Coil shapers for coils of rotating electric machines.

Priority: 09.09.82 GB 8225804

Date of publication of application: 02.05.84 Bulletin 84/18

Publication of the grant of the patent: 22.04.87 Bulletin 87/17

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
DD-A- 33 896
FR-A-1 485 486
GB-A- 941 643
GB-A-2 021 447
US-A-2 841 200

PATENTS ABSTRACTS OF JAPAN, vol. 1, no. 139, 15th November 1977, page 6775 E 77

Proprietor: Otty, Malcolm
27 Column Road
West Kirby Merseyside (GB)

Inventor: Otty, Malcolm
27 Column Road
West Kirby Merseyside (GB)

Representative: McNeight, David Leslie et al
McNeight & Lawrence Regent House Heaton Lane
Stockport Cheshire SK4 1BS (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to coil shapers for coils for rotating electric machines, more particularly for so-called 'diamond' coils for larger such machines. Such coils comprise loops of conductor, usually copper, having a generally rectangular cross-section that will be a snug fit in a rotor or stator slot. The loops are of a generally rectangular shape with two straight parallel sections, that fit into angularly spaced apart rotor or stator slots, connected by end sections.

Such coils are made from rectangular cross-section copper strip by winding an elongate loop of several turns of strip so as to form a laminated conductor of generally rectangular cross-section. This loop, which is so narrow that the two parallel straight sections may be touching or practically so, is then pulled out in width on a shaper that brings it to the final shape required to fit the rotor or stator slots. The shaper not only pulls out the straight sections — it also twists the one relatively to the other about its lengthwise axis to fit the angularly separated slots. As a result of this relative twisting, a characteristic "kink" appears in each end of the coil, which then displays a rounded "knuckle".

A coil shaper comprises a set of four grippers, one for each corner of the coil, initially situated so that the elongate loop can be placed in them. The grippers are pneumatically, hydraulically or otherwise separable and twistable so as to bring the loop into the coil shape required. The shaper is usually adapted to produce different sizes and shapes of coil by adjustment of its parts as required so that once an elongate loop is in position and the "go" button pressed, the operation is automatic.

On all existing coil shapers, however, certain operations must be effected manually — the only "automatic" part of the operation is the predetermined movement of the grippers.

The most important manual operation involves the formation of the "kink" above referred to, which is initiated, while the grippers are effecting their predetermined movement to spread the coil, by a mallet blow.

US—A—2 841 200 describes a typical prior art coil shaper.

GB—A—2079194 describes an improved coil shaper in which the coil is inverted as compared to previously known shapers, whereby the mallet blow would be touching more easily and accurately. Though the improvement brought about by this development was substantial, nevertheless, the requirement is still there for manual assistance at all stages of the shaping operation, including the final shaping of the ends of the coil. Not only is this expensive in terms of labour costs, but it also results in coils which are not necessarily accurately shaped and which usually require substantial further shaping to bring them within specification after the coil has been removed from the shaper. Even then, it is usually found that conventionally produced coils are not a good fit in the machine for which they are intended and, in fitting them, further modification — usually involving hammering and other operations potentially harmful to the insulation which has by now been applied to the coils — is required in winding the machine. The shaper described in GB—A—2 079 194 can produce better coils than previously known shapers because less difficulty is involved at the shaping stage. It can also produce coils in less time, thereby reducing the overall coil cost. It is found to be very suitable for repair shop operations, where relatively short runs of coils are required, because not only is it far more efficient than other shapers, but also its capital cost is moderate.

GB—A—941643 describes another prior art shaper which is said to overcome the problem of producing precise radii at the bends i.e. the diagonal sections between the coil slot, slot-fitting sections of the coil and the knuckles of the overhang sections. Such problem is clearly found with the shaper of US—A—2 841 200, which has no measures of any description automatically to shape these diagonal sections, as well as with GB—A—2 079 194.

