be filled up with cut material at drilling of sandwich panels which disturbs the continuous drilling in the material. The known drills are sensitive to chipping of the cutting edges. Furthermore, the center part of the drill cuts negatively, i.e. it presses the material before it, which prevents a clean cutting operation of the hole and raises the temperature in the cutting area so that the matrix material, for example epoxy, melts and flows out of the hole wall and thereby deteriorates the strength of the hole area.

DE-C-652-460 shows a drill having a central passage for a drilled core. The drill has cutting edges placed at the radially outer side of its envelope such that chips will flow on the outer side of the drill.

The object of the present invention is to attain a drill for drilling of work pieces preferably of composite material through which shape the above-mentioned disadvantages are avoided. A preferred embodiment of the invention will be more closely described in the following with reference to the attached drawings wherein further advantages of the invention will be apparent. Fig. 1 and 2 show a cutting end of a drill in different side views.

Fig. 3 shows the drill according to Fig. 1 in a top view.

Fig. 4 shows the cutting end of the drill in a perspective view.

Fig. 5 shows a part of the cutting end of the drill spread in a plane.

Fig. 6 shows a perspective view of the drill in engagement with a work piece.

Fig. 7 shows a cross section of the work piece being drilled, according to line VII-VII in Fig. 6.

Figs. 1-4 show a drill 10 for drilling in a composite material such as for example an epoxy reinforced by glass-, carbon- or Kevlar®-fibers or a sandwich panel which is a laminate of a spacer material, such as honeycomb core portion sandwiched between fiber reinforced sheets of plastics. The drill 10 comprises a cylindrical, oblong shank portion 11, a first passage 12, a second passage 12A, a first cutting edge 13, a second cutting edge 16, and a third cutting edge. The shank portion 11 is arranged to be secured to a chuck of a drilling machine, not shown. The first passage 12 and the second passage 12A are ground out of a massive body, preferably of hard metal. The depths of the passages successively diminish axially inwards and end in the envelope surface 114A of the drill 10 in direction towards the securing end of the drill.

The first passage 12 will receive a core or a plug drilled out of the composite material. The second passage 12A will receive chips cut from the composite material. The first cutting edge 13 is arranged in the envelope surface 11A of the drill and lies flush with this along an arc of a circle, which is defined by the mid-point angle α and the radius of the drill. The angle α is selected from the interval 30 to 160°, preferably 100 to 150°. The first cutting edge 13 is surrounded by the envelope surface 11A and a first chip surface 15, which ends in the first passage 12 and in the second passage 12A, which surfaces are separated in a cross section in a plane normal to the envelope surface by an internal angle, the edge angle, of about 20 to 40°, preferably 30°. The center line of the first passage 12 mainly coincides with the center line CL of the drill 10. The radius of the first passage lies in the interval 50 to 75% of the radius of the drill, preferably 60 to 65%. The depth of the first passage 12 is chosen depending of the thickness of the material. The first passage is opened towards and in the envelope surface of the drill by the second passage 12A which opens the first passage about along half of its circumference, see the dotted half of a circle in Fig. 3. The first cutting edge 13 terminates in its front end with respect to its rotational direction, see arrow in Fig. 3, in an
axially directed second cutting edge 16 which achieved a positive cutting geometry through grinding of a second chip surface 17. The second cutting edge 16 precedes the first cutting edge 13 in the rotational direction of the drill. The main extension of the second cutting edge is parallel to the center line CL of the drill. The third cutting edge 14 is arranged on a distance in front of the second cutting edge 16 in the rotational direction and extends from the envelope surface 11A inwardly towards the center of the drill or so that an extension of the third cutting edge 14 forms a chord in the circular periphery of the first passage 12. The third cutting edge lies in a plane normal to the center line CL of the drill and has an extension which at least corresponds to 20% of the radius of the drill, preferably 25 to 50%. The third cutting edge 14 is surrounded by a clearance face 18, a third chip surface 19 and the envelope surface 11A. An opening 20 is arranged between the second cutting edge 16 and the clearance face 18, which acts as space for a grinding tool at the production of the drill. The corner between the second cutting edge 16 and the first cutting edge 13 has been made sharp in this embodiment, but the edges may alternatively be joined by a rounded portion. The first cutting edge may alternatively be shaped out of a number of separated segments. The third cutting edge 14 is inclined an angle relative to a normal N2 of the center line CL. This angle is selected from the interval 5 to 20°. The third cutting edge 14 may also be inclined relative to the plane normal to the center line CL. The angle γ defining the inclination of the second chip surface 17 relative to a normal N2 of the periphery of the drill 10 shown in Fig. 3 is between 45 to 80° so that the effective rake angle of the second cutting edge 16 will be about 30°. In order to reduce the friction between the envelope surface 11A and the work piece portions of the drill 10 defining the envelope surface 11A are removed, to form two axially extending, spaced apart radial relief segments 11B. These segments 11B have a radial dimension less than the maximum radial dimension of the drill 10. The segments of the envelope surface adjacent the radial relief segments constitute at least three axially extending wear strip segments of the envelope surface 11A. The wear strips have a radial dimension which is the maximum radial dimension of the drill. Thus, during a drilling operation, the wear strip segments of the envelope surface serve to guide the drill within the hole being formed. The wear strips are shown only in Figs. 1-3.

