Accessory device for removing solvent vapor in machines for dry cleaning garments and the like.

Proprietor: FIRBIMATIC S.r.l.
Via Gramsci 233
I-40010 Sala Bolognese (Bologna) (IT)

Inventor: Biagi, Gino
Via Zucchelli 5
I-40012 Calderara di Reno (Bologna) (IT)
Inventor: Fini, Vincenzo
Via Gramsci 233
I-40010 Sala Bolognese (Bologna) (IT)

Representative: Lanzoni, Luciano
c/o BUGNION S.p.A. Via Farini, 37
I-40124 Bologna (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The invention relates to an accessory device intended for dry cleaning machines whose drying and deodorizing circuit is of what is known as the “normally open” type, and not only is the device original but it is particularly interesting since, with the utmost ease, it can also be fitted on prior installed machines without the need for them to be in any way especially adapted.

In the machines of the type mentioned above, once the solvent bath has been discharged out of the washing tank, it is necessary to proceed with the drying of the garments placed in the said tank.

For this purpose, a closed circuit drying circuit is provided and, in the order stated, this comprises amongst other things, the said tank, a filter, a surface condenser, a fan and a heater. The hot air that hits the solvent and water impregnated garments will carry away the evaporation of the solvent and water vapour. When the said vapour comes into contact with the condenser, it is cooled and, in part, condensed and this, once the water has been separated from the solvent, enables the latter to be recovered.

Through the nest of tubes of the said condenser passes the forced circulation (achieved by means of a pump) of a liquid.

In one first known solution, the nest of tubes is, on one side, connected to the urban water mains, while the other side thereof discharges into the drains. It is obvious in this case that the consumption of water is considerable and that there is a constant danger of the water table undergoing pollution due to the imperfect sealing of the nest of tubes and the consequent infiltration of a solvent (constituted by perchloroethylene, trichloroethylene or trichloroethane) into the discharge water.

To overcome the aforementioned problems, closed circuits have been designed that include the nest of tubes and devices for cooling the water issuing from this, for example: by means of heat exchangers of the “evaporative” type or by making full use of the evaporator of a refrigeration plant; to experts in the field it is quite apparent that a solution of this nature is both complex and onerous.

The drying operation has necessarily to be followed by what is called the deodorizing operation which is attended to by a suitable open circuit accessible from the outside via two apertures, one of which for the supply of air and the other for the discharge of this. In the order stated, the said device is made up of suitable members to which the operating cycle of the machine is interlocked comprises, amongst other things, starting at the infeed aperture, the said washing tank, the said filter and the said fan.

As the flow of air that is created, supported by the fan, from the infeed aperture towards the discharge aperture, crosses the washing tank, it carries with it the solvent and water vapour contained therein.

In one first embodiment, the said flow is dis-
through the deodorizing circuit as defined above, to be cooled and the said solvent vapour to be consequently condensed.

In order to limit the potentiality of the refrigeration plant, provision is made for an air-air crossed flow heat exchanger in which the first input is connected to the said deodorizing circuit discharge aperture, the first output is connected to the inlet to the said second jacket, the second input is connected to the outlet of the latter, and the second output is connected to the aforementioned deodorizing circuit supply aperture.

The characteristics of the device according to the invention that are not apparent from the foregoing description are emphasized in the text that follows, with reference to the accompanying tables of drawings, in which:

— Figure 1 and 2 show, in diagrammatic form, the accessory device according to the invention and the dry cleaning machine with which it is used, during the drying operation and during the deodorization thereof;

— Figure 3 shows, diagrammatically, one variant for the device in question;

— Figure 4 shows, diagrammatically in a functional diagram, the refrigeration plant of the device in question.

