EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 30.12.92
Application number: 83109652.4
Date of filing: 28.09.83

The file contains technical information submitted after the application was filed and not included in this specification.

Process for preparing alpha-methylstyrene-acrylonitrile copolymers.

Priority: 01.10.82 JP 173738/82
Date of publication of application: 09.05.84 Bulletin 84/19
Publication of the grant of the patent: 30.12.92 Bulletin 92/53
Designated Contracting States:
BE DE FR GB IT NL SE

References cited:
US-A- 3 201 375
US-A- 3 817 965
US-A- 4 169 195
US-A- 4 275 182

06-06-1981

Proprietor: KANEKA KAGAKU KOGYO KABUSHIKI KAISHA
2-4 Nakanoshima 3-chome
Kita-ku Osaka-shi Osaka-fu 530(JP)

Inventor: Nakagawa, Masao Port Village 2-216
1-2, Minatojimanaka-machi 3-chome
Chuo-ku Kobe-shi Hyogo-ken(JP)

Representative: Türk, Gille, Hrabal, Leifert
Brucknerstrasse 20
W-4000 Düsseldorf 13(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to a process for preparing \(\alpha\)-methylstyrene/acrylonitrile copolymers, and more particularly to a process for preparing a copolymer having excellent transparency, heat resistance and strength in high conversions by copolymerizing \(\alpha\)-methylstyrene and acrylonitrile with or without at least one other vinyl compound in the presence of a specific peroxide in a suspension or bulk polymerization manner.

For producing a copolymer having a heat resistance sufficient for practical use by copolymerizing \(\alpha\)-methylstyrene, acrylonitrile and at least one of other vinyl compounds copolymerizable therewith such as styrene, methyl methacrylate, vinyl toluene and \(t\)-butylstyrene, it is necessary to employ \(\alpha\)-methylstyrene in an amount of at least 10 % by weight, preferably at least 20 % by weight, of the whole monomers to be used to produce a copolymer containing at least 10 % by weight, preferably at least 20 % by weight, of the \(\alpha\)-methylstyrene units.

It is known to carry out a suspension or bulk polymerization in the presence of an organic peroxide as a polymerization initiator such as \(t\)-butyl perbenzoate, \(t\)-butyl peracetate or \(di-t\)-butyl peroxide in a process for preparing \(\alpha\)-methylstyrene/acrylonitrile copolymers wherein a large amount of \(\alpha\)-methylstyrene is employed to produce a copolymer having a good heat resistance from the above-mentioned point of view. However, in a process using such initiators, it is necessary to use a large amount of the initiators regardless of the polymerization temperature. Consequently, the obtained copolymer is very low in the degree of polymerization, namely molecular weight, and is poor in utility as a molding material. On the other hand, in case of using these initiators in a decreased amount for the purpose of raising the degree of polymerization, the productivity is very low, since the so-called dead end polymerization occurs, thus a high conversion as required in industrial production is not obtained, or a very long polymerization time is required when a high conversion is desired.

Also, high conversions are not obtained by the use of a usual organic peroxide such as benzoyl peroxide, even if the polymerization temperature optimum for the peroxide is adopted.

Like this, in a conventional process for the preparation of the \(\alpha\) methylstyrene/acrylonitrile copolymers by suspension or bulk polymerization, the copolymers utilizable as molding materials have not been obtained, or the productivity has been very low.

It is an object of the present invention to provide a process for preparing \(\alpha\)-methylstyrene/acrylonitrile copolymers having excellent transparency, heat resistance and strength.

A further object of the invention is to provide a process for preparing \(\alpha\)-methylstyrene/acrylonitrile copolymers having excellent properties in high conversions in a short period of time by a suspension or bulk polymerization technique.

These and other objects of the present invention will become apparent from the description hereinafter.

In accordance with the present invention, there is provided a process for preparing a copolymer which comprises copolymerizing 10 to 80 % by weight of \(\alpha\)-methylstyrene, 5 to 50 % by weight of acrylonitrile and 0 to 70 % by weight of at least one member selected from the group consisting of styrene, methyl methacrylate, vinyl toluene and \(t\)-butylstyrene in the presence of a difunctional organic peroxide as an initiator at a temperature of 80° to 120°C. In a suspension or bulk polymerization manner, said difunctional organic peroxide being \(di-t\)-butyl peroxyhexahydroterephthalate or \(di-t\)-butylperoxy-3,3,5-trimethylcylohexane and being employed in an amount of 0.1 to 2.0 % by weight based on the total weight of the monomers used.

