PSYLLIUM COMPOSITIONS.

Date of publication of application: 04.04.84 Bulletin 84/14

Publication of the grant of the patent: 13.12.89 Bulletin 99/50

Designated Contracting States: CH DE FR GB LI SE

References cited:
GB-A-2 067 402
US-A-1 891 697
US-A-1 975 731
US-A-2 043 204
US-A-2 095 259
US-A-2 146 867

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
References cited:

Chemical Abstracts, volume 43, no. 21, issued November 10, 1949 (Columbus, Ohio, USA). R.H. Blythe et al. J. AM. Pharm. Assoc. 38: 59-64 (1949)

Chemical Abstracts, volume 35, issued 1941 (Columbus, Ohio, USA). H. Gray et al. AM. J. Digestive Diseases 8: 130-139 (1941)

Description

Background of the invention

This invention relates to granulated Psyllium compositions which are readily dispersible in water and aqueous beverages.

Powdered husks of the Psyllium seed is a common and effective bulk laxative drug. The hydrophilic properties of this natural fibrous laxative causes ingested doses to absorb large amounts of water, thus producing bulk and normalizing regularity through proper stool formation.

The single normal adult dose is about 3 grams of Psyllium powder which is dispersed by the user in water or an aqueous beverage. Powdered Psyllium has very poor wetting capabilities and therefore must be vigorously mixed with aqueous fluids to produce a palatable dispersion.

Historically, Psyllium seed preparations have been formulated to contain equal parts of active bulk laxative and a sugar (usually dextrose) as a means of promoting dispersion ease. These 50:50 dilutions are also inconvenient to the user since mixability is still often difficult. Rigorous agitation and/or stirring are required to render the composition palatable and lump free. Moreover, patients on restricted sugar-free or weight controlling diets cannot normally use these products.

Attempts to improve mixability have led to effervescent powder formulas which at best still contain only about 50% of active bulk laxative, are usually high in sugar content and contain significant amounts of sodium or potassium ions, which preclude their use by diabetic patients and patients on low sodium diets.

Pure Psyllium powder resists wetting in water or aqueous beverages because of its fine particle size and the inability of water to penetrate the powder mass due to fast surface hydration and swelling. Vigorous agitation in water results in a lumpy dispersion. The lumps, although wetted on their outer surface, contain dry undispersed powder on the inside. Fluid penetration must precede hydration in order to accomplish instant wettablility and dispersability.

The wettablility of powdered Psyllium can be enhanced by diluting the particles with large amounts of a highly water soluble material, e.g., sucrose. The disadvantages of doing so have been discussed above.

Moreover, lumping is not totally avoided because in order to do so, the water soluble material must impart dilution to the Psyllium powder, viz., the creation of voids between the individual particles which hold them apart long enough to allow the individual particles to become wet rather than agglomerated into clumps.

As stated above, sugars have been used for this purpose with limited success. Effervescent sugar-Psyllium mixture self-dilute when carbon dioxide is released upon use. It follows therefore, that air alone should act as a diluent for a bed of Psyllium if the bed were properly mechanically diluted.

However, neither dilution alone nor the water solubility of the coating agent ensures rapid and complete dispersibility of powdered Psyllium in water and aqueous beverages.

Although a number of water soluble or dispersible polymers can be used to achieve dilution of powdered Psyllium by conversion thereof into granules in which the Psyllium particles are dispersed with air voids, instant and complete dispersibility of the resulting product in water and aqueous beverages is rarely achieved employing amounts thereof which could form alcoholic solutions of a viscosity low enough to be used to granulate the Psyllium.

A wetting test was developed to show the effect of various polymers on the wettablility of Psyllium granules produced by wet granulation of Psyllium powder with solutions thereof. The time required to completely wet 3.7 g of Psyllium ladled onto the surface of 150 ml of water (or aqueous beverage) in a 65 mm diameter beaker was measured. If greater than 2 minutes was required for wetting, the wetting time was recorded as greater than 120 seconds.

