Duplexing paper handling system.

Proprietor: International Business Machines Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

Inventor: Hunt, Ronald Eugene
211 Buck Bend
Georgetown Texas 78626 (US)
Inventor: Jenkins, Williams Melchior
5905 Hudson Bend Road
Austin Texas 78734 (US)

Representative: Bonin, Jean-Jacques
Compagnie IBM France Département de Propriété Intellectuelle
F-6610 La Gaude (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates generally to paper handling systems and more particularly to a paper handling system used in a printing or scanning apparatus which can be operated in a duplex mode.

The advent of low cost home computers, small office computers and word processing equipment have led to a great deal of interest in decreasing the size and cost and increasing the functions of printers used as output devices for these data processing and office products. There has also been a requirement for scanning devices such as those used in facsimile systems to encode for storage or communicate previously nonencoded information derived from existing documents.

For both the printer and scanner environments some type of automatic paper handling capability greatly increases the function of this equipment. Further, any increase in speed that is possible as a result of a particular design inherently increases the function of the input or output device.

Another aspect of paper handling that adds significant function to any printing or scanning system is the ability to handle the document within the system so that operations such as printing or scanning can be performed on both sides of the document. This feature is known in the paper handling art as duplexing, and in a printing system duplexing allows a sheet of paper to be printed upon on both sides.

Document US-A-186 662 illustrates this kind of paper handling in a system for duplicating images. In such a system, a copy sheet is delivered to an impression cylinder. A first image is transferred to one side of the sheet. The sheet is then removed from the impression cylinder, delivered to a reversing means and then to the impression cylinder, trailing edge first. The refeeding is in synchronism with the second image whereby this second image is transferred to the opposed side of each sheet. The impression cylinder is provided with a first gripper for engaging the leading edge of each sheet when the sheet is first fed to the impression cylinder. A second gripper is provided on the impression cylinder for engaging the trailing edge of each sheet.

It would be highly advantageous to provide a duplexing function as an enhancement to an efficient paper handling system without adding significantly to the cost or complexity of the system.

The duplexing paper handling system of the invention includes a printer element including a platen in the form of a cylindrical drum having an horizontal axis, upon which a print medium (e.g. sheet of paper) is wound, and a transducing head mounted on a carrier which may be moved in both directions along a rectilinear path extending parallelly and close to the external drum surface. Appropriately controlled movements of the drum (rotation) and of the head (translation) permits printing or scanning several lines of text on the print medium. The system also includes a cartridge for holding a stack of sheets of paper and means for loading an individual sheet from the cartridge onto the drum and then unloading and bringing it back to a receiving tray which may or may not be a part of the cartridge. When it is desirable to print or scan both sides of the paper sheet, a movable duplexing deflector is interjected into the drum to cause the paper to be reloaded onto the drum on its other side rather than being transported to the receiving tray. The same loading mechanism is used to load a new sheet or to reload the same sheet after it has been turned over. Moreover, the same motor is used to drive the drum, the transducing head, the loading and unloading mechanisms and the duplex deflector. In this manner, duplexing is provided at the expense of very few additional parts.

The foregoing and other objects, features, extensions, and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings.

FIG. 1 is a front perspective view of a printer using the paper handling system of this invention.

FIG. 2 is a rear perspective view of the printer of FIG. 1.

FIG. 3 is a side view of a portion of the paper handling system of this invention which shows the paper path during loading and exiting of paper onto and off of the drum.

FIG. 4 is a view of the drum and a sheet of paper clamped thereon showing the skewed orientation of the paper relative to the drum.

FIG. 5 shows the paper cartridge used with the printer of FIG. 1.

FIGS. 6 and 7 show different positions of the clutch latching mechanisms of the printer of FIG. 1.

FIGS. 8 and 9 are views of the drum paper clamp opening mechanism in different positions.

FIG. 10 is a view of the paper aligning gate actuation mechanism of the printer of FIG. 1.

FIGS. 11-12 are views of the duplexing mechanism of the invention in different positions of operation.

Referring now to FIG. 1 a front perspective view of a printer in which can be incorporated the paper handling system of the invention is shown. A motor 1 capable of electronic control for operation at various speeds in both directions, such as a D.C. motor, is rigidly mounted to a left frame plate 2. A motor shaft position sensing assembly 3, such as a capacitive angular position sensing transducer, is mounted on one end of motor 1 to deliver to a system of control electronics (not shown) accurate information relative to the angular position and number of turns of the shaft of motor 1. At the other end of the shaft of motor 1 is a motor drive pulley 5 which, has timing teeth to drive a timing belt 6 with no slippage. All belts and pulleys which are described hereafter have timing teeth and it will be assumed that no slippage occurs relative to the belts and pulleys.

