Process for forming cushion articles.

Priority: 19.01.84 US 572068
02.10.84 US 855917

Date of publication of application: 24.07.85 Bulletin 85/30

Publication of the grant of the patent:
19.09.90 Bulletin 90/38

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
GB-A-2 002 675

Proprietor: SEARS MANUFACTURING COMPANY
1718 South Concord Street
Davenport Iowa52808 (US)

Inventor: Sears I, Weir, Jr.
15 Hillcrest
Davenport Iowa (US)
Inventor: Hostetler, John E.
1121 Pineacre
Bettendorf Iowa (US)
Inventor: Hulsebusch, William H.
330 First Avenue
DeWitt Iowa (US)

Representative: Alden, Thomas Stanley et al
A.A. THORNTON & CO. Northumberland House
303-306 High Holborn
London WC1V 7LE (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to a process for forming a cloth covered cushion article according to the preamble of claim 1. Such a process is known from US—A—4 287 143.

Traditional methods of making upholstered cushions have involved cutting the cover material according to an appropriate pattern, sewing the material and stuffing the cushion. Such methods result in high labor costs since, in most instances, the cutting and sewing operations are performed manually or with labor intensive techniques.

To reduce the costs of manufacturing cushion articles, a molding process was devised for manufacturing seat cushions comprising a foam portion having an integral vinyl cover. The vinyl cover first is heated and then drawn into a cold mold by means of a vacuum between the vinyl and the mold. As the vinyl cools, it assumes the contours of the mold. Foam then is poured into the mold to form the foam portion of the seat cushion. This process significantly reduces manufacturing costs.

However, cloth has many advantages over vinyl. Specifically, cloth is water vapor permeable. Perspiration that normally collects behind a person sitting in a vinyl seat can pass through cloth and be evaporated so that cloth feels cooler during warm weather and warmer during cold weather. Furthermore, the feel of the cloth is much more luxurious and elegant.

In recognition of these advantages, a novel molding process was devised for manufacturing seat cushions comprising a foam portion having an integral cover including an outer cloth layer. It was found particularly advantageous to set the stitch of the fabric layer in the mold. This is accomplished by employing a mold heated to at least the fabric set temperature when the cloth is drawn into the mold. The fabric layer is thereby heated and then allowed to cool. By this process, the fabric stitch is set to the precise contours of the mold. A foamable material then is poured into the mold after the cooling step to form an integral seat cushion with a fabric cover. The fabric normally is bonded or laminated to a vinyl film to permit the cover to be vacuum drawn into the mold.

All of the above innovations in the art have resulted in labour savings and improved products because the cloth is processed and shaped much more quickly than in the traditional cutting and sewing process. Shapes commonly found in tufted furniture require yards of sewing, and the assembly of tufts also requires extensive labour.

Yet, certain problems still have not been met by the above innovations in the art. First, tremendous time and energy losses are incurred by repeatedly heating the mold to set the fabric layer of the cover and then cooling the mold to pour the foamable resin and form the integral cushion. A method of reducing some energy losses was devised wherein the cloth is heated to its set temperature in a first mold and then transferred to a cooler mold where the foam cushion is formed. This process, however, obviously requires multiple molds. The process is described in US—A—4 287 143.

A second problem associated with these prior art processes concerns the use of standing pile or “plush” fabrics which have definite natural surface characteristics. For purposes herein, such fabrics are intended to include velour, velvet, brushed and a variety of fabric materials which have a defined pile that is capable of being crushed or the surface characteristics destroyed by heat and pressure. When such pile fabrics are drawn into a mold and heated to their heat-fixable fiber set temperatures, not only are the fibers set but the pile becomes set as well as it is biased against the interior surface of the mold. Thus the surface characteristics of the pile become altered or destroyed. The present invention is directed to solving the above identified problems by providing a new and improved process of molding a cushion article without repeated heating and cooling of molds and without altering the surface characteristics of the covering fabric of the cushion.

In accordance with the present invention there is provided a process for forming a cloth covered cushion article, comprising the steps of drawing a cloth covering into a mold having the shape of the desired cushion article, said cloth covering having heat fixable fibers therein;

pouring a foamable material into said mold, foaming said foamable material and curing the foam at a temperature below the heat-fixable fiber set temperature of the cloth covering to form the cushion article; and

removing the cushion article from said mold; characterised by heating the cushion article after removal from the mold to at least the heat fixable fiber set temperature of the cloth covering.