In the present invention, there is employed a monomer mixture consisting of 10 to 80 % by weight, preferably 20 to 80 % by weight, of \(\alpha\)-methylstyrene, 5 to 50 % by weight, preferably 10 to 40 % by weight, of acrylonitrile and 0 to 70 % by weight of at least one member selected from the group consisting of styrene, methyl methacrylate, vinyl toluene and \(t\)-butylstyrene.

It is essential to employ difunctional organic peroxides as polymerization initiators. The term "difunctional peroxides" as used herein means peroxides having two \(-O_2-\) group capable of producing radicals.

Difunctional organic peroxides having a 10 hour half-life temperature of 60° to 110°C. are employed in the present invention. The term "10 hour half-life temperature" as used herein means the temperature at which 10 hours are required in reducing the concentration of an initiator by half by the thermal decomposition.

The initiator is employed in an amount of 0.1 to 2.0 % by weight, preferably 0.2 to 1.5 % by weight, based on the total weight of the monomers used. When the amount of the initiator is less than 0.1 % by weight, no industrially practical conversion is obtained, or a very long time is required in polymerization, thus resulting in lowering of productivity. When the amount is more than 2.0 % by weight, a copolymer is obtained in high conversions in a short time, but the molecular weight is low and accordingly the strength of
moldings made thereof is remarkably lowered.

The fact that the α-methylstyrene/acrylonitrile copolymers of high quality are obtained in high conversions in a very short time by a suspension or bulk polymerization using the specific difunctional organic peroxide has not been expected from conventional knowledge and techniques. However, the reason is unclear.

Known suspension and bulk polymerization techniques are applicable to the process of the present invention. In the case of the suspension polymerization, known dispersing agents are added to an aqueous medium. The dispersing agents include, for instance, organic dispersing agents such as polyvinyl alcohol, polyvinyl pyrrolidone and methy cellulose, and inorganic dispersing agents such as calcium phosphate, magnesium phosphate, sodium silicate, zinc oxide and magnesium carbonate. In the case of the inorganic dispersing agents, the combination use thereof with anionic surface active agents such as sodium dodecylbenzenesulfonate and sodium α-olefinsulfonates is effective in increasing the dispersing effect.

It is important to select the polymerization temperature. The polymerization is carried out at a temperature of 80° to 120°C, preferably 90° to 110°C. When the temperature is lower than 80°C, the conversion is low, and when the temperature is higher than 120°C, the molecular weight of the produced polymer is lowered and industrially useful copolymers are hard to obtain.

The present invention is more specifically described and explained by means of the following Examples, in which all % and parts are by weight unless otherwise noted.

It is to be understood that the present invention is not limited to the Examples.

In the Examples, the specific viscosity ηsp was measured at 30°C with respect to a 0.2 % by weight solution of a copolymer in dimethylformamide. It is shown as a measure for the degree of polymerization, namely molecular weight. Also, the properties of a copolymer were measured with respect to a molding prepared by injection molding from the copolymer. The heat deflection temperature was measured according to Japanese Industrial Standard (JIS) K 7207 (deflection temperature under load). The impact strength was measured according to JIS K 7110 (Izod impact strength).

Example 1

An autoclave equipped with a stirrer was charged with 110 parts of water, 0.24 part of calcium phosphate, 0.003 part of sodium dodecylbenzenesulfonate and 0.2 part of sodium chloride. To the autoclave were added 50 parts of α-methylstyrene in which 0.3 part of di-t-butyl peroxycyclohexaneterephthlate was dissolved, 30 parts of acrylonitrile and 20 parts of styrene with stirring. Immediately, the temperature was elevated to 95°C, and the polymerization was carried out for 7 hours at that temperature. After cooling the reaction mixture to 40°C, the dehydration and drying were conducted to give a copolymer.

The conversion, the specific viscosity of the copolymer and the deflection temperature and impact strength of the molding made of the copolymer are shown in Table 1.

Example 2

The procedure of Example 1 was repeated except that 0.5 part of 1,1-di-t-butylperoxy-3,3,5-trimethyl-cyclohexane was employed instead of 0.3 part of di-t-butyl peroxycyclohexaneterephthlate and the polymerization was carried out at 100°C instead of 95°C.

The results are shown in Table 1.

Example 3

The procedure of Example 1 was repeated except that di-t-butyl peroxycyclohexaneterephthlate was employed in an amount of 0.5 part.

The results are shown in Table 1.

Comparative Example 1

The procedure of Example 1 was repeated except that 0.3 part of benzoyl peroxide was employed instead of 0.3 part of di-t-butyl peroxycyclohexaneterephthlate.