Belt 6 drives a document drum drive pulley 7.
Pulley 7 is pinned to a document drum drive shaft 8, and shaft 8 is pinned to a document drum 9 so that any angular movement of motor shaft 4 causes corresponding angular movement, according to the ratio of the diameters of pulleys 5 and 7, of drum 9.

Also pinned to shaft 5 is a carrier lead screw pulley (not shown) which drives carrier lead screw belt 10 and carrier lead screw pulley 11. A carrier lead screw 12 is pinned to pulley 11 so that any angular movement of motor shaft 4 causes angular movement of lead screw 12 according to the ratios of the diameters of the two pairs of pulleys between motor shaft 4 and lead screw 12.

A lead screw follower 13 is associated with the lead screw 12 to move left or right according to the rotation of lead screw 12. Lead screw follower 13 is rigidly attached to a printing or scanning carrier 14 to provide left or right movement of carrier 14 along frame rails 15 and 16 in accordance with lead screw motion.

Carrier 14 has mounted thereon a printing transducer 17 which may be selected from a number of printing technologies. Such printing technologies may include, but are not limited to, drop-on-demand ink jet printing, wire matrix printing, resistive ribbon printing, and thermal printing. If the paper handling system of this invention is used in an image scanning system to scan and digitally encode previously generated images, an appropriate light source and light sensitive detector assembly would be mounted on carrier 14 for translation relative to an intelligence bearing document mounted on drum 9. It will be understood by those skilled in the art that the choice of appropriate printing or scanning transducers is not a part of the paper handling system of this invention.

A load dog clutch assembly 18 mounted concentric with and near the right end of drum shaft 8 is engageable with shaft 8 to turn gears 19 and 20 which rotate drive rollers to drive a sheet of paper to be loaded onto drum 9, as will be explained in detail hereinafter. An exit dog clutch assembly 21 is mounted concentric with shaft 8 just to the left of dog clutch assembly 18. The dog clutch assembly 21 is intermittently engaged relative to shaft 8 to drive belt 22 which turns paper exit rollers 23 for driving paper out of the system from drum 9, as will be explained in detail hereinafter.

With respect to both of the dog clutches 18 and 21, the details of which will be understood by those skilled in the art, the clutches are engageable to turn gear 19 and to drive belt 22, respectively, one revolution after having been tripped and during counterclockwise rotation of shaft 8 relative to the right end of FIG. 1. Shaft 8 has mounted thereon single dog teeth associated with each of dog clutches 18 and 21.

A load clutch latch lever 24 associated with dog clutch assembly 18 and an exit clutch latch lever 25 associated with dog clutch assembly 21 are separately pivotable about a shaft 26. Latch levers 24 and 25 are engaged and tripped by load clutch trip lever 27 and exit clutch trip lever 28, as will be described in more detail hereinafter. Trip levers 27 and 28 are mounted for movement along with movement of carrier 14.

A pulley 29 is selectively engageable to shaft 8 through a spring clutch 30. The application of a radial force to the outside of spring clutch 30 toward the center of shaft 8 causes engagement of spring clutch 30 which drives pulley 29, belt 31, and pulley 32. A rotatable auxiliary shaft 33 is pinned to pulley 32. Pulley 34 is axially slideable along auxiliary shaft 33 but is angularly keyed to shaft 33. Thus, engagement of spring clutch 30 during rotation of shaft 8 causes rotation of shaft 33, pulley 34, belt 35, and pulley 36. Pulley 36 has an axle (not shown) on carrier 14 and may be used to selectively impart rotational motion to carrier 14 for an auxiliary operation, for example escapement of an inked printing ribbon. A lever connected to a solenoid (not shown) may be used to selectively engage clutch 30.

Also shown in FIG. 1 is a partial view of a paper cartridge 40 which is shown and described in greater detail hereinafter.

The rear perspective view of the printer of FIG. 1 shows in FIG. 2 shows many of the aforementioned components of the system as were described relative to FIG. 1. For the purpose of clarity the same reference numerals are used for the elements described relative to FIG. 1.

In FIG. 2 a set of feed rollers 42 are shown which are pinned to a feed roller shaft 43. The feed roller shaft 43 is pinned to gear 20 so that rotation of rollers 42 occurs during the time of engagement of the load clutch 18, FIG. 1. A paper guide 41 is shown in FIG. 2, spaced from drum 9 by a suitable gap to maintain a document loaded onto drum 9 substantially in contact with the drum during the arc of the rotation enclosed by guide 41.