The present invention provides a new and improved process for forming cloth covered cushion articles such as seat cushions or the like, which eliminates or significantly reduces the energy losses incurred by repeated heating and cooling of molds to first set the cloth covering and then to pour the resin and cure the foam for the cushion. The process also allows desirable surface characteristics of the cloth covering remain unaltered.

In a particular process embodying the invention, a mold is provided having the shape of the desired cushion article, and a cloth covering is drawn into the mold. Polyurethane resin then is poured into the mold and cured to form the foam cushion article. The cushion article is removed from the mold and heated to at least the heat fixable fiber set temperature of the cloth covering. Thus, the cloth covering is heat set in contour after the cushion is formed. The cured foam cushion itself acts as a male mold to hold the fabric of the cloth in contour as it is heat set. It can be seen that the novel use of the cushion as a male mold eliminates any interference with or possible altering of the natural surface charac-
teristics of the outer fabric layer of the cloth covering during the heat setting operation.

It has proven effective to heat the mold to a temperature on the order of approximately 130°F to 150°F (54°C to 65°C) to facilitate the foaming process. However, this temperature is considerably less than the heat fixable fiber set temperature of the covering fabric. After the foam cures in the mold, the covered cushion article is placed in an oven at a temperature on the order of approximately 360°F (182°C) to heat set the fabric. Significant energy savings are therefore realised by eliminating the repeated heating and cooling of the mold as is prevalent in prior processes where the foam is cured and the fabric is set in a single mold. When using polyester fabric for the cushion cover, the formed cushion article simply can be placed into a dry oven to heat set the fabric in contour on the formed cushion.

However, when using nylon fabric as the outer layer of the cloth covering, it has been found that the application of a high boiling point solution facilitates setting the nylon fabric. For instance, a diester solution may be applied to the unfinished nylon fabric prior to heat setting.

Other features and advantages of the invention will be apparent from the following detailed description taken in connection with the accompanying drawings, in which:

Figure 1 is an illustration of the cloth insertion step of the process;

Figure 2 is an illustration of the cloth drawing step of the process;

Figure 3 is an illustration of the foam pouring step of the process;

Figure 4 is an illustration of the curing step of the process;

Figure 5 is an illustration of the cushion extraction step of the process; and

Figure 6 is an illustration of the cushion setting step of the process.

The process of the present invention may be employed to form or mold cloth covered cushion articles for any conceivable application. Such applications include automotive vehicle seats, aviation seats, chair cushions, stool cushions and other seating applications; padding for headboards, baby carriages, bar fronts, church kneelers, buses and handrails; as well as panelling and wall coverings for elevators, offices, tables, cabinets, and the like.

The process of the present invention may utilize a wide variety of cloth materials, such as that woven or knitted from man-made or natural yarns or fibers which are capable of being heat set. To this end, the invention contemplates the use of "unfinished cloth" which is intended to mean cloth that has not been subjected in the flat to any of the conventional treatments intended to impart to the cloth a permanent dimensional or shape memory or to set or fix the intersections of the yarn.

The use of "standing pile fabrics" is intended to mean fabrics which have a definite natural surface characteristic or "surface loft" such as velour, velvet, brushed and a variety of fabric materials which have a defined pile that is capable of being crushed or the surface characteristics destroyed or altered by heat and pressure.

In its simplest form, the invention contemplates heat setting at least the outer fabric layer of a cloth-covered cushion article in contour after the cushion itself is formed. This not only eliminates repeated heating and cooling of the molds in various known processes, but the surface characteristics of the cloth fabric remain unaltered and in natural condition.

More particularly, with reference to the drawings, the process of the present invention includes the provision of a mold such as female mold 10 (Fig. 1) having the shape of a desired cushion article, such as a seat cushion or the like. A cloth covering 12 is provided for the cushion article. Some types of cloth normally include an outer fabric layer bonded to an elastic composition layer. The fabric layer will engage the interior surface of female mold 10. The composition layer normally includes a film layer and a foam layer sandwiched between the film layer and the fabric layer. The film layer permits the cloth covering to be vacuum drawn into female mold 10 as shown in Figure 2.

After cloth covering 12 is drawn into mold 10, foambale material (i.e. polyurethane resin) 14 may then be poured into the mold in its liquid state, as illustrated in Figure 3. In the preferred embodiment, cold cure, polyether-type polyurethane is employed, although any foambale material that adheres to the film layer of the cloth covering may be used. In practice, female mold 10 may be heated at a temperature on the order of approximately 130°F (54°C) to render cloth covering 12 pliable.