In Fig. 5 is shown an upper part of the cutting end of the drill 10, which has been spread in the figure for better disclosing of the invention. The envelope surface 11A of the drill is turned towards the viewer. The axially outermost part of the third cutting edge 14 is arranged axially inside the axially outermost part of the main cutting edge 13 so that the third cutting edge engages the work piece shortly after the engagement thereof by the first cutting edge. The length of the third cutting edge 14 is at least 20% of the radius of the drill, preferably 25 to 50%. The distance w between the main axial position of the third cutting edge and the main axial position of the first cutting edge may be between 1 to 20% of the length of the third cutting edge, corresponding to about 0.1 - 0.3 mm. The third cutting edge coincides in Fig. 1 with a plane normal to the center line CL of the drill but it may also be angled such that the inner end of the third cutting edge is axially closer to the securing end of the drill compared to the radially outer end of the third cutting edge. This inclination is selected to a maximum of 30°. The first cutting edge 13 is perpendicular to the center line in Fig. 3, but may alternatively be somewhat inclined relative to a plane P normal to the center line CL such that the end of the first cutting edge farthest away from the third cutting edge in Fig. 3 will be positioned axially closer to the securing end of the drill compared to the other end of the first cutting edge. This angle β have a maximum of 2°.

Referring to Figs. 6 and 7 a composite 21 is schematically illustrated in which an annular groove 22 is being drilled by a drill according to the invention. The composite 21 has been drilled just about through its width w17. The groove 22 has a center line CL2 which coincides with the center line CL of the drill 10. The drill 10 produces a core 23 in the composite 21 which is received by the first passage 12. When the drill 10 is rotated and moved towards the work piece surface the first cutting edge 13 will engage with this surface and the second cutting edge 16 will first slot a groove in the work piece whereafter the fibers which have been pressed under the second cutting edge will be cut by the following first cutting edge, the large extension of which prestresses the fibers before cutting. The second chip surface 17 have an extension w17, in this view, which is approximately 5 to 15% of the distance w, however exaggerated in Fig. 6. The second chip surface 17 will force the material positioned radially inside the periphery of the groove 22 radially inwards. The hole achieves a high quality surface with this introductory machining after which the third cutting edge cuts away the material being situated radially inside the periphery of the hole corresponding to the width w16 in Fig. 6 so that the material does not rub against the first chip surface 15 of the first cutting edge 13 and thus do not contribute to raising of the temperature in the machining area. Thus, the present invention relates to a method for drilling of composite materials through which shape the machined hole achieves a clean structure and both the entrance part and the exit part of the hole will be given an appearance free from fringes and delamination. The drill described herein can be used to generate holes in a wide variety of composites having one material which has significantly higher elasticity and/or tensile strength than other materials in the composite.
Claims

1. Drill for generating a hole in a work piece, preferably in a composite of at least a first material and a second material having a higher modulus of elasticity that the first material, comprising a shank portion (11) having a mainly cylindrical envelope surface (11A), a first and a second passage (12, 12A) and cutting portions (13, 14, 16), said first passage (12) extending mainly axially along the center line (CL) of the drill (10) and having a generally circular cross-section, said second passage (12A) opening the first passage towards the envelope surface (11A) of the drill (10), characterized in that the cutting portions comprise a generally circumferentially extending first cutting edge (13) configured as an arc disposed at a longitudinally front edge of said envelope surface and lying flush with said envelope surface, said first cutting edge (13) terminating at a second cutting edge (16) which extends generally longitudinally rearwardly from said front edge and which lies flush with said envelope surface, said second cutting edge situated at a circumferentially forward end of said first cutting edge with reference to a direction of rotation of said shank portion (11) about said center line (CL), said second cutting edge (16) being formed at the intersection of the envelope surface (11A) and a chip surface (17), said surfaces enclosing an internal acute angle and a third cutting edge (14) extending from the envelope surface (11A) of the drill generally radially inwards such that an extension line of the third cutting edge as seen in top view forms a chord in the circular periphery of the first passage (12), said third cutting edge being arranged mainly axially inside the general position of the first cutting edge (13).