With reference to the above listed figures, at 100 has been shown the device according to the invention which, in a first embodiment (Figures 1, 2 and 4), is defined by a refrigeration plant that comprises, in the order stated, amongst other things, a compressor 1, a condenser 2 (air cooled), a tank 3, a filter 4 and, what is of notable importance, two distinct evaporators 5 and 6, one parallel with the other and able to be supplied separately in consequence of the opening of the corresponding on-off valves 5a and 6a interlocked, in a known fashion, to the operating cycle of a dry cleaning machine, shown at 50, to which the device 100 is connected.

The evaporators 5 and 6 are housed in corresponding jackets 7 and 8, through the one of which numbered 7 (for reasons outlined hereinafter) passes a liquid solution (with a prevalently water base), while through the one of which numbered 8 passes (again for reasons outlined hereinafter) a mixture of gases.

In Figure 1, for the machine 50 shown diagrammatically, stress has been given to the drying circuit thereof.

The said circuit, which is one of the closed type, comprises in the order stated, amongst other things, a washing tank 9, a vertical pipe 10, a filter 11, a surface condenser 12 (of the air-liquid type), a fan 13, a pipe 14, and a pipe 15 inside which is placed a heater 16.

The nest of pipes 17 of the condenser 12 is connected, through a delivery pipe 17a (including a pump 18) and a discharge pipe 17b, to the said jacket 7; in this way, the jacket 7, the said pipes and the nest of pipes 17 define a closed circuit.

Emphasis has been given, in the diagrammatic representation as per Figure 2, to the deodorizing circuit of the machine 50.

In order to define the said deodorizing circuit, it is necessary to displace (using known non-illustrated means) a dividing wall 19 from position P₁ in Figure 1 (in which the pipes 14 and 15 communicate freely) to position P₂ (in which the passage between the said pipes is closed), as well as to render the pipe 15 in communication with the outside, through an infed aperture 21 (previously closed since it includes a non-illustrated on-off valve) and, similarly, to render the pipe 14 in communication with the outside, through a discharge aperture 20.

The part of the deodorizing circuit inside the machine 50 (see Figure 2) comprises, in the order stated, amongst other things, starting at the aperture 21, the tank 9, the pipe 10, the filter 11, the fan 13, the pipe 14, and the aperture 20. The said circuit is completed (in such a way as to render it closed) by pipes 22 and 23 that are destined to connect the apertures 21 and 20, respectively, to the jacket 8 containing the evaporator 6.

A description will now be given of the operation of the device in question, with reference to Figures 1, 2 and 4.

As is known, after the solvent bath has been discharged from the tank 1 it is necessary to proceed with the drying of the garments placed in the said tank. For this operation, the valve 5a is opened, the pump 18 and the fan 13 are set in motion and the dividing wall 19 is displaced to position P₂. How the said devices are actuated is not described herein since it is not pertinent to the subject matter.

The foregoing necessitates the creation of a flow of liquid S₁ through the evaporator 5, of a flow of liquid F₁ through the jacket 7 and the nest of tubes 17, and of a flow A in the drying circuit as depicted in Figure 1.

As the flow A, warmed by the heater 16, hits the garments, the evaporation is caused of the solvent and water with which they are impregnated; in this way a mixture is formed of air, solvent vapour and water.

Passing through the condenser 12, the said vapour mixture is cooled and condensed and thus it consequently yields heat to the flow of liquid F₁. The solvent and water condensate is sent to a non-illustrated separator that attends to "extracting" the solvent which is subsequently sent into a tank 40.

The flow A, thus cooled, recirculates once it has been warmed by the heater 16.

Since the flow F₁ increases, as it passes through the nest of pipes 17, in temperature, steps have to be taken to cool it and this is achieved by the evaporator 5. In this way, the heat yielded to the flow F₁ by the vapour that condenses is given up to the evaporator 5 by the said flow.

Once the percentage of solvent vapour in a flow A is below an established value, the heater 16 has to be taken out of operation, the valve 5a closed, the valve 6a opened and the dividing wall 19 displaced into position P₂ (Figure 2). As regards the pump 18, it can be left running for a short time
until the outside surface temperature of the nest of pipes is no longer such as to allow the condensation of the vapour, and then at the moment it can be taken out of operation.

