Stencil printing machine.

Proprietor: Svanesson, Ake
Apertino 36
Fuengirola (Malaga) (ES)

Inventor: Svanesson, Ake
Apertino 36
Fuengirola (Malaga) (ES)

Representative: Lindblom, Erik J.
Skördelva 88
S-122 35 Enskede (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention.)

Description

Technical field
The present invention relates to a stencil printing machine as stated in the preamble of the succeeding claim 1.

Background
Several different stencil printing machines are as such already known.
Thus it is previously known by the US Patent Specification 4031824 to use a single elongated feed gripper member and a single elongated delivery gripper member, which are mounted in spaced relationship on a transfer carriage assembly movable relative to the printing bed of a printing press, each having a pair of parallel spaced rails. The feed gripper member and delivery gripper member are maintained in spaced parallel relationship near opposite ends of the transfer carriage and move with the transfer carriage as a single unit relative to the printing bed.
In operation, the stock to be printed may be first registered to the outside of the printing bed of the press and the feed gripper member, being mounted on a spring-biased cam-operated mounting plate moved horizontally and vertically relative to the stock to be printed to pick it up by vacuum in a registered position. The transfer carriage then moves along the rails of the frame so that the stock is brought into a printing position by the feed gripper. As the feed gripper is moving toward the printing bed, the delivery gripper, consisting of a pair of elongated parallel jaws which open in opposite directions about a common pivot pin, has simultaneously engaged and gripped a protruding edge of a sheet of printed stock and begun to transfer such stock to a delivery position.
After feeding and delivery has been accomplished, the transfer carriage may be quickly returned to its initial position and begin to repeat the process. The operation of the printing press is preferably timed so that printing is accomplished during return of the transfer carriage. This known stencil printing machine produces only unicoloured prints.

It is the object of the invention to construct a stencil printing machine with reciprocably arranged gripper arrangements in such a way that one and the same machine can be used for multi-colour processes.
The invention affords a multicolor printing and is characterized by the features mentioned in the characterizing part in the succeeding claim 1.
It is obvious that such a machine will be much cheaper than the use of two or more separate silk screen machines including the effort of moving printed material in one machine from said machine to the in-feed position of the second machine, for applying in said second machine a further print and so on.
Other advantages which can be perceived as being linked with a stencil printing machine intended for multi-colour printing in accordance with the present invention are that the design of the gripper beams and its drive machinery can be made much more simple than with previously known machines, whilst at the same time the construction becomes light, thus permitting rapid movement of the gripper beams between different predetermined positions and this rapid displacement can take place without the consumption of large quantities of power and energy.
A more detailed description will be given by reference to the appended drawings of a number of proposed embodiments which exhibit the characteristic features of the present invention, where
Figure 1 shows in side view and in greatly simplified fashion the principle of a stencil printing machine operating in accordance with the theory of the invention and with a guide which is capable of swivelling at one end occupying its upper position.
Figure 2 shows a machine in accordance with Figure 1 with the guide in a lower position.
Figure 3 shows in side view and in greatly simplified fashion the principle of a stencil printing machine operating in accordance with the theory of the invention with a gripper beam capable of being raised and lowered occupying its lower position.
Figure 4 shows the machine in accordance with Figure 3 where the printing table is in its upper position.
Figure 5 shows in side view and in greatly simplified fashion the principle of a stencil printing machine operating in accordance with the theory of the invention with a gripper beam capable of being raised and lowered occupying its upper position and
Figure 6 shows the machine in accordance with Figure 5 with the gripper beam in its lower position.
With reference to Figure 1, this shows in side view and in greatly simplified form a stencil printing machine in accordance with the present invention.
The stencil printing machine includes a printing table 1, two movably arranged material gripping and displacement arrangements, in the following designated as gripper beams and designated 2 and 3, a blanket 5 which is tensioned in a frame 4 unto which a stencil is applied and where this blanket is located directly above the printing table 1. A doctor blade and ink filling arrangement, which are not shown, interact with the stencil 5.
Interaction between on the one hand the movement of the gripper beams 2, 3 and secondly the action of the doctor blade and ink filling arrangements, also their displacement along the stencil 5 represent the existing state of an art in connection with stencil printing machines and are consequently not described in any greater detail in connection with the appended drawings. However, Figure 1 illustrates a drive machinery 6 which is intended via an arm 6a and a further arm 6b to displace the gripper beams 2 and 3 in a reciprocating movement.
The invention requires that all material gripping
and displacement arrangements 2, 3 be combined with each other, which in the embodiment shown is illustrated in that a beam 7 is fastened at one end 7a to the gripping beam 2 and at the other end 7b is attached to the gripping beam 3, by which means the gripping means 2 and 3 can be displaced along a guide 8, to and fro, as indicated by the arrows P1 and P2 by means of a control arrangement which is not illustrated in the diagram. By this means a reciprocating movement can be imparted to the gripping beam 2 between two stop positions.