Table I below lists the results of attempts to accomplish more rapid wetting of Psyllium with glycercin, which theoretically should enhance dispersibility of the Psyllium by increasing the surface wetting of the Psyllium powder. Alcoholic (anhydrous ethanol) solutions of glycercin with or without Tween® 80, a surface active agent, were added to Psyllium powder. Thorough mixing of the wetted powder insured total distribution of the ingredients. The alcohol was evaporated, the powders were sized and tested. It was found that even when a strong wetting agent was added, glycercin did not enhance wettablility. Only with equal parts of Psyllium and dextrose did a mixture of glycercin and wetting agent produce fast wetting because although glycercin should have been to a good wetting bridge between Psyllium and water, it did not impart any dilution to the powder mass. In fact, the quick hydration at the powder-water interface actually impeded penetration of the water and complete wetting of all the particles was prevented. By dilution with 50% dextrose, dilution of the Psyllium in effect was accomplished and penetration of the water preceded hydration and, with the aid of the glycercin and wetting agent, fast lump-free wetting occurred. However, the resulting product had the other disadvantages discussed above.
Table II below gives the wetting times obtained with various polymeric and other materials used to achieve mechanical dilation by wet granulation of the Psyllium powder from an alcoholic (95% denatured) solution of the selected material. Agglomeration of Psyllium particles effectively achieved mechanical dilation by dilution with air voids. The concentrations thereof employed were dictated by the viscosity of the solutions thereof or toxicity considerations. Although dilation was accomplished in all cases except one (Pluronic a S.A.A.), fast aqueous penetration and uniform wetting was only occasionally achieved.

TABLE I

<table>
<thead>
<tr>
<th>Contents %</th>
<th>Wetting time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psyllium</td>
<td>Dextrose</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>48.4</td>
</tr>
<tr>
<td>75</td>
<td>23.4</td>
</tr>
<tr>
<td>98.4</td>
<td>0</td>
</tr>
<tr>
<td>96.9</td>
<td>—</td>
</tr>
<tr>
<td>97.9</td>
<td>—</td>
</tr>
<tr>
<td>97.0</td>
<td>—</td>
</tr>
<tr>
<td>95.0</td>
<td>—</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Psyllium content</th>
<th>Polymer</th>
<th>Wetting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>None</td>
<td>>120</td>
</tr>
<tr>
<td>98%</td>
<td>Methocel® E-15 2%</td>
<td>>120</td>
</tr>
<tr>
<td>99.8%</td>
<td>Carbopol® 0.2%</td>
<td>>120</td>
</tr>
<tr>
<td>99%</td>
<td>Methocel® E-5 1%</td>
<td>90</td>
</tr>
<tr>
<td>99%</td>
<td>Pluronic® F-68 1%</td>
<td>>120</td>
</tr>
<tr>
<td>99%</td>
<td>Gantrez®—AN119 1%</td>
<td>>120</td>
</tr>
<tr>
<td>98%</td>
<td>Xanthan Gum 2%</td>
<td>>120</td>
</tr>
<tr>
<td>95%</td>
<td>Sucrose Syrup 5%</td>
<td>>120</td>
</tr>
<tr>
<td>99%</td>
<td>PVP 1%</td>
<td>22</td>
</tr>
<tr>
<td>99%</td>
<td>PEG 1% (3350)</td>
<td>30</td>
</tr>
</tbody>
</table>