Through the action of the fan 13, a flow D is formed in the previously described deodorizing circuit, and this is constituted by a mixture of air and vaporized solvent. As the said flow hits the still warm garments, it is charged with solvent vapour (and water) and it passes out of the aperture 20 at a temperature of, for example, around 50 °C.

The said flow hits the evaporator 6 as it passes through the jacket 7, and this brings about the cooling and the condensation of part of the said vaporized mixture. The solvent-water condensate collects at the bottom of the jacket and using known non-illustrated means, the separation takes place of the solvent from the water with the former being recovered.

The flow D, which when leaving the jacket 7 is at a temperature of around 30–35 °C, goes back again into the tank 1 and this is repeated until the deodorizing operation has been brought to a conclusion.

It is stressed that the time generally needed for the drying operation requires a certain potentiality (units of refrigeration) for the evaporator 6 and a corresponding power for the compressor 1. Likewise, the time generally needed for the deodorizing operation requires a corresponding potentiality for the evaporator 6, greater than that of the evaporator 5 and this necessitates the compressor 1 power being greater than required for the evaporator 5. Since there is only one compressor, it would be oversized for the first situation.

With a view to rendering the operation of the compressor optimal and, at the same time, limiting the potentiality of the evaporator 6, the variant illustrated in Figure 3 is envisaged.

In the said figure, at 30 has been shown a static heat exchanger (the operation of which requires no power) of the air-air crossed flow type. The first input 30a of the exchanger is connected to the aperture 20, while the first output 30b is connected to the jacket 7. The flow D from the latter is sent to the second input 30c of the heat exchanger 30 from which it passes out through a second output 30d for it then to be channelled into the aperture 21.

By way of an example, between the input 30a and the output 30b there is a decrease in temperature of approximately 10 °C (from 50 °C to 40 °C circa), and an identical drop in temperature is caused in the flow D when passing across the jacket 7 (from 40 °C to 30 °C circa). Between the input 30c and the output 30d there is a rise in temperature of approximately 10 °C (from 30 °C to 40 °C).

The temperature of the flow D that goes into the aperture 21 is approximately 10 °C less than the temperature of the flow that passes out of the aperture 20, and the said difference is sufficient for the deodorizing operation to be completed within the time span normally required for the said operation.

In the variant outlined in Figure 3, the difference in temperature that the evaporator 6 has to give to the flow D (between the inlet and the outlet of the jacket 7) is less than that required for the first embodiment considered. This makes it possible to limit the potentiality of the evaporator 6 at a value such as to uniform the power required for the compressor 1 with the requirements of the other evaporator 5, thereby affecting positively both the cost of the refrigeration plant and the power consumption of this.

To recapitulate, the accessory device described herein for dry cleaning machines either cools the liquid circulating in the nests of tubes of the condenser, by means of a closed circuit (thus with an absence of the consumption of water and the impossibility of polluting the discharge waters, as in the previously known solutions) or it defines a closed circuit for the deodorization of the garments. In the last mentioned operation, the discharge is prevented of solvent into the atmosphere while the removal and recovery is made possible of the solvent vapour still present during the deodorizing operation.

It should be noted that the device described herein is connected to the machine 50 through the pipes 17a, 17b, 22 and 23, that is to say, without any modification to the said machine being required. This is especially advantageous since it makes it possible for the device in question to be fitted to previously installed machines.

The foregoing description has been given purely as an unlimted example and thus all eventual variants of a constructional nature can be taken as falling within the technical framework of the invention as described above and claimed hereinafter.