Referring now to FIG. 4 a sheet of paper 50 is shown clamped onto drum 9 by a plurality of spring loaded clamps 51. In their normal position, clamps 51 hold an edge of paper 50 onto the surface of drum 9. Clamps 51 may be simultaneously opened by rotation of a torque bar which runs the length of drum 9, inside the drum. An end of the torque bar is shown in FIG. 1 and is denoted by reference numeral 97.

At the appropriate time in each paper loading cycle an actuation mechanism which will be described in more detail hereinafter is moved by a pin extending from gear 19 to engage the torque bar to rotate and provide for momentary opening of clamps 51. FIG. 4 shows, in an exaggerated manner, the skewed relationship of the edges of the rectangular sheet of paper 50 relative to the axis of drum 9. Carrier 14 is also shown schematically to be representative of any choice of printing or scanning technology.

FIG. 5 shows a more detailed view of the paper cartridge 40. Cartridge 40 is known in the paper handling art as a "corner buckling" cartridge in view of the paper corner retaining clips 44 which normally retain the paper in the cartridge. A spring loaded plate 45 upwardly biases the stack.
of papers 55. Clockwise engagement of feed rollers 42, FIG. 2, with the top sheet of papers 55 cause the exposed edge of the top sheet of sheets 55 to buckle upwardly as the sheet is driven out of the cartridge until the two corners release themselves from the retaining clips 44. After these corners are released the top sheet can continue to be fed onto drum 9 by further movement of feed rollers 42. Cartridge 40 also includes a paper stacking tray 47 and associated paper stacking extension rack 48 on which sheets of paper are supported after they are exited from the printing or scanning operation that occurs while the paper is clamped on drum 9. Finally, cartridge 40 includes a duplex path 49 which will be described in more detail hereinafter in accordance with the description of the duplex feature of this invention.

Referring now to FIGS. 1, 2, and 3 the paper handling paths of the system are described. Looking from the right end of the drum, the path of the left, counterclockwise rotation of drum 9 causes the print carrier 14 to traverse toward its rightmost limit. Just before it reaches its rightmost limit feed rollers 42 are engaged to rotate one revolution in a clockwise direction. This drives the top sheet of paper in cartridge 40 out of cartridge 40 toward the drum as indicated by arrow 60. At this time, paper clamps 51 and the leading edge of the paper (not shown) are being driven out of cartridge 40 are converging. At this convergence paper clamps 51 are opened against their normally self-closing spring tension. When this convergence has continued to the point that the leading edge of the paper is positioned underneath the opened leading edges of paper clamps 51, rotation of drum 9 is reversed into a clockwise direction. Paper clamps 51 close upon this reversal and the paper is now engaged by paper clamps 51 to be wrapped around drum 9 and rotate in a clockwise direction as viewed from the nearest end of drum 9 shown in FIGS. 1-2. During clockwise rotation of drum 9 carrier 14 traverses to the left, when viewed from FIG. 1, and away from the viewer with respect to FIGS. 3.

When the printing or scanning operations have been completed relative to the sheet of paper (not shown) mounted on drum 9, the direction of rotation of drum 9 is again reversed into the counterclockwise direction. This moves the trailing edge of the paper in the direction indicated by arrow 61, FIG. 3. Eventually this trailing edge of paper is engaged by the pairs of exit rollers 23 which rotate at a speed slightly faster than the surface linear velocity of drum 9. This speed differential causes the paper to be pulled out of clamps 51 without necessitating the reopening of clamps 51 by their opening mechanism. The paper continues to be moved through exit rollers 23 in the direction indicated by arrows 62 until the paper is stacked on the stacking tray 47 of cartridge 40.

Duplexing of paper, such that a page exiting drum 9 is caused to be loaded onto drum 9 on the opposite side of the paper, is accomplished in accordance with the preceding description relative to the removal of a page from drum 9. When duplexing is desired, however, the duplexing deflector 65 is rotated about one-fourth of a revolution in the clockwise direction as shown in FIG. 3 by the dashed outlined duplexing deflector denoted by reference numeral 66. As the edge of the page exiting drum 9 that is not clamped by clamps 51 engages the exit rollers 23, the duplexing deflector, positioned in accordance with reference numeral 66, prevents this edge of the paper from traveling out onto the stacking area 47 of cartridge 40. Instead, this edge of the paper is curved in a clockwise direction toward feed rollers 42 as indicated by arrows 67. With proper timing, feed rollers 42 engage the previously trailing edge of the paper and cause it to be loaded back into clamps 51 on drum 9. When this operation has been completed the opposite side of the page previously clamped onto drum 9 is now available to carrier 14 for printing or scanning. It will be noted that this technique can be utilized in any number of successive operations relative to the same page of paper before the page is ultimately transported to the stacking tray 47 of cartridge 40.