Notwithstanding the foregoing results, we have found that certain of the foregoing polymers can be employed in a wet granulation process at higher concentrations to produce granulated Psyllium products which not only have a high Psyllium content (greater than 90% and usually at least about 95%) but which are substantially instantly and uniformly dispersible in water and aqueous beverages.
Polyvinylpyrrolidone (PVP) is one of the polymers which proved to be operable at concentrations above about 2%. US—A—2,820,741 teaches the use of an alcoholic solution of PVP as a granulating agent for water-insoluble materials which are unstable in the presence of water and that PVP aids in the physical disintegration of granules when formed into tablets or filled into capsules. However, it teaches nothing about the effect thereof upon the dispersibility of such granulated materials in water. US—A—3,725,541 discloses the use of a water insoluble polymer or copolymer of vinylpyrrolidone and powdered sugar to produce an anti-diarrhea product. Other US—patents which disclose a process of preparing a pharmaceutical by the addition of the active ingredient to an alcoholic PVP solution are US—A—3,089,818; 3,257,277; 3,553,313; 3,673,163; and 4,081,529. We have also found that polyethylene glycol (PEG) is superior to PVP in achieving rapid dispersibility of the Psyllium in water at concentrations above about 1.5% by weight of the Psyllium. US—A—Patents which employ PEG in the preparation of pharmaceutical products are 2,698,822, 2,540,253; 3,308,217; 3,862,311; 3,932,613; and 4,151,273. Gakenheimer (US—A—2,540,253) discloses the use of PEG to form granules suitable for the preparation of tablets. Riegleman et al. (US—A—4,151,273) discloses a method of enhancing systemic absorption of poorly soluble drugs by forming a glossy solid matrix of the carrier (PEG) and the drug. A solution of the drug and the carrier is formed at an elevated temperature, with or without a solvent, and chilled rapidly to form a solid mass which can be ground to a powder.

Leeson (US—A—3,862,311) discloses increased absorption of drugs when they are combined with carrier (PEG) and surfactant. See Col. 2, lines 3—9 and Col. 2, lines 48—58 for discussion of carriers used and of drug-surfactant-carrier ratios, respectively. Halpern et al. (US—A—2,698,822) disclose PEG used to increase systemic absorption of insoluble drugs. Lowry et al. (US—A—3,308,217) disclose a dry granulation method of preparing a mix for producing tablets using PEG (See Col. 4, lines 36—44), which employs a heating step. Chapura (US—A—3,332,613) claims a PEG suppository.

Summary of the invention

In a composition aspect, this invention relates to ingestible granulated Psyllium compositions consisting, essentially of granules of Psyllium powder, the compositions being characterized in that the Psyllium is substantially instantly and uniformly dispersible in water by the presence on the surface of the Psyllium powder particles of a coating of an amount of a non-toxic, normally solid, alcohol soluble, water dispersible, polyethylene glycol, polyvinyl-pyrrolidone, or mixture thereof. In a preferred aspect, the coating comprises polyethylene glycol plus an amount of polyvinyl pyrrolidone so that the granules are significantly less friable than correspondingly coated Psyllium coated with the same amount or the polyethylene glycol only.

In a method aspect, this invention relates to a method for producing an ingestible granulated Psyllium composition which method is characterized in that Psyllium powder is wet granulated with an amount of a solution in a volatile organic solvent, or mixture thereof with water, of 1 to 10% by weight of the Psyllium or a non-toxic, normally solid, alcohol soluble, water dispersible polyethylene glycol, polyvinylpyrrolidone, or both, the resultant Psyllium granules when dry being substantially instantly and uniformly dispersible in water. In a preferred aspect, the solvent is anhydrous ethanol.

Detailed discussion

The Psyllium powders employed in this invention are the conventional powders used commercially as such and to produce the prior art granulated compositions described hereinafore.

Similarly, the wet granulation process of this invention employs procedures well-known in the art. See e.g., US—A—2,820,741 and references cited therein; 2,540,253; 2,980,589; and Newitt, D. M. et al. Proc. Fert. Soc., 1980, No. 55, pp. 1—35.

The polymers employed in this invention are the non-toxic, normally solid (under ambient conditions) alcohol soluble, water dispersible polymers of ethylene glycol and of vinylpyrrolidone. Such polymers are well-known in the art. Such polyethylene glycols have somewhat lower molecular weights than the polyvinylpyrrolidones having substantially the same solubilities. The commercially available polyethylene glycols having the desired properties have molecular weights ranging from 900 to 20,000. The normally liquid polymers having lower molecular weights are less effective than the normally solid polymers. Preferred are those having a molecular weight from 3,000 to 8,000. A particularly useful polymer (PEG 3350) has an average molecular weight of about 3,350. Included in the polyethylene glycols which can be employed in this invention are those whose terminal hydroxy groups have been chemically modified, e.g., by an ether or ester group. The commercially available polyvinylpyrrolidones having the desired properties have molecular weights ranging from 10,000 to 360,000. A particularly useful polymer (Povidone K29/32) has a molecular weight of about 40,000. Contemplated equivalents of these polymers are corresponding copolymers and terpolymers having substantially the same physical characteristics.