Claims

1. Accessory device for removing solvent vapour in machines for dry cleaning garments and the like, the said machines being provided with a closed drying circuit comprising, in the order stated, amongst other things, a washing tank (9), a filter (11), a surface condenser (12) for the recovery of the solvent vapour, the nest of tubes (17) of which is connected to the outside by means of pipes (17a, 17b) for delivering and discharging a fluid circulating therein, a fan (13) and a heater (16), and being also provided with an open deodorizing circuit that communicates with the outside via two apertures (21, 20), one (21) for supplying air therein, and the other (20) for discharging a mixture of air, solvent vapour and water therefrom, the said deodorizing circuit comprising, in the order stated, amongst other things, starting at the infeed aperture (21), the said washing tank (9), the said filter (11) and the said fan (13); the said device comprising a refrigeration circuit provided with at least two distinct evaporators (5, 6), one parallel with the other and able to be supplied separately in consequence of
the opening of the corresponding on-off valves (5a, 6a) interlocked to the operating cycle of the dry cleaning machine concerned, the said evaporators (5, 6) being housed in a corresponding first jacket (7) and in a corresponding second jacket (8), respectively, the former being connected to the delivery and discharge pipes (17a, 17b), respectively, of the said nest of tubes (17) so as to define a closed circuit for supplying the said nest of tubes with the said fluid and for cooling, in the said first jacket (7), the said fluid, and the latter connected to the said apertures (21, 20) for supplying and discharging the deodorizing circuit, so as to define a closed circuit instead of the open deodorizing circuit and also to enable, in the said second jacket (8), the mixture of gases passing through the deodorizing circuit as defined above, to be cooled and the said solvent vapour to be consequently condensed.

2. Device according to Claim 1, comprising an air-air crossed flow heat exchanger (30) in which the first input (30a) is connected to the said discharge aperture (20) of the deodorizing circuit, the first output (30b) is connected to the inlet to the second jacket (8), the second input (30c) is connected to the outlet of the latter, and the second output (30d) is connected to the said supply aperture (21) of the deodorizing circuit.

Patentansprüche

1. Akzessorische Vorrichtung zur Entfernung von Lösungsmitteldämpfen in Trocknungsanlagen, vorrichtungen für Kleider oder dgl., wobei die genannten Maschinen mit einem geschlossenen Trocknungsraum versehen sind, der Reihe nach unter anderem enthaltend einen Waschbehälter (9), einen Filter (11), einen Oberflächenkondensator (12) zur Rückgewinnung des Lösungsmitteldampfes, dessen Rohrspirale (17) über Leitungen (17a, 17b) für Zulauf und Ablauf einer in diesen zirkulierenden Flüssigkeit mit dem Aussenbereich verbunden ist, einen Ventilator (13) und ein Heizgerät (16), und wobei sie weiter mit einem offenen Desodorierkreis versehen sind, der über zwei Öffnungen (21, 20) mit dem Aussenbereich verbunden ist, und zwar die eine (21) zum Zuführen von Luft und die andere (20) zum Austritten einer Mischung von Luft, Lösungsmitteldampf und Wasser, wobei der genannte Desodorierkreis, beginnend mit der Zuführungsöffnung (21), der Reihe nach unter anderem den genannten Waschbehälter (9), den genannten Filter (11) und den genannten Ventilator (13) enthält; wobei die genannte Vorrichtung einen Köhler enthält, der mit wenigstens zwei gesonderten, parallel zueinander angeordneten Verdampfern (5, 6) versehen ist, die getrennt voneinander und infolge der Öffnung der entsprechenden Sperrventile (5a, 6a), welche von dem Betriebszyklus der betreffenden Trocknungsanlage abhängen, gespeist werde können, wobei die genannten Verdampfer (5, 6) jeweils in einem entsprechenden ersten Mantel (7) und in einem entsprechenden zweiten Mantel (8) gelagert sind, und wobei der erste jeweils mit den Zulauf- und Ablasleitungen (17a, 17b) der genannten Rohrspirale (17) verbunden ist, so dass ein geschlossener Umlauf zur Speisung der genannten Rohrspirale mit der genannten Flüssigkeit und zum Kühlenn der genannten Flüssigkeit in dem genannten ersten Mantel (7) selbst beschrieben wird, während der letzte mit dem genannten Öffnung (21, 20) für Zulauf und Ablass des Desodorierkreises verbunden ist, so dass anstatt des offenen Desodorierkreises ein geschlossener Kreis beschrieben wird, der die Gasmischung in dem genannten zweiten Mantel (8) befähigt, durch den wie oben beschriebenen Desodorierkreis zu strömen und abgekühlt zu werden, infolgedessen sich die genannten Lösungsmitteldämpfe kondensieren.