In an initial position shown in the appended Figure 1 the gripping member 2a of one gripping beam 2 is designed to grip an initial item of material "A" which is located in an insertion position, in the embodiment resting on a table 9.

The second gripping beam 3 is intended, using its gripping member 3a, to grip another item of material "B" located in a printing position and where this material is provided with a printed image in the printing position by the doctor blade arrangement being displaced along the stencil 5 and pressing printing ink which is present on the upper face of the stencil through the blanket 5 so as to form a coating or a printed image on the material "B". When the gripping beams 2 and 3 have each gripped their material "A" and "B", the gripping beams 2 and 3 are displaced to a second position. In this position as shown in Figure 2 one of the gripping beams 2 is designed to leave the first item of material "A" intended for printing in the printing position for printing table 1, whilst the second gripping beam 3 is designed to hand over the printed material "B" to the next printing position. This printing position has been given the reference notation number 10.

In the diagrams reference is made solely to one guide 8 and one beam 7 but it is obvious that it is possible within the framework of the invention to arrange two parallel-oriented guides 8 and between them two parallel-oriented beams 7, by this means ensuring stability as regards the displacement of the gripping beams 2 and 3.

To ensure that the gripping beams 2 and 3 adopt a precise position in relation to the frame of the stencil printing machine it is obvious that the gripping beam 2 should be registered, in a manner forming part of the state of the art when gripping the material "A" in the insertion position 9 as shown in Figure 1, and that gripping beam 2 must be registered when leaving the material "A" in the printing position 1 as shown in Figure 2.

The gripping beams 2 and 3 are shown joined to each other via the beam 7. It can be advisable to make the supports to 2b and 3b somewhat resilient, by this means committing the adjustment and registration of the gripping beam in its position.

The example forming the embodiment illustrates that the insertion position 9 is orientated some distance above the printing position 1 and that the gripping beams are displaceably arranged along two parallel guides 8. However, at one end surface 8a these guides 8 can swivel to some extent around an axis 11 which means that it should be possible to impart to the gripping beam 2 a horizontal or at least essentially horizontal movement from the insertion position 9 to the printing position, this dropping downwards only in connection with the printing position so that the material can be made to rest against the printing table 1.

For multi-colour printing the invention incorporates three or more of such material gripping and displacement arrangements or gripping beams 2, 3 joined to each other during their reciprocating movement, this committing several prints to be made simultaneously. In such a case, position 10 also comprises a printing table, where the printing table 1 is intended to apply an initial colour to the material "B" whilst the printing table (at 10) is provided there to apply a second colour to the same material. In the first position illustrated in Figure 1, one of the gripping beams 2 is intended to grip an initial material "A" in its insertion position 9 whilst the remaining gripping beams are intended each to grip further material in their respective printing positions. This signifies that the gripping beams 3 grips the material "B" in the printing table 1, whilst the next gripping beam (not shown) grips the material which has been printed at a printing table (not shown) located at reference notation number 10.

In the second position one of the gripping beams 2 and 3, for example, are each intended to leave their respective materials in their printing position. On the other hand, the last gripping beam is intended to hand over a printed material to a delivery position.

Twisting of the guides around the axis 11, upwards and downwards, takes place via a cam disc which is driven by the printing machine drive machinery, but this disc is not shown on the appended drawing.

With reference to Figure 3 and 4, an embodiment is shown where the printing table 1 can be raised and lowered.

The printing table 1, is shown best in Figure 4 is supported by a parallel link system 12 and by this means the printing table can adopt a lower position as shown in Figure 3 and an upper position as in Figure 4.

During the period when the gripping beam 2 displaces the material "A" intended for printing from the insertion position 9 to the printing position on printing table 1, the printing table is located in a lower position and permits the gripping beam 2 to pass across the printing table 1 along fixed guides 8.

However when gripping beam 2 adopts the position shown in Figure 4 and the material "A" is located above the printing table 1, the printing table 1 is raised to the position illustrated in Figure 4 and print can be applied to the material "A".
The printing table 1 is lowered and the gripper beam 2 reverts to the position shown in Figure 3 in order to fetch new material whilst at the same time gripper beam 3, after raising of the printing table, can grip the printed material.

During further displacement of the gripper beams 2 and 3 to the left, the gripper beam 3 removes the printed material from the printing table whilst gripper beam 2 locates a new item of material intended to be printed on printing table 1.

Figure 5 and 6 illustrate an embodiment where the gripper beams, particular gripper beam 2, can be raised and lowered.