Surprisingly, the polyethylene glycols for the most part are superior to the polyvinylpyrrolidones in their ability to produce Psyllium granules which are substantially instantly wettable, i.e., which are
completely wetted within 10 seconds in the wetting test described hereinafter. Therefore, the coating on the *Psyllium* particles of the preferred compositions of this invention comprise and more preferably consist predominantly, i.e., more than 50% by weight, and most preferably consist of 65—100% by weight, of polyethylene glycol.

Although *Psyllium* granules coated solely with PEG have the fastest wetting times, the granules are rather fragile and tend to break up with handling or shipping. When the coating consists of a minor proportion, i.e., less than 50%, preferably 10—35%, and most preferably 15—25%, e.g., about 20%, of PVP, friability is reduced substantially without significantly affecting wettablility rates.

The amount of PEG, PVP or mixture thereof present in the compositions of this invention varies somewhat with the particular polymers employed. Usually, however, 5% by weight of the granulated compositions is sufficient to impart substantially instantaneous, i.e., within 10 seconds, water wettablility to the *Psyllium* granules. Higher percentages ordinarily impart no further benefits to the compositions. The minimum amount required to do so ordinarily is at least 2%.

As would be expected, minor amounts of other polymers or other ingredients in the coating of the compositions can be tolerated without destroying the operability of the coating in rendering the *Psyllium* granules substantially instantly and uniformly dispersible in water. However, such other materials do not ordinarily impart any benefits to the compositions and usually have an adverse effect thereon. Therefore, their presence therein is not ordinarily desirable.

The granulated *Psyllium* compositions of this invention consist substantially entirely, i.e., at least 90%, preferably 92.5—97.5%, e.g., about 95%, by weight, of powdered *Psyllium*.

In carrying out the method of this invention, the starting *Psyllium* powder is wet granulated with a volatile organic solvent, e.g., the lower alkanols, e.g., methanol, ethanol, isopropanol and n-butanol, ketones, e.g., acetone and methyl ethyl ketone, ethers and esters. Because of residue problems, ethanol or 95% ethanol and 5% methanol is preferred. Substantially anhydrous solvents, i.e., no more than about 10% water, are preferred because of the presence of a significant proportion of water tends to have an adverse effect on the drying times and/or the wettablility of the *Psyllium* granules produced therefrom, generally directly proportional to the amount of water in the solvent. However, an amount of water in the organic solvent which does not significantly transfer from the solvent phase to the *Psyllium*, e.g., up to about 50% by volume but preferably less than 25% by volume, generally can be tolerated in the solvent without seriously affecting the water dispersibility of the *Psyllium* granules produced therefrom.

The amount of solvent employed is preferably only that amount required to uniformly wet the *Psyllium* particles, e.g., from 5% to 25%, preferably 7—15% by weight thereof. Larger amounts of solvent have no advantage and tend to complicate the wet granulation process. Lesser amounts tend to wet the *Psyllium* particles unevenly, producing granules which produce lumps when dispersed in water.

The proportion of polymer or mixture of polymers to solvent employed in the wet granulation process depends primarily upon the amount of polymer desired to be deposited on the polymers, assuming an amount of solvent in excess of that required to wet the *Psyllium* is not employed. Generally, a solvent to polymer ratio from 3:1 to 1:1, preferably about 2:1, by weight is employed.

The *Psyllium* powder is then wet granulated in conventional manner with an amount of the polymer solution sufficient to uniformly wet the *Psyllium* particles and to deposit thereon the desired amount of polymer or mixture of polymers, viz., by gradually adding the solution to the *Psyllium* powder with continuous agitation. When all of the solution has been added, the thus-produced wet granules are dried of solvent, preferably without agitation, e.g., in trays in a drying room with exhaust fans to discharge the evaporated solvent. If desired, the granules can then be screened to desired particle size distribution, e.g., through a 0.35 mm (No. 20 mesh) screen. The dry granulated particles can then be packaged conventionally, e.g., unit dose pouches or 25 g bottles.