For a more particular description of the operation of loading a sheet of paper onto drum 9, refer to FIG. 8 and note the engagement of the ramp end of load clutch trip lever 27 relative to load clutch latch lever 24. A slight bit more rightward movement of carrier 14 and, therefore, trip lever 27 causes enough counterclockwise rotation of load clutch latch lever 25 (as viewed in FIG. 1) to trip the load dog clutch assembly 18.

Referring back to FIG. 1, when the load dog clutch 18 has been tripped, the engagement of the single dog tooth in that clutch assembly causes counterclockwise rotation of gear 19 and, therefore, clockwise rotation of gear 20. In FIG. 2 it will be noted that the clockwise rotation of gear 20 provides the clockwise rotation of driver rollers 42 to drive the top page of paper out of cartridge 40 toward the drum 9 as described relative to FIG. 3. Referring to FIGS. 8 and 9, during this counterclockwise rotation of gear 19 and drum 9, a pin 92 on gear 19 engages lever 93. Lever 93 is mounted to shaft 94 and this engagement of pin 92 relative to lever 93 during counterclockwise rotation of gear 19 causes a clockwise rotation of shaft 94. Another lever 95 mounted to shaft 94 can now engage lever 96 which is pivotable relative to the right end of drum 9. The other end of lever 96 from that which engages lever 95 is caused to rotate in a clockwise arc and engages tab 97 on torque bar 98. Torque bar 98 runs the length of drum 9 and has a plate 99 mounted thereon which engages paper clamps 51 to open paper clamps 51 upon counterclockwise rotation of bar 98.

At this time drum 9 has rotated counterclockwise and paper clamps 51 are open. A sheet of paper has been driven by feed rollers 42 far enough to have the leading edge thereof positioned under paper clamps 51. The rotation of drum 9 is now reversed so that drum 9 rotates clockwise as viewed from the right end of FIG. 1. The sheet of paper is now clamped onto drum 9.
Clockwise rotation of drum 9 also reverses the direction of lead screw 12 and causes carrier 14 to traverse toward the left end of the system shown in FIG. 1. Referring to FIG. 6, during the paper loading operation the assembly of trip levers 27 and 28 have progressed as far right as possible during operation of the paper handling system. At the end of paper loading the left side of trip lever 27 was positioned just to the right of latch lever 24.

It will be noted that both trip levers 27 and 28 are rotatable about pins 101 and 102, respectively. However, tabs 103 and 104 on trip levers 27 and 28, respectively, interfere with the trip lever support 105 such that only clockwise rotation of trip lever 27 is possible and only counterclockwise rotation of trip lever 28 is possible. In the absence of any other forces to rotate trip levers 27 and 28, spring 106 biases both trip levers to the positions shown on FIG. 6.

Thus, referring to FIG. 7, trip lever 27 rotates clockwise as it passes the load clutch latch lever 24 and does not trip this latch lever during clockwise rotation of drum 9 with carrier 14 traversing to the left. As the exit clutch trip lever 28 rides into contact with the exit clutch latch lever 25, this exit clutch latch lever is tripped relative to the exit dog clutch 21 to arm clutch 21 for paper unloading when drum rotation reverses again to a counterclockwise direction. However, it will be remembered that both of the dog clutches 21 and 18 engage for driving the pulley or gear, respectively, connected thereto only when drum 9 is rotated in a counterclockwise direction and only for one revolution after these clutches have been tripped.