2. Vorrichtung nach Patentanspruch 1, enthaltend einen Luft-Luft-Wärmetauscher (30) mit gekreuzten Strömungen, bei dem der erste Eingang (30a) an die genannte Abtrennöffnung (20) des Desodorierkreises, der erste Ausgang (30b) an den Einlass in den genannten zweiten Mantel (8), der zweite Eingang (30c) an den Auslass letzteren und der zweite Ausgang (30d) an die genannte Zulauföffnung (21) des Desodorierkreises angeschlossen sind.

Revendications

1. Dispositif accessoire pour enlever la vapeur de solvant dans les machines de nettoyage à sec de vêtements ou analogues, lesdites machines étant pourvues d’un circuit de séchage sans fin, comprenant dans l’ordre, entre autres, une cuve de lavage (9), un filtre (11), un condenseur à surface pour la récupération des vapeurs de solvant et dont le faisceau de tuyaux (17) est relié à l’extérieur au moyen de conduits (17a, 17b) pour le refoulement et l’évacuation d’un fluide circulant dans celui-ci, un ventilateur (13) et enfin un réchauffeur (16), et étant également pourvu d’un circuit ouvert de désodorisation lequel est en communication avec l’extérieur à travers deux ouvertures (21, 20) dont l’une (21) est destinée à alimenter celui-ci en air et l’autre (20) à évacuer de celui-ci un mélange d’air, vapeurs de solvant et eau, le circuit de désodorisation comprenant entre autres, dans l’ordre et partant de l’ouverture d’alimentation (21), ladite cuve de lavage (9), ledit filtre (11) et ledit ventilateur (13); ledit dispositif comprenant un circuit de réfrigération pourvu d’au moins deux évaporateurs distincts (5, 6), l’un parallèle à l’autre et destinés à être alimentés séparément à la suite de l’ouverture de correspondantes soupapes d’admission et d’arrêt (5a, 6a) asservies au cycle de travail de la machine de nettoyage à sec intéressée, lesdits évaporateurs (5, 6) étant logés respectivement dans une première chemise correspondante (7) et dans une seconde chemise correspondante (8), la première étant reliée aux conduits de refoulement et d’évacuation (17a, 17b) respectivement dudit faisceau de tuyaux (17) de manière à définir un circuit sans fin pour l’alimentation dudit faisceau de tuyaux avec ledit fluide et le refroidissement, dans la
mêmes premières chambres précitées (7) dudit fluide, et la seconde étant reliée aux dites ouvertures (21, 20) d'alimentation et d'évacuation du circuit de désodorisation, de manière à définir un circuit fermé au lieu du circuit de désodorisation ouvert, et également de manière à permettre, dans ladite seconde chambre (8) le refroidissement du mélange de gazes passant à travers le circuit de désodorisation tel que défini ci-dessus, et par conséquent la condensation desdites vapeurs de solvant.

2. Dispositif selon la revendication 1, comprenant un échangeur de chaleur (30) air-air à écoulements croisés dans lequel la première voie d'accès (30a) est reliée à ladite ouverture d'évacuation (20) du circuit de désodorisation, la première issue (30b) est reliée à l'entrée de ladite seconde chambre (8), la seconde voie d'accès (30c) est reliée à la sortie de cette dernière, et la seconde issue (30d) est reliée à ladite ouverture d'alimentation (21) du circuit de désodorisation.