The solution adopted in GB—A—941643 is to provide templates around which the diagonal sections are formed. However, this solution still does not accurately shape the diagonal sections because the template only controls the curvature about one axis — the coil section is still free to slide laterally on the template surface. Moreover, for different shapes and sizes of coil, different templates have to be produced, and the geometry is complex not least because the diagonal section twists about its longitudinal axis which, making such templates difficult and costly to produce. For a coil producing operation with a varied output an inventory of templates must be kept, retrieved from store as required and fitted to the shaping machine, which must then be set up most carefully with respect to the position of the templates.

The present invention overcomes the problems associated with GB—A—941643 and the other prior art referred to and enables perfectly shaped, identical coils to be produced to any size and shape without the production of expensive templates and with perfect control of the entire overhang section of the coil.

The solution is to provide a further gripper for each diagonal section of the coil between the slot-fitting sections and the knuckle, said further grippers being adapted to locate the ends of the said diagonal sections which are to remain unrotated about its lengthwise directions.

If the rotation of a slot-fitting section about its lengthwise direction is regarded as a positive rotation, then the rotation of the diagonal section near the knuckle will be negative, so that in between there will be a point on the diagonal where the rotation is zero.

Additional grippers may be provided for each diagonal section either side of said first mentioned third shaping means.

These grippers can be controlled like the main
coil spreading grippers to control the shape of the diagonals and the formation of the knuckles much more accurately and with substantially less damage to the material of the coil than is possible with manual techniques. It is also, by eliminating manual intervention at this stage, possible to increase the rate of operation so that the new machine will produce many more coils per hour than prior art shapers.

The said grippers may comprise coll-section engaging claw members fixed at the ends of adjustable arms and co-operating clamping members, which latter clamping members may also be fluid pressure actuated. The adjustable arms may be adjustable both as to length and orientation, and may be adjusted by fluid pressure means.

Control means may be provided adapted to control the shaper to perform a fixed cycle of operation repetitively, and said control means may be adapted to be programmed to carry out different operational cycles to produce coils to different specifications. The control means may comprise a micro-processor, which may be programmable by inputting information about the initial loop coil blank and the configuration of the finished coil. The initial positions, namely those appropriate to the start of a coil-spreading cycle, may be adjusted manually at the start of a series of cycles, such positions being storable in microprocessor memory so that they can be restored for a new cycle. The input information can then determine the movement of the movable parts of the shaper away from their initial positions.

The shaper may also comprise loading means automatically loading a loop coil blank on to the grippers and, if desired, unloading means automatically off-loading a finished shaped coil after release of the grippers.

The construction of the machine, in particular the placement of the further gripper means for controlling the diagonal sections, is facilitated by adopting the measures described in GB—A—2079194 above referred to, namely the inverting of the coil as compared to previously known shapers. As will be seen from GB—A—941643, the centre of curvature of the diagonal sections is below the coil, the templates being therefore located below the coil. With the inverted arrangement according to GB—A—2079194 the centre of curvature is above, enabling the said further grippers to be located above the coil where there is considerably more space than below. This arrangement also facilitates automatic loading and unloading of the coil loop blank and the finished coil from above so that the entire operation of loading, shaping and unloading the coil can be performed accurately and completely automatically without any manual intervention at all which not only makes for coils of improved accuracy of shape but also a less expensive and more rapid production process.

One embodiment of a coil shaper according to the invention will now be described with reference to the accompanying drawings, in which:

Figure 1 is a perspective view of an elongate loop coil blank.
Figure 2 is a perspective view of a shaped coil.
Figure 3 is an end-on-view of part of a partly wound stator showing one coil in place.
Figure 4 is a plan view of a shaper according to the invention in its initial position.
Figure 5 is a section on the line V—V of Figure 4.
Figure 6 is a plan view of the shaper in Figure 4 after spreading a coil.
Figure 7 is a section on the line VII—VII of Figure 6, and
Figure 8 is a plan view of the shaper as shown in Figure 6, with additional features, which are not shown in the other Figures.