With the paper loaded, the drum rotating clockwise and the exit clutch having been tripped as described above relative to FIG. 7, carrier 14 continues to traverse to the left during which time printing or scanning operations can occur. It will be understood by those skilled in the art that relatively high speed printing or scanning can take place because the drum is rotating continuously, without having to reverse direction, in a high speed manner relative to carrier 14 and the printing or scanning element 17 rigidly attached thereto, which also move continuously. Further, in view of the skewed mounting of the sheet of paper on drum 9, the carrier 14 can be continuously indexed with any requirement for movement only between printed lines. Various printing technologies can be employed such as resistive ribbon printing, wire matrix printing, and drop-on-demand ink jet printing, as examples. If it is necessary to provide a means for feeding a ribbon in a printing process, clutch 30 can be engaged to rotate pulley 29 relative to rotation of shaft 8 which, in turn, causes rotation of pulley 32, shaft 33, and pulleys 34. Belt 35 then transfers this rotation to pulley 36 mounted on carrier 14 which can be connected to a ribbon transport mechanism as will be understood by those skilled in the art. Clutch 30 can be an overrunning spring clutch to cause rotation of shaft 33 at any time that shaft 8 and drum 9 are rotated in a clockwise direction. Alternatively, if selective ribbon feed is desired clutch 30 can be a non-overrunning spring clutch selectively activated by an arm connected to an electromagnetically solenoid (not shown).

After the desired printing or scanning operation relative to a first side of the paper mounted on drum 9 has taken place, the system can be operated to cause the paper document to be removed from drum 9 and stacked on the stacking tray 47 of cartridge 40. An optical sensor (not shown) on carrier 14 senses the passage of the trailing edge of the document mounted on drum 9. Clockwise rotation continues for approximately one-half of a rotation more at which time the direction of drum 9 is reversed for rotation in a counterclockwise direction. This delay in reversing the direction of rotation allows the trailing edge of the paper to be positioned at the lower right quadrant of drum 9 as viewed in FIG. 3 so that counterclockwise rotation of drum 9 allows the trailing edge of the paper to travel in a direction indicated by arrows 61 instead of jamming against other components of the paper handling system when rotation of drum is reversed.

With the counterclockwise rotation of drum 9 for exiting the paper from the drum the exit clutch 21 engages to drive pulley 110 (FIG. 1), belt 22, pulley 111, and exit roller shaft 112 in counterclockwise rotation as viewed from the right end of FIG. 1. Referring to FIGS. 1-3, this rotation of the exit roller shaft 112 causes exit rollers 23 to engage the trailing edge of the paper unwrapping from drum 9 and transports the paper toward the stacking tray 47 of cartridge 40. As described above, the speed ratio of rollers 23 relative to drum 9 is such that rollers 23 pull the paper out of the paper clamps 51 of drum 9 without the necessity of reopening these spring loaded paper clamps for paper removal.

After a page of paper has been exited into the stacking tray as described immediately above, continued counterclockwise rotation of drum 9 eventually causes the load trip lever 27 to trip the load clutch latch lever 24 as described relative to FIG. 6 for loading another sheet of paper from paper cartridge 40 onto drum 9. It will be noted relative to FIG. 6 that on its way to the righthand position shown in FIG. 6 trip lever 28 rotates counterclockwise past the exit clutch latch lever 25 without tripping the latch lever.

It will also be noted that a single priority page of paper can be inserted into the rear of this paper handling system at any time immediately above the top sheet of paper in the cartridge 40 without clamping the leading edges of this page under the corner buckling clamps 44 of cartridge 40. When the next paper loading operation takes place, the page entered in this priority manner will be the page fed to drum 9 rather than the top sheet in the cartridge.

Referring to FIG. 10, at each instance of loading a sheet of paper onto drum 9, with counter-
clockwise rotation of the feed rollers 42 and shaft 43 (as viewed from this end of shaft 43 in FIG. 10) cam 120, pinned to shaft 43, causes a corresponding counterclockwise rotation in shaft 121 to which is connected a paper aligning gate 122. In FIG. 10, it will be noted that this counterclockwise rotation is caused by the engagement of pin 124 (on bell crank 123) with cam 120 during rotation of shaft 43. Bell crank 123 is pinned to shaft 121 and is normally biased to the position shown in FIG. 10 by spring 125. The initial position of the paper aligning gate 122 is down as shown in FIG. 10 and a plurality of tabs 127 along gate 122 are a gating surface for the front edge of a priority sheet of paper to be loaded. Tabs 127 position the leading edge of a priority sheet over the top sheet of the stack of pages retained in the cartridge 40. However, during paper loading the counterclockwise rotation of shaft 43 and the corresponding counterclockwise rotation of the paper aligning gate 122 (about one-fourth turn) removes the restraint provided by tabs 127 after their gating function has been provided, so that loading of the priority sheet can continue.