Here there is a fixed delivery table 9 and a fixed printing table 1 together with fixed orientation of the guides 8.

The gripper beam 2 is attached to beam 7 via a system of parallel rods 13 so that as illustrated in Figure 5 gripper beam 2 can adopt an upper position so as to grip a material “A” intended for printing. Gripper beam 2 adopts this upper position during its displacement along the fixed guides 8 to the printing position above printing table 1, after which gripper beam 2 is dropped down to its lower position as shown in Figure 6 and here places the material “A” intended for printing in the printing position on the fixed printing table 1.

Otherwise the sequence is the same as for the embodiments previously described.

Even though the specification includes three embodiments which have been described separately, it should be borne in mind that a combination of two or several embodiments can also satisfy the inventive concept.

As previously mentioned the principle underlying the invention an also be utilised for one gripper beam 2. After registration, this grips in the insertion position 9 and transports the material “A” to printing table 1. Here the gripper beam 2 is registered once again and the material is fastened to the printing table. Then the gripper beam can revert to the insertion position 9.

Now, during the entire printing stage, it is possible to adjust the material intended for printing to the registration mark in the insertion position.

It is to be expected that the embodiment shown in Figures 3 and 4 is especially preferred. This embodiment has an upper frame 4, in which the stencil is arranged and supported in a well known manner together with an ink filler and a doctor blade (not shown), which may reciprocate along the stencil and in only one direction of movement press the ink through apertures in the stencil, said apertures forming the pattern to be printed onto the material “A”.

Said frame 4, together with the ink filler and the doctor blade and the stencil is movably arranged up and down and so controlled in said movement that in the upper position the material “A” is transported of the gripper 2 along the printing table 1 (from the position shown in Figure 3, to the position shown in Figure 4). During this transportation the printing table is in its lower position.

Then the frame 4 is moved to its lower position and the printing table is moved to its upper position and in these positions the printing sequence may start.

Due to the fact that the gripper 2 has an upper smooth surface (plane surface) lying more or less in the same plane as the material “A”, when rested upon the printing table, it is possible to print the material “A” when said material is gripped by the gripper 2, and further to start the printing and its printing pattern adjacent the edge of the material and adjacent the gripper 2. The gripper 2 serves as registering device of the material on the table 1.

Summarising it has been found that in operation in a first position of the assembly, a first said arrangement grips a first item of material, which is to be printed, at an insertion position and a second grip arrangement grips a second item of material, which has been printed at a printing position and in a second position of the assembly, the first said arrangement has brought the first item of material to be printed to the printing position and the second said arrangement has brought the second item of material, which has been printed to a further printing position.

Claims

1. Stencil printing machine including a printing table (1), a material gripping and displacement arrangement in the form of a first pair of gripper beams (2, 3), both of which are reciprocably movable along a guide (8) and arranged in spaced relationship along the direction of said reciprocal movement, a stencil frame for tensioning a stencil above said printing table (1), and doctor blade arrangements, which in use interact with said stencil, said gripper beams (2, 3) being firmly joined to each to form an assembly for enabling a common reciprocating motion such that in operation in a first position of the assembly, a first pair of said gripper beams (2) grips a first item of material (A), which is to be printed, at an insertion position (9) and a second pair of said gripper beams (3) grips a second item of material (B), which has been printed, at a printing position, characterized in that for multicolour printing at least two printing tables are arranged adjacent each other, that at least two stencil frames are arranged adjacent each other and above said printing tables, that said assembly includes at least a further pair of gripper beams which are arranged in the same manner as said first pair of gripper beams (2, 3) and all joined to each other during their reciprocating movements so that in operation and in a first position of the assembly the first gripper beam grips a said first item of material, which is to be printed, at its insertion position, whilst the said remaining gripper beams each grips a respective further item of printed material at a respective printing position thereof and in a second position of the assembly, each of
the gripper beams, apart from the last one, has brought a respective of said item of material to a printing position, whilst the said last gripper beam has brought an item of material, provided with at least two prints, to a delivery position.

2. Stencil printing machine according to Claim 1, characterized in that the insertion position of the item of material to be gripped is disposed in a plane above that of the printing tables when said assembly is in its first position.