The elongate loop coil blank shown in Figure 1 consists of a simple winding of insulated copper of rectangular cross section, the ends 11 of the copper terminating at the same end of the coil. The winding consists of about four turns. It is required to bring this blank into the shape shown in Figure 2 in order to fit into the slots of the rotor or stator of an electric machine. Figure 2 shows a typical coil for a larger electric motor or generator comprising a loop of generally rectangular shape with two straight, parallel sections 12 that fit 40 as shown in Figure 3 45 — into angularly spaced apart stator slots 31, connected by end sections 13. The end sections 13 comprise diagonal sections 13e joined in knuckles 14.

The straight, parallel sections 12 are angled with respect to each other, as best seen in Figure 3, so that they align more or less precisely with radii of the stator to fit into the slots 31. This angling gives a rather complex geometry to the end sections 13 of the coil.

Figures 4 to 8 illustrate a coil shaper for transforming a loop coil blank as shown in Figure 1 into a diamond coil adapted to fit the stator of a machine as shown in Figures 2 and 3.

The coil shaper comprises grippers 41 for the corners of the coil and powered means comprising piston-in-cylinder arrangements 42, 43 moving the grippers 41 apart from an initial position as seen in Figures 4 and 5 for insertion of a loop coil blank 40 to a final position as seen Figures 6 and 7 in which the coil is shaped as seen in Figure 2.

The piston-in-cylinder arrangements 42 are provided for each gripper 41, and are mounted on rotatable beams 44 mounted on carriages which are separable by the piston-in-cylinder arrangements 43.

Rotation of the beams 44 rotates the grippers 41 — as best seen by comparing Figures 5 and 7 — so as to angle the slot-fitting sections 12 of the coil about their lengthwise directions. This rotation is effected by further piston-in-cylinder arrangements 46 (Figures 5 and 7).

The shaper also comprises endwise disposed grippers 48 for controlling the knuckles 14 of the coil. The grippers 48 are adapted to resist inward movement of the knuckles 14 of the coil as the coil is spread. This resistance is effected by piston-in-cylinder arrangements 49 (shown only in Figure
6) attached to anchoring points either side of the long axis of a coil mounted in the shaper and permitting controlled movement of the gripper 48 parallel to and at right angles to said axis — there being two such piston-in-cylinder arrangements at each end of the coil and on opposite sides of the said axis. As illustrated, the piston-in-cylinder arrangements 49 work parallel to the axis, but the pistons may be oppositely inclined towards the said axis.

The grippers 48 comprise radius pegs 48a and clamps 48b gripping the faces of the coil blank, the clamps 48b being themselves fluid-pressure operated by piston-in-cylinder arrangements, not shown for reason of clarity, both to grip the coil and to control its twisting as the coil is spread.

The arrangement described so far is capable, given suitable controls for the movement of the piston-in-cylinder arrangements, of spreading a coil blank into a diamond coil with good control over the spreading and angling of the straight, parallel slot-fitting sections 12 and the position and orientation of the knuckles 14.

According to the invention the main improvement in shaping the ends of the coil, however, is obtained by providing further grippers as shown in Figure 8.

Figure 8, which is a plan view of the shaper shown in Figure 6 with just a few parts not shown, but with additional features, shows, for each diagonal section 13a of the coil, a further controlling gripper 81 controlled by a further piston-in-cylinder arrangement 82, itself so controlled as to determine the correct angle and position of the section of the diagonal 13a gripped thereby.

Further similar piston-in-cylinder controlled grippers can be added further to control the angles and positions of the diagonal sections at additional points indicated in Figure 8 by lines referenced 83 (also shown in Figure 2).

When the grippers 81 and further grippers for the points 83 are added, given proper control, of course, of the associated piston-in-cylinder arrangements, the accuracy with which the coil is shaped is considerably further improved. At least, the motions of the various grippers are substantially exactly, reproduced from coil to coil, each coil will be identical with each other coil. At its simplest, the problem is that of providing a coil shaper with a given initial position for all its grippers and a given final position for all its grippers and being able to reproduce these positions. More generally, since the equipment may and probably will be required to produce coils in a range of sizes and a variety of shapes, it involves being able to program the equipment to produce any such desired size and shape of coil. This can be achieved, without need of further explanation, by use of a microprocessor controlling the piston-in-cylinder arrangements via appropriate solenoid valves, servo or stepping motors and/or other means.