Assume now that a page of paper is presently loaded on drum 9 for printing or scanning on a first side of this page of paper. The paper handling system of this invention provides a capability for duplexing this paper. That is, the mechanism is capable of removing the paper from the drum, and reloading it onto the drum so that the side previously in direct contact with the drum is now exposed for printing or scanning. The description of the duplexing operation starts with the assumption that a page of paper has been loaded onto drum 9 and that drum 9 is rotating in a clockwise direction (as viewed from the right end of FIG. 1). It is further assumed that the exit clutch 21 latch lever 25 has been tripped by the exit clutch trip lever 22. The duplexing operation then proceeds initially with the beginning steps of unloading the paper from the drum as described above. However, as soon as the page becomes engaged by all of exit rollers 23, drum rotation is again reversed into a clockwise direction as viewed from the right end of FIG. 1.

In FIG. 1 at the left end of exit roller shaft 112 is an overrunning spring clutch 130 which allows only counterclockwise rotation of shaft 112 as viewed from the right end of FIG. 1. As noted above, neither dog clutch drives during clockwise rotation of drum 9. However, in view of the clutch 130 on exit roller shaft 112, shaft 112 and rollers 23 cannot reverse and freewheel in the opposite direction as drum 9 attempts to pull the page of paper out of these rollers during its clockwise rotation. Thus, exit rollers 23 restrain the paper and with clockwise rotation of drum 9 the page is pulled out of clamps 51.

FIGS. 11 and 12 also show the right end of drum 9 and the duplexing mechanism. Referring now to FIG. 12 as drum 9 continues to rotate in a clockwise direction a finger 131 which is rigidly attached to drum 9 engages a duplexing latch arm 132 and pushes this arm toward the right until tooth 133 on arm 132 is latched by a spring latch 134. A pin 135 extending through latch arm 132 and slidable in slots 138 and 137 pushes link 138 connected to a bell crank portion 139 of duplex deflector 65. Referring back to FIG. 3 the operation described causes the approximately one-quarter turn clockwise rotation of duplex deflector 65 down into the position shown by reference numeral 66 in FIG. 3.

As soon as the duplex deflector latching mechanism has been set as just described rotation of drum 9 is reversed again to a counterclockwise rotation. Counterclockwise rotation of drum 9 again causes rotation of the exit rollers 23 to pull the page of paper away from the drum. However, as the page is pulled away from the drum, instead of being driven out onto the stacking area 47 of cartridge 40, the paper is looped down past the duplex path 49 of cartridge 40 and is positioned above the top sheet of paper in cartridge 40. The paper aligning gate 122 in FIG. 10 is in the position shown in FIG. 10 at this time so that the edge of the page first exiting drum 9 can be driven no further forward toward being loaded onto drum 9.

Referring to FIG. 11, during this present counterclockwise rotation of drum 9 a step surface 140 on disk 141 rotating with the exit clutch driven members pushes upwardly on the underside of arm 132 and causes unlatching of this arm. This allows the duplex deflector 65 to rotate about one-fourth turn counterclockwise with respect to FIG. 12 back into its spring loaded normal position as shown in FIG. 3 relative to reference numeral 65. Continued counterclockwise rotation of drum 9 causes continued rotation of exit rollers 23 to remove the previously leading edge of the page away from the paper drum. Just before the previously leading edge of the page has exited past exit rollers 23, the counterclockwise rotation of drum 9 is momentarily accelerated to buckle the previously leading edge of the page out of the area of the exit rollers and duplex deflector plate.

Continued counterclockwise rotation of drum 9 causes carrier 14 and trip levers 27 and 28 (FIG. 1) to traverse to their rightmost limit. As described relative to the loading of a page out of cartridge 40, after the load trip lever 27 engages and trips the load clutch latch lever 24 the same page as previously loaded on drum 9 is relocated onto drum 9 with its previously trailing edge now its leading edge. It will, therefore, be understood that the side of the page previously in contact with drum 9 is now available for printing or scanning on the outside of drum 9. When this page has been loaded drum rotation is reversed to the clockwise direction relative to the right end of FIG. 1 and printing or scanning can occur as previously described.

In summary a very efficient and economical paper handling system has been provided for printing or scanning operations which requires only a single motor for loading, escapement, duplexing, and stacking a plurality of individual sheets to be printed or scanned. With the addition
of very few additional parts beyond the basic printer system, duplexing capability is provided to print or scan on the opposite side of the page without the requirement for manual reloading of the page by an operator.