A male mold 16 then is placed over female mold 10 as illustrated in Figure 4. After approximately 15 minutes, foam 14 has fully expanded within the mold. The unfinished cushion article may then be extracted from female mold 10 as illustrated in Figure 5.

The unfinished cushion article, generally designated 18 (Fig. 6), then is placed in an oven 20 where it is heated to at least the heat fixable fiber set temperature of the cloth covering 12. Thus, it can be seen that the cloth covering is heat set in contour after the foam cushion itself is formed. The foam cushion acts as a male mold to hold the fabric of the covering in contour during heat setting in oven 20.

It can be seen from the foregoing that repeated heating and cooling steps of prior art processes are completely eliminated by the process of the present invention. Furthermore, it can be seen that the outer surface of the outer fabric layer of the cloth covering 12 never comes in contact with the surface of a mold which is heated sufficiently to set the fabric or alter the pile or natural surface characteristics of the fabric. The following specific examples will serve to illustrate the cloth molding process of this invention.
Example 1
A moldable cloth covering including a fabric layer of 14-ounce unfinished polyester pile material was drawn into mold 10. Foamable material was poured into the mold in its liquid state and cold cured. The unfinished cushion article was placed in oven 20 and heated to a temperature on the order of approximately 360°F (182°C). The pile fabric was heat set as the cured foam cushion acted as a male mold to hold the cloth covering in contour during heat setting of the fabric. The pile of the fabric was unaltered and its natural surface characteristics retained.

Example 2
A moldable cloth including an outer layer of unfinished nylon was drawn into mold 10. The nylon fabric was a Type 6, 12—13 ounce knit material. Formable material 14 was poured into the mold in its liquid state and cold cured. The unfinished cushion article was sprayed with a cold diester solution and placed in oven 20. The oven was heated at a temperature on the order of approximately 300°F (149°C). The nylon fabric of the covering for the cushion heat set in contour as the cured foam acted as a male mold to hold the fabric during heat setting. The cushion article was rinsed with a solvent to remove excess diester solution, and the article was dried to evaporate the solvent. The natural surface characteristics of the nylon fabric remained totally unaltered and in natural condition.

Example 3
A moldable nylon cloth was used in a process similar to that described above in Example 2. However, instead of applying cold diester solution to the fabric and heating the fabric covered cushion in an oven, the diester solution itself was applied hot at a temperature on the order of approximately 300°F (149°C). The nylon fabric of the covering for the cushion heat set in contour onto the foam cushion as the cushion acted as a male mold to hold the fabric in contour during the heat setting. The natural surface characteristics of the fabric remained unaltered and in natural condition.

Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications, including different heat setting techniques, are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention.

Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.

Claims

1. A process for forming a cloth covered cushion article, comprising the steps of drawing a cloth covering into a mold having the shape of the desired cushion article, said cloth covering having heat fixable fibers therein:
 pouring a foambale material into said mold, foaming said foambale material and curing the foam at a temperature below the heat-fixable fiber set temperature of the cloth covering to form the cushion article; and
 removing the cushion article from said mold; characterised by heating the cushion article after removal from the mold to at least the heat-fixable fiber set temperature of the cloth covering.

2. The process of claim 1 wherein said heating step includes placing the cushion article in an oven at a temperature on the order of approximately 360°F (182°C).

3. The process of claim 2 wherein said cloth covering is provided of polyester material.

4. The process of claim 1 wherein said mold is heated at a temperature of not more than 200°F (93°C).

5. The process of claim 1 wherein said heating step includes placing the cushion article in an oven with said cured foam acting as a male mold for the cloth covering.

6. The process of claim 1 wherein a diester solution is applied to the cloth covering after the cushion article is removed from the mold and before the cushion article is heated to the heat fixable fiber set temperature of the cloth covering.

7. The process of claim 6 wherein the cloth covering is provided of nylon material.

8. The process of claim 6 or 7 wherein said heating step includes placing the cushion article in an oven at a temperature on the order of approximately 300°F (149°C).

9. The process of claim 6, 7, or 8 wherein said mold is heated at a temperature of not more than 200°F (93°C).

10. The process of any one of claims 6 to 9 wherein said heating step is performed by applying said diester solution in sufficiently heated condition.