3. Stencil printing machine according to Claim 1, characterized in, that said assembly is movable along fixed guides.

Patentansprüche

1. Siebdruckmaschine, umfassend einen Drucktisch (1), eine Materialgreif, und Verschiebevorrichtung in Form eines ersten Paares von Greiferbalken (2, 3), welche beide entlang einer Führung (8) hin- und hergehend bewegbar und in räumlich getrennten Beziehung entlang der Richtung besagter hin- und hergehender Bewegung angeordnet sind, einen Schablonenrahmen zum Spannen einer Schablone über besagtem Drucktisch (1) und Rakelvorrichtungen, welche bei Einsatz mit der Schablone zusammenwirken, wobei besagte Greiferbalken (2, 3) fest miteinander verbunden sind, um eine Einheit zu bilden, die gemeinsame hin- und hergehende Bewegung ermöglicht, solcherart, daß bei Betrieb in einer ersten Stellung der Einheit ein erster dieser Greiferbalken (2) einen ersten, zu bedruckenden Materialteil (A) in einer Einführungsstellung (9) greift, und ein zweiter dieser Greiferbalken (3) einen zweiten, bedruckten Materialteil (B) in einer Druckstellung greift, dadurch gekennzeichnet, daß für Mehrfarbbendruck mindestens zwei Drucktische aneinander angrenzend angeordnet sind, daß mindestens zwei Schablonenrahmen aneinander angrenzend und über besagten Drucktischen angeordnet sind, daß besagte Einheit mindestens ein weiteres Paar von Greiferbalken enthält, die auf gleiche Weise wie jenes erste Paar von Greiferbalken (2, 3) angeordnet sind, und die alle während ihrer hin- und hergehenden Bewegungen miteinander verbunden sind, so daß bei Betrieb und in einer ersten Stellung der Einheit der erste Greiferbalken einen ersten, zu bedruckenden Materialteil in seiner Einführungsstellung greift, während die übrigen Greiferbalken jeweils einen weiteren, bedruckten Materialteil in dessen jeweiliger Druckstellung greifen, und daß in einer zweiten Stellung der Einheit jeder der Greiferbalken, außer dem letzten, einen jeweiligen Materialteil zu einer Druckstellung gebracht hat, während der letzte Greiferbalken einen Materialteil, der mit mindestens zwei Drucken versehen ist, zu einer Ausgabelstellung gebracht hat.

2. Siebdruckmaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Einführungsstellung des zu bedruckenden Materialteils in einer Ebene über den Drucktischen liegt, wenn besagte Einheit in ihrer ersten Stellung ist.

3. Siebdruckmaschine nach Anspruch 1, dadurch gekennzeichnet, daß besagte Einheit entlang fester Führungen bewegbar ist.

Revendications

1. Une machine à imprimer au pochoir comprenant une table d’impression (1), un agencement de saisie et de déplacement de matériel sous forme d’une première paire de barreaux à pince (2, 3), qui peuvent tous deux se déplacer en va-et-vient le long d’un glissière (8) et sont disposés dans une relation espacée le long de la direction dudit mouvement de va-et-vient, un cadre pour pochoir pour tendre un pochoir au-dessus de ladite table d’impression (1), et des agencements de racé qui, en fonctionnement, agissent en interaction avec ledit pochoir, lesdits barreaux à pince (2, 3) étant fermement joints l’une à l’autre de façon à former un ensemble pour permettre un mouvement de va-et-vient commun tel que lors du fonctionnement dans une première position de l’ensemble, un premier desdits barreaux à pince (2) saisit un premier article de matériel (A), qui doit être imprimé, à une position d’insertion (9) et un second desdits barreaux à pince (3) saisit un second article de matériel (B), qui a été imprimé, à une position d’impression, caractérisé en ce que, pour une impression polychrome, au moins deux tables d’impression sont disposées côte à côte, en ce qu’au moins deux cadres pour pochoir sont disposés côté à côté et au-dessus desdites tables d’impression, en ce que ledit ensemble comprend au moins une autre paire de barreaux à pince qui sont disposés de la même manière que ladite première paire de barreaux à pince (2, 3) et tous joints les uns aux autres pendant leurs mouvements de va-et-vient, de sorte que lors du fonctionnement, et dans une première position de l’ensemble, le premier barreau à pince saisit un dit premier article de matériel, qui doit être imprimé, à sa position d’insertion, tandis que lesdits barreaux à pince restants saisissent chacun un autre article de matériel imprimé respectif à une position d’impression respective de celui-ci et dans une seconde position de l’ensemble, chaque barreau à pince, sauf le dernier, a amené un dit article de matériel respectif jusqu’à une position d’impression, tandis que ledit dernier barreau à pince a amené un article de matériel, doté d’au moins deux impressions, jusqu’à une position de livraison.

2. Une machine à imprimer au pochoir selon la revendication 1, caractérisée en ce que la position d’insertion de l’article de matériel à saisir est disposée dans un plan au-dessus de celui des tables d’impression quand ledit ensemble est à sa première position.

3. Une machine à imprimer au pochoir selon la revendication 1, caractérisée en ce que ledit ensemble peut se déplacer le long de glissières fixes.