Claims

1. Duplexing paper handling system in a printer or the like, said printer including
- a substantially cylindrical drum (9) rotatable about its longitudinal axis,
- holding means (41, 51) for holding a substantially rectangular print medium (50) around said drum,
- a support member (40) for holding a stack of print media,
- loading means for loading an individual print medium from said support member onto said drum,
- unloading means for unloading said individual print medium from said drum to a receiving tray (47) after completion of the transducing operation
- movable deflecting means (65), and
- actuating means (131-139) for positioning said deflecting means either in a first position where said print medium can be freely transferred from said drum (9) to said receiving tray (47) by said unloading means and a second position where said deflecting means are interposed in the path between said drum and said receiving tray and arranged to guide the leading edge of said medium back towards said loading means, whereby said medium is turned over and reloaded onto said drum so that the side previously in contact with the drum is now exposed for a new transducing operation, characterized in that it comprises
- a transducing head (17) mounted for movement along a rectilinear path extending parallelly and close to a generatrix of said drum to print or scan characters on said medium, and
- motor means (1) for rotating said drum, moving said head and driving said loading and unloading means.

2. System according to claim 1, in which said unloading means comprise exit roller means (23) for engaging an edge of said medium to remove said medium from said drum during a portion of rotation of said drum in a first direction and said actuating means are controlled by rotation of said drum in a second, reverse direction.

3. System according to claim 2, in which said actuating means are controlled by a finger (131) connected to an end face of said drum and said actuating means comprise an arm (132) and a link (138) connected to a bell crank end portion (139) of said deflecting means.

4. System according to claim 3, comprising latching means (133, 134), activated by said finger when said drum is rotating in said second direction after said exit roller means have engaged said medium.

5. System according to claim 4, comprising means upon activation of said latching means for causing rotation of said drum in said first direction to pull said medium out of said holding means (41, 51).

6. System according to claim 4 or 5, comprising cam means (140, 141, 142) for unlatching said latching means during rotation of said drum in said direction and after said activation of said latching means, thereby removing further activation of said deflecting means in said second position by said activating means.

Patentansprüche

1. System für den Transport von Schreibpapier in einem Drucker oder einer ähnlichen Vorrichtung, wobei der besagte Drucker enthält:
- eine im wesentlichen zylindrische, um ihre Längsachse drehbare Trommel (9),
- Haltemittel (41, 51) zum Halten eines im wesentlichen rechteckigen Druckmediums (50) um die besagte Trommel herum,
- Trägermittel (40) zum Halten eines Stapels von Druckmedien,
- Lademittel zum Laden eines einzelnen Druckmediums aus dem besagten Trägermittel auf die besagte Trommel,
- Entladedemittel zum Entladen des besagten einzelnen Druckmediums aus der besagten Trommel auf eine Aufnahmeschale (47) nach Abschluss des Übertragungsvorgangs,
- bewegliche Umlenkmittel (65), und
- Betätigungsmechanismus (131-139) für die Positionierung des besagten Umlenkmittels, entweder in eine erste Position, wo das besagte Druckmedium durch die besagten Entladeelemente frei von der besagten Trommel (9) in die besagte Aufnahmeschale (47) übertragen werden kann, und in eine zweite Position, in der besagte Umlenkmittel in den Weg zwischen besagte Trommel und besagte Aufnahmeschale eingesetzt werden und so angeordnet sind, dass sie die Anfangsseite des besagten Mediums rückwärts zu den besagten Lademitteln leiten, wodurch das besagte Medium umgedreht und wieder auf besagte Trommel geladen wird, sodass die vorher an der Trommel anliegende Seite jetzt für einen neuen Übertragungsvorgang aufgelegt wird, dadurch gekennzeichnet, dass sie enthält:
- einen Übertragungskopf (17) für die Bewegung in einem geradlinigen Weg, parallel und nahe an einer Mantellinie der besagten Trommel, zum Drucken oder Abtasten von Zeichen auf besagtem Medium, und
- Antriebsmittel (1) für die Drehung der besagten Trommel, welche den besagten Kopf bewegen und besagte Lade- und Entladelemente antreiben.

2. System gemäß Anspruch 2, in dem besagte Entladeelementen Ausgaberoßen (23) umfassen, die am Rand des besagten Druckmediums eingreifen und besagtes Medium von besagter Trommel während eines Teils der Drehung der besagten Trommel in eine erste Richtung fernhalten, und in dem besagte Betätigungsmechanismus durch Drehen der besagten Trommel in eine zweite, entgegengesetzte Richtung gesteuert werden.
3. System gemäß Anspruch 2, in dem besagte BetätigungsmitTEL durch eine Knagge (131) gesteuert werden, die an einer Endseite der besagten Trommel angeschlossen sind und besagte BetätigungsmitTEL einen Arm (132) und ein Verbindungsglied (138) enthalten, das an einen Glockenarmendabschnitt (139) der besagten AblenkmitTEL angeschlossen ist.