11. The process of any one of claims 6 to 10, including the step of rinsing the cushion article with a solvent to remove excess diester solution after heating.

12. The process of claim 11 including the step of drying the cushion article to evaporate the solvent.

13. The process of claim 1, wherein the cushion article is a seat cushion, the cloth covering including at least an outer layer of standing pile fabric or the like, and the seat cushion is heated to a temperature sufficient to set the fibres of the fabric but not to alter the natural surface characteristics thereof.

14. The process of claim 13 wherein said heating step includes placing the seat cushion in an oven with said cured foam acting as a male mold for the cloth covering.

15. The process of claim 13 wherein said mold is heated at a temperature of not more than 200°F (93°C).
16. The process of claim 13 wherein a diester solution is applied to the cloth covering after the seat cushion is removed from the mold and before the seat cushion is heated to set the cloth covering.

17. The process of claim 16, including the steps of rinsing the seat cushion with a solvent to remove excess diester solution after heating, and drying the seat cushion to evaporate the solvent.

18. The process of claim 16 or 17 wherein said diester solution is applied in a heated condition on the order of approximately 300°F (149°C).

Patentansprüche

1. Verfahren zum Herstellen eines stoffbezogenen Polsterartikels mit den Schritten, einen Bezugsstoff in eine Form, die die Form des gewünschten Polsterartikels besitzt, zu ziehen, wobei der Bezugsstoff wärmefixierbare Fasern enthält;
 ein Schaummaterial in die Form zu gleiten, das Schaummaterial aufzuschäumen und den Schaum bei einer Temperatur unterhalb der Fixiertemperatur der wärmefixierbaren Fasern des Stoffbezug zum Formen des Polsterartikels auszuwärmen; und
den Polsterartikel aus der Form zu entfernen, dadurch gekennzeichnet, daß der Polsterartikel nach dem Entfernen aus der Form auf wenigstens die Fixiertemperatur der wärmefixierbaren Fasern des Bezugsstoffes erwärmt wird.

2. Verfahren nach Anspruch 1, wobei dieser Erwärmungsschritt umfaßt, daß der Polsterartikel in einem Ofen bei einer Temperatur von ungefähr 360°F (182°C) gelegt wird.

3. Verfahren nach Anspruch 2, wobei der Bezugsstoff mit Polyestermaterial versehen ist.

4. Verfahren nach Anspruch 1, wobei die Form auf eine Temperatur von nicht mehr als 200°F (93°C) erwärmt wird.

5. Verfahren nach Anspruch 1, wobei dieser Erwärmungsschritt umfaßt, den Polsterartikel in einen Ofen zu legen, wobei der ausgehärtete Schaum als normales Formteil für den Bezugsstoff dient.

6. Verfahren nach Anspruch 1, wobei eine Diesterlösung auf den Stoffbezug nach Entfernen des Polsterartikels aus der Form und vor Erwärmung des Polsterartikels auf die Fixiertemperatur der wärmefixierbaren Fasern des Bezugsstoffes aufgebracht wird.

7. Verfahren nach Anspruch 6, wobei der Bezugsstoff mit Nylonmaterial versehen ist.

8. Verfahren nach Anspruch 6 oder 7, wobei dieser Erwärmungsschritt umfaßt, daß der Polsterartikel in einen Ofen bei einer Temperatur von ungefähr 300°F (149°C) gelegt wird.

9. Verfahren nach Anspruch 6, 7 oder 8, wobei die Form auf eine Temperatur von nicht mehr als 200°F (93°C) erwärmt wird.

10. Verfahren nach einem der Ansprüche 6 bis 9, wobei der Erwärmungsschritt durchgeführt wird, indem die Diesterlösung in hinreichend erwärmten Zustand aufgebracht wird.

13. Verfahren nach Anspruch 1, wobei der Polsterartikel ein Sitzpolster ist, der Stoffbezug wenigstens eine äußere Schicht aus aufrechtem Florgewebe oder dergleichen aufweist und das Sitzpolster auf eine Temperatur erwärmt wird, die ausreicht, die Fasern des Gewebes zu fixieren aber nicht ihre natürlichen Oberflächeneigenschaften zu ändern.

14. Verfahren nach Anspruch 13, wobei dieser Erwärmungsschritt umfaßt, das Sitzpolster in einen Ofen zu legen, wobei der ausgehärtete Schaum als männliches Formteil für den Bezugsstoff dient.