The arrangement of the coil shaper described herein is very well adapted to automatic loading and unloading of coils, since the coil is loaded and unloaded from the top, permitting easy access for mechanical loading/unloading means.

Claims

1. A coil shaper for 'diamond' coils for rotating electric machines comprising grippers (41) for the corners of the coil and powered means (42) moving the grippers (41) apart from an initial position for insertion of an elongated loop coil blank to a final position in which the coil is shaped and the grippers (41) rotated so as to angle the straight, parallel, slot-fitting sections (12) about their lengthwise directions, and endwise-disposed grippers (48) for controlling the knuckles (14) of the coil, characterised by a further gripper (81) for each diagonal section (13a) of the coil between the slot-forming sections (12) and the knuckle (14), said further grippers (81) being adapted to locate the parts of the said diagonal sections (13a) which are to remain unrotated about its lengthwise directions.

2. A coil shaper according to claim 1, further comprising control means adapted to control the shaper to perform a fixed cycle of operations repetitively.

3. A coil shaper according to claim 2, said control means being adapted to carry out different operational cycles to produce coils to different specifications.

Patentansprüche

1. Spulenformer für "Diamant"-Spulen zum Drehen von elektrischen Maschinen mit Greifern (41) für die Ecken der Spule und mit einer kraftbetätigten Vorrichtung (42), welche die Greifer (41) bewegt aus ihrer Ausgangsstellung zum Einsetzen eines langgestreckten Schleifen-Spulen-Rohlings in eine Endstellung, in welcher die Spule geformt wird und die Greifer (41) gedreht werden, um die geraden, parallelen, schlitzeingepeisten Abschnitte (12) um ihre Längsrichtung im Winkel einzustellen, und mit am Ende angeordneten Greifern (48) zum Steuern der Drehzapfen (14) der Spule, gekennzeichnet durch einen weiteren Greifer (81) für jeden diagonalen Abschnitt (13a) der Spule zwischen den schlitzeingepeisten Abschnitten (12) und dem Drehzapfen (14), wobei die weiteren Greifer (81) die Teile der diagonalen Abschnitte (13a), die ungedreht, bleiben um ihre Längsrichtung positionieren können.

2. Spulenformer nach Anspruch 1, dadurch gekennzeichnet, daß er ferner aufweist eine Steuervorrichtung, die den Formen so steuert, daß er wiederholt einen festen Operationszyklus durchführt.

Revendications

1. Appareil de formage d'enroulements en losange destinés à des machines électriques rotatives, comprenant des pinces (41) pour enserrer les sommets de l'enroulement et des moyens (42) actionnés par un moteur pour déplacer lesdites pinces d'une position initiale dans laquelle on insère une ébauche d'enroulement en forme de boucle allongée, vers une position finale dans laquelle l'enroulement est conforme, lesdites pinces (41) étant pivotées de manière à orienter les segments droits parallèles (12) constituant les bords de la fente, selon leur axe longitudinal, cependant que des pinces (48) sont disposées aux extrémités de l'enroulement pour façonner les joints (14) de l'enroulement, caractérisé en ce qu'il comprend au moins une pince supplémentaire (81) pour chaque segment diagonal (13a) de l'enroulement entre les segments constituants les bords (12) de la fente et le joint (14), lesdites pinces supplémentaires (81) étant destinées à maintenir les parties desdits segments diagonaux (13a) qui ne peuvent pas être pivotés autour de leur axe longitudinal.

2. Appareil de formage selon la revendication 1, caractérisé en ce qu'il comprend en outre des moyens de commande destinés à faire effectuer à cet appareil un cycle déterminé d'opérations, de manière répétitive.

3. Appareil de formage selon la revendication 2, caractérisé en ce que lesdits moyens de commande sont adaptés pour effectuer différents cycles d'opérations afin de réaliser des enroulements de différentes dimensions.