2. Drill according to claim 1, characterized in that the ends of the first cutting edge (13) form a mid-point angle α which lies within the interval 30 to 160°, preferably 100 to 150°.

3. Drill according to claim 1, characterized in that the extension of the third cutting edge (14) is at least 20% of the radius of the drill (10), preferably 25 to 80%.

4. Drill according to claim 1, characterized in that the axially outermost portion of the third cutting edge (14) is arranged at a distance (w) axially inside the general position of the first cutting edge (13), said distance (w) is 1 to 20% of the length of the third cutting edge (14).

5. Drill according to claim 1, characterized in that the first passage (12) has a circular periphery in cross-section, the radius of which is about 50 to 75% of the radius of the drill (10), preferably 60 to 65%.

6. Drill according to claim 1, characterized in that the second passage (12A) opens the first passage towards the envelope surface (11A) of the drill along about half of the circumference of the first passage (12).

7. Drill according to any one of the preceding claims, characterized in that portions of the drill (10) defining the envelope surface (11A) are removed, to form at least two axially extending, spaced apart radial relief segments (11B) of the envelope surface (11A) having a radial dimension less than the maximum radial dimension of the drill, said segments (11B) of the envelope surface adjacent the radial relief segments constitute at least three axially extending wear strip segments of the envelope surface (11A) having a radial dimension which is the maximum radial dimension of the drill whereby, during a drilling operation, the wear strip segments of the envelope surface serve to guide the drill within the hole being formed.

8. Drill according to claim 1, characterized in that the second cutting edge (16) is mainly parallel to the center line of the drill (10).

9. Drill according to claim 1, characterized in that the first cutting edge (13) lies in the plane (P) normal to the center line (CL) of the drill (10) or alternatively in that the ends of the first cutting edge (13) are displaced relative to each other in the axial direction of the drill (10) so that the connection between the first cutting edge (13) and the second cutting edge (16) is placed axially outwards of the other end of the first cutting edge (13) defining an angle β of maximum 2° with respect to a plane normal to the centre line.

Patentansprüche

1. Bohrer zur Erzeugung eines Loches in einem Werkstück, vorzugsweise in einem Verbund von mindestens einem ersten Material und einem zweiten Material, welches einen höheren Elastizitätsmodul hat als das erste Material, mit einem Schaftteil (11) mit einer hauptsächlich zylindrischen Hüllfläche (11A), einem ersten und einem zweiten Durchgang (12, 12A) und mit Schneidteilen (13, 14, 15), wobei sich der erste Durchgang (12) hauptsächlich axial längs der Mittellinie (CL) des Bohrrers (10) erstreckt und einen im allgemeinen kreisförmigen Querschnitt hat und wobei der zweite Durchgang (12A) den ersten Durchgang zur Hüllfläche (11A) des Bohrrers hin öffnet, dadurch gekennzeichnet, daß die Schneidteile eine im allgemeinen sich am Umfang erstreckende erste Schneidkante (13) aufweisen, die als ein Bogen ausgestaltet ist, der an einer Längsfrontkante der Hüllfläche angeordnet ist und mit der Hüllfläche bündig liegt, wobei die erste Schneidkante (13) an einer zweiten Schneidkante (16) endet, die sich im allgemeinen längs rückwärts von der Vorderkante erstreckt und die bündig mit der Hüllfläche liegt, wobei die zweite Schneidkante an einem Umfangsvorderende der ersten Schneidkante bezüglich einer Drehrichtung des Schaftteiles (11) um die Mittellinie (CL) herum angeordnet ist, die zweite Schneidkante (16) am Schnitt der Hüllfläche (11A) und einer Schneidflächen (17) gebildet ist, die Oberflächen einen inneren spitzen Winkel einschließen und eine dritte Schneidkante (14) sich von der Hüllfläche (11A) des Bohrers im allgemeinen radial einwärts derart erstreckt, daß eine Verlängerungslinie der dritten
Revendications