15. Verfahren nach Anspruch 13, wobei die Form auf eine Temperatur von nicht mehr als 200°F (93°C) erwärmt wird.

16. Verfahren nach Anspruch 13, wobei eine Diesterlösung auf den Stoffbezug nach Entfernen des Sitzpolsters aus der Form und vor Erwärmen des Sitzpolsters auf die Fixiertemperatur der wärmefixierbaren Fasern des Bezugsstoffes aufgebracht wird.

18. Verfahren nach Anspruch 16 oder 17, wobei die Diesterlösung in einem erwärmten Zustand von ungefähr 300°F (149°C) aufgebracht wird.

Revendications

1. Procédé pour former un coussin revêtu de tissu, comprenant les étapes de tirer un revêtement de tissu dans un moule ayant la forme du coussin souhaité, ledit revêtement de tissu comportant des fibres fixables à la chaleur;
 verser un matériau transformable en mousse dans ledit moule, transformer en mousse ledit matériau transformable en mousse et durcir la mousse à une température inférieure à la température de fixation des fibres fixables à la chaleur du revêtement de tissu pour former le coussin; et retirer le coussin dudit moule; caractérisé en ce que le coussin est chauffé après le retrait du moule au moins jusqu'à la température de fixation des fibres fixables à la chaleur du revêtement de tissu.

2. Procédé selon la revendication 1, dans lequel ladite étape de chauffage comprend la disposition du coussin dans un four à une température d'approximativement 360°F (182°C).

3. Procédé selon la revendication 2, dans lequel ledit revêtement de tissu est muni d'un matériau de polyester.

4. Procédé selon la revendication 1, dans lequel
ledit moule est chauffé à une température d'au plus 200°F (93°C).

5. Procédé selon la revendication 1, dans lequel ladite étape de chauffage comprend la disposition du coussin dans un four tandis que ladite mousse durcie agit comme un moule mâle pour le revêtement de tissu.

6. Procédé selon la revendication 1, dans lequel une solution de diester est appliquée au revêtement de tissu après le retrait du coussin du moule et avant le chauffage du coussin jusqu'à la température de fixation des fibres fixables à la chaleur du revêtement de tissu.

7. Procédé selon la revendication 6, dans lequel le revêtement de tissu est muni d'un matériau de Nylon.

8. Procédé selon la revendication 6 ou 7, dans lequel ladite étape de chauffage comprend la disposition du coussin dans un four à une température de l'ordre d'approximativement 300°F (149°C).

9. Procédé selon la revendication 6, 7 ou 8, dans lequel ledit moule est chauffé à une température d'au plus 200°F (93°C).

10. Procédé selon l'une quelconque des revendications 6 à 9, dans lequel ladite étape de chauffage est effectuée en appliquant ladite solution de diester à l'état suffisamment chauffé.

11. Procédé selon l'une quelconque des revendications 6 à 10, qui comprend l'étape de rincer le coussin avec un solvant pour éliminer l'excès de solution de diester après le chauffage.

12. Procédé selon la revendication 11, qui comprend l'étape de sécher le coussin pour évaporer le solvant.

13. Procédé selon la revendication 1, dans lequel le coussin est un coussin de siège, le revêtement de tissu comprenant au moins une couche externe d'un tissu à poils dressés ou analogue, et le coussin de siège est chauffé à une température suffisante pour fixer les fibres du tissu mais non pas pour modifier ses caractéristiques de surface naturelles.

14. Procédé selon la revendication 13, dans lequel ladite étape de chauffage comprend la disposition du coussin de siège dans un four tandis que ladite mousse durcie agit comme un moule mâle pour le revêtement de tissu.

15. Procédé selon la revendication 13, dans lequel ledit moule est chauffé à une température d'au plus 200°F (93°C).

16. Procédé selon la revendication 13, dans lequel une solution de diester est appliquée au revêtement de tissu après le retrait du coussin de siège du moule et avant le chauffage du coussin de siège pour fixer le revêtement de tissu.

17. Procédé selon la revendication 16, qui comprend les étapes de rincer le coussin de siège avec un solvant pour éliminer l'excès de solution de diester après le chauffage, et de sécher le coussin de siège pour évaporer le solvant.

18. Procédé selon la revendication 16 ou 17, dans lequel ladite solution de diester est appliquée à l'état chauffé à une température de l'ordre d'approximativement 300°F (149°C).