4. System gemäß Anspruch 3, Verriegelungsmittel (133, 134) enthaltend, durch besagten Finger betätigt, wenn sich besagte Trommel in die besagte zweite Richtung dreht, nachdem besagte AusgaberoTollen das besagte Medium aufgenommen haben.

5. System gemäß Anspruch 4, Mittel nach Aktivierung der besagten Verriegelungsmittel enthaltend, um die Drehwirkung der besagten Trommel in die besagte erste Richtung zu bewirken, sodass das besagte Medium aus den besagten HaltemitTEL (41, 51) herausgezogen wird.

6. System gemäß Anspruch 4 oder 5, Nockenmittel (140, 141, 142) enthaltend, um besagte Verriegelungsmittel während der Drehung der besagten Trommel in die besagte Richtung und nach Aktivierung der besagten Verriegelungsmittel freizugeben, sodass die weitere Betätigung der besagten AblenkmitTEL in der besagten zweiten Position durch die besagten Aktivierungsmittel ausgeschaltet wird.

Revendications

1. Système de manipulation de papier pour impression recto verso dans une imprimante ou machine similaire, ladite imprimante comprenant:
 - un tambour pratiquement cylindrique (9) tournant autour de son axe longitudinal,
 - des moyens de retenue (41, 51) pour maintenir un milieu d’impression pratiquement rectangulaire (60) autour dudit tambour,
 - un élément de support (40) pour contenir une pile de milieu d’impression,
 - des moyens de chargement pour charger un milieu d’impression individuel dudit élément de support sur ledit tambour,
 - des moyens de déchargement pour décharger dudit milieu d’impression individuel dudit tambour et le placer dans un bac de réception (47) après l’achèvement de l’opération de transduction
 - des moyens de déflexion mobiles (65), et
 - des moyens d’actionnement (131-139) pour positionner lesdits moyens de déflexion soit dans une première position permettant dudit milieu d’impression d’être librement transféré dudit tambour (9) audit bac de réception (47) par lesdits moyens de déchargement, soit dans une seconde position dans laquelle lesdits moyens de déflexion sont interposés sur le chemin entre ledit tambour et ledit bac de réception et agencés de façon à guider et ramener le bord avant dudit milieu vers lesdits moyens de chargement, ce qui permet audit milieu d’être retourné et rechargé sur ledit tambour de façon que le côté précédemment en contact avec le tambour soit maintenant exposé pour une nouvelle opération de transduction, caractérisée en ce qu’il comprend:
 - une tête de transduction (17) montée pour se déplacer le long d’un chemin rectiligne parallèle et proche d’une génératrice dudit tambour pour imprimer ou balayer des caractères sur ledit milieu, et
 - un moyen à moteur (1) pour entraîner ledit tambour en rotation, déplacer ledite tête et commander lesdits moyens de chargement et déchargement.

2. Système selon la revendication 2 dans lequel lesdits moyens de déchargement comprennent des moyens à galets de sortie (23) qui sollicitent un bord dudit milieu pour le retirer dudit tambour pendant une partie de la rotation de celui-ci dans une première sens et lesdits moyens d’actionnement sont commandées par la rotation dudit tambour dans un second sens inversé.

3. Système selon la revendication 2 dans lequel lesdits moyens d’actionnement sont commandés par un doigt (131) raccordé à une face d’extrémité dudit tambour et lesdits moyens d’actionnement comprennent un bras (132) et une bielette (138) raccordée à une extrémité (139) de renvoi coudé desdits moyens de déflexion.

4. Système selon la revendication 3 comprenant des moyens de verrouillage (133, 134) commandés par ledit doigt lorsque ledit tambour tourne dans ledit second sens après que lesdits moyens à galets de sortie aient sollicités ledit milieu.

5. Système selon la revendication 4 comprenant des moyens pour provoquer lors de la commande desdits moyens de verrouillage, la rotation dudit tambour dans ledit premier sens pour tirer ledit milieu hors desdits moyens de retenue (41, 51).

6. Système selon la revendication 4 ou 5 comprenant des moyens à surfaces de guidage (140, 141, 142) pour déverrouiller lesdits moyens de verrouillage pendant la rotation dudit tambour dans ledit sens et après ledit actionnement desdits moyens de verrouillage, ce qui empêche tout autre actionnement desdits moyens de déflexion dans ladite seconde position par lesdits moyens de commande.