1. Forêt pour réaliser un trou dans une pièce de travail, de préférence en une matière composite d'au moins une première matière et d'une seconde matière qui présente un module d'élasticité supérieur à celui de la première matière, et comportant une queue (11) présentant une surface d'enveloppe (11A) principalement cylindrique, un premier et un second passages (12, 12A) et des parties de coupe (13, 14, 16), ledit premier passage (12) s'étendant principalement axialement suivant la ligne centrale (CL) du forêt (10) et présentant une section droite généralement circulaire, ledit second passage (12A) débouchant dans le premier passage vers la surface d'enveloppe (11A) du forêt (10), caractérisé en ce que les parties de coupe comportent une première arête de coupe (13) s'étendant généralement circumférentiellement et en forme d'arc disposé sur le bord avant longitudinale de ladite surface d'enveloppe (11A), ladite première arête de coupe (13) se terminant sur une seconde arête de coupe (16) qui s'étend généralement longitudinalement vers l'arrière à partir dudit bord avant et qui est de niveau avec ladite surface d'enveloppe, ladite seconde arête de coupe étant située à une extrémité circumférentielle avant de ladite première arête de coupe en référence au sens de rotation de ladite queue (11) autour de ladite ligne centrale (CL), ladite seconde arête de coupe (16) étant formée à l'intersection de la surface d'enveloppe (11A) et d'une surface (17) de copeau, lesdites surfaces définissant entre elles un angle interne aigu, et une troisième surface de coupe (14) s'étendant, à partir de la surface d'enveloppe (11A) du forêt, généralement radialement vers l'intérieur de manière qu'une ligne prolongeant la troisième arête de coupe, en vue de dessus, forme une corde sur la périphérie circulaire du premier passage (12), ladite troisième arête de coupe étant disposée principalement axialement à l'intérieur de la position générale de la première arête de coupe (13).

2. Forêt selon la revendication 1, caractérisé en ce que les extrémités de la première arête de coupe (13) forment un angle au centre (a) qui est situé dans l'intervalle compris entre 30° et 150°, et de préférence entre 100° et 150°.

3. Forêt selon la revendication 1, caractérisé en ce que le prolongement de la troisième arête de coupe (14) est d'au moins 20% le rayon du forêt (10), de préférence de 25 à 50%.

4. Forêt selon la revendication 1, caractérisé en ce que la partie axialement la plus extérieure de la troisième arête de coupe (14) est disposée à une distance (w) axialement à l'intérieur de la position générale de la première arête de coupe (13), ladite distance (w) étant de 1 à 20% de la longueur de la troisième arête de coupe (14).

5. Forêt selon la revendication 1, caractérisé en ce que le premier passage (12) présente en section droite une périphérie circulaire, dont le rayon est d'environ 50 à 75% du rayon du forêt (10), de préférence de 60 à 65%.
6. Foret selon la revendication 1, caractérisé en ce que le second passage (12A) débouche dans le premier passage vers la surface d'enveloppe (11A) du foret suivant environ la moitié de la circonférence du premier passage (12).

7. Foret selon l'une quelconque des revendications précédentes, caractérisé en ce que des parties du foret (10) définissant la surface d'enveloppe (11A) sont supprimées pour former au moins deux segments radiaux espacés en retrait (11B) de la surface d'enveloppe (11A) qui s'étendent axialement et qui présentent une dimension radiale inférieure à la dimension radiale maximale du foret, lesdits segments (11B) de la surface d'enveloppe adjacents aux segments radiaux en retrait constituant au moins trois segments en bande d'usure de la surface d'enveloppe (11A) qui s'étendent axialement et qui présentent une dimension radiale qui est la dimension radiale maximale du foret de sorte que, lors d'une opération de forage, les segments en bande d'usure de la surface d'enveloppe servent à guider le foret dans le trou en cours de formation.

8. Foret selon la revendication 1, caractérisé en ce que la seconde arête de coupe (16) est principalement parallèle à la ligne centrale du foret (10).

9. Foret selon la revendication 1, caractérisé en ce que la première arête de coupe (13) s'étend dans le plan (P) normal à la ligne centrale (CL) du foret (10) ou, en variante, en ce que les extrémités de la première arête de coupe (13) sont décalées l'une par rapport à l'autre dans la direction axiale du foret (10) de manière que la liaison entre la première arête de coupe (13) et la seconde arête de coupe (16) soit disposée axialement vers l'extérieur de l'autre extrémité de la première arête de coupe (13) définissant un angle (β) d'au plus 2° par rapport à un plan normal à la ligne centrale.