The results are shown in Table 1.
A copolymer was prepared in the same manner as in Example 1 except that 30 parts of styrene were copolymerized in the presence of 1 part of di-t-butyl peroxyhexahydroterephthalate. The conversion was 98.2%, thus the copolymer was methylene-10 parts of acrylonitrile and 60 parts of styrene were copolymerized in the presence of 1 part of di-t-butyl peroxyhexahydroterephthalate. The conversion was 98.2%, thus the copolymer was methylmethacrylate. 10 parts of acrylonitrile and 60 parts of styrene were copolymerized in the presence of 1 part of di-t-butyl peroxyhexahydroterephthalate. The conversion was 98.2%, thus the copolymer was

![Image of the page with text](https://via.placeholder.com/150)

Table 1

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Amount (part)</th>
<th>Conversion (%)</th>
<th>Specific viscosity temp. (°C.)</th>
<th>Deflection strength (kg./cm./cm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1 Di-t-butyl peroxyhexahydroterephthalate</td>
<td>0.3</td>
<td>99.3</td>
<td>0.164</td>
<td>122</td>
</tr>
<tr>
<td>Ex. 2 1,1-Di-t-butylperoxy-3,3,5-trimethylcyclohexane</td>
<td>0.5</td>
<td>99.0</td>
<td>0.135</td>
<td>122</td>
</tr>
<tr>
<td>Ex. 3 Di-t-butyl peroxyhexahydroterephthalate</td>
<td>0.5</td>
<td>99.6</td>
<td>0.149</td>
<td>120</td>
</tr>
<tr>
<td>Com. Ex. 1 Benzoyl peroxide</td>
<td>0.3</td>
<td>71.5</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* No molding was obtained due to a low degree of polymerization.
obtained in a high conversion in a short time. Also, the deflection temperature was 118°C.

Comparative Example 2

The procedure of Example 4 was repeated except that 1.0 part of benzoyl peroxide was employed instead of 1.0 part of di-t-butyl peroxyhexahydrotetraphthalate was employed and the polymerization was carried out at 90°C. The conversion was very low, namely 42%.

In addition to the ingredients used in the Examples, other ingredients can be used in the Examples as set forth in the specification to obtain substantially the same results.

Claims

1. A process for preparing a copolymer which comprises copolymerising 10 to 80 % by weight of \(\alpha \)-methylstyrene, 5 to 50 % by weight of acrylonitrile and 0 to 70 % by weight of at least one member selected from the group consisting of styrene, methyl methacrylate, vinyl toluene and t-butylstyrene in the presence of a difunctional organic peroxide as an initiator at a temperature of 80° to 120°C in a suspension or bulk polymerisation manner, said difunctional organic peroxide being di-t-butyl peroxyhexahydrotetraphthalate or di-t-butylperoxy-3,3,5-trimethylcyclohexane and being employed in an amount of 0.1 to 2.0 % by weight based on the total weight of the monomers used.

Patentansprüche

1. Verfahren zur Herstellung eines Copolymeren, gekennzeichnet durch Copolymerisieren von 10 bis 80 Gewichts-% \(\alpha \)-Methylstyren, 5 bis 50 Gewichts-% Acrylnitril und 0 bis 70 Gewichts-% wenigstens einesBestandteiles, ausgewählt aus der Gruppe, bestehend aus Styren, Methylmethacrylat, Vinyltoluene undt-Butylstyрен in Gegenwart eines difunktionellen organismen Peroxids als Initiator bei einer Temperaturvon 80 °C bis 120 °C in einer Suspension- oder Massepolymerisationsweise, wobei das difunktionelleorganische Peroxid Di-t-butylperoxyhexahydrotetraphthalat oder Di-t-butylperoxy-3,3,5-trimethylcyclohexan ist und in einer Menge von 0,1 bis 2,0 Gewichts-% eingesetzt wird, bezogen auf das Gesamtge wicht der verwendeten Monomeren.

Revendications

1. Procédé de préparation d’un copolymère dans lequel on copolymérisé de 10 à 80% en poids d’alpha-méthylstyrène, de 5 à 50% en poids d’acrylonitrile et de 0 à 70% en poids d’au moins un membre choisi dans le groupe constitué par le styrène, le méthacrylate de méthyle, le vinyl-toluène et le t-butylstyrène en présence d’un peroxyde organique bifonctionnel comme inducuteur à une température de 80° à 120°C en procédant en suspension ou selon une polymérisation en masse, ledit peroxyde organique bifonctionnel étant le peroxyhexahydrotétraphthalate de di-t-butyle ou le di-t-butylperoxy-3,3,5triméthylcyclohexane et étant employé en une quantité de 0,1 à 2,0% en poids sur la base du poids total des monomères utilisés.