In addition to being substantially instantly and uniformly dispersible in water, the granulated *Psyllium* compositions of this invention can readily be dispersed in aqueous beverages, e.g., prune juice, tomato juice, orange and other fruit juices, fruit flavored soft drinks, milk, coffee and tea, the limitations being dictated primarily by palatability considerations rather than rapid dispersibility.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative and not limiting of the remainder of the disclosure in any way whatsoever.

Example 1

5.231 kg of powdered polyvinylpyrrolidone (Povidone K929/32) and 21.613 kg of powdered polyethylene glycol (P.E.G. 3500) was dissolved in 50 kg of anhydrous 95% ethanol/5% methanol with warming to 50°C until the polymers dissolved therein. The solution was pumped onto 500 kg of tumbling *Psyllium* powder. The wet granules which formed were spread onto drying trays, where they were dried overnight. Screening the dry granules through a 1.4 mm (No. 14 mesh) screen yielded a uniform essentially powder-free granulated product which resists crumbling during shipping and handling and which rapidly (in less than 10 seconds) disperses without lumping in water.
Example II

In the examples which follow, unless indicated otherwise, the granulated *Psyllium* compositions were produced from 475 g of powdered *Psyllium* seed husks and a solution of powdered polyethylene glycol of an average molecular weight of 3,350 (P.E.G. 3350) and/or polyvinylpyrrolidone of an average molecular weight of 40,000 ("Povidone K29/32"), in 60 ml anhydrous ethanol denatured with 5% w/w methanol (SDA-3A) by dissolving the polymer in the ethanol with heating, charging the powdered *Psyllium* in a Hobart mixer; wet granulating by gradually adding the polymer solution to the *Psyllium* while the latter is agitated in the mixer and mixing for one minute; spreading the wet granules out on a tray and drying overnight at room temperature and sizing the dried granules through 0.85 mm (No. 20 mesh) screen.

Wettability of the dry granules was determined according to the wetting test described above. Friability of the dry granules was determined on a Cenco Meinzer Sieve Shaker (speed No. 4) containing 535 glass beads each weighing about 0.17 g and having a diameter of 5.0 mm (0.195 inch). 80 grams of the dry granules retained on a 0.25 mm (60 mesh) screen were placed on the 0.25 mm (60 mesh) screen along with the glass beads and the shaker run for either 2 or 4 minutes and the percentage of under 0.25 mm (60 mesh) granules determined.
<table>
<thead>
<tr>
<th>Example</th>
<th>Granulating solvent (wt.%)</th>
<th>Polymer (w/w of dry granules)</th>
<th>Other</th>
<th>Wetting time (s)</th>
<th>Friability (% under 0.25 mm (60 mesh))</th>
</tr>
</thead>
<tbody>
<tr>
<td>lla</td>
<td>100% EOH + MeOH</td>
<td>5</td>
<td></td>
<td>0.8</td>
<td>3.38, 6.50</td>
</tr>
<tr>
<td>b</td>
<td>do</td>
<td>4</td>
<td></td>
<td>0.9</td>
<td>6.88, 11.88</td>
</tr>
<tr>
<td>c</td>
<td>do</td>
<td>3</td>
<td></td>
<td>1</td>
<td>7.81, 14.06</td>
</tr>
<tr>
<td>d</td>
<td>do</td>
<td>2</td>
<td></td>
<td>1.6</td>
<td>9.75, 16.75</td>
</tr>
<tr>
<td>e</td>
<td>do</td>
<td>4.5</td>
<td>0.5</td>
<td>1</td>
<td>3.00, 5.13</td>
</tr>
<tr>
<td>f</td>
<td>do</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2.94, 4.81</td>
</tr>
<tr>
<td>g</td>
<td>62.5 EOH + 37.5 MeOH</td>
<td>4</td>
<td>1</td>
<td>3.2</td>
<td>8.75, 14.63</td>
</tr>
<tr>
<td>h</td>
<td>100% EOH + MeOH</td>
<td>3</td>
<td>2</td>
<td>1.8</td>
<td>2.13, 3.88</td>
</tr>
<tr>
<td>i</td>
<td>do</td>
<td>3.2</td>
<td>0.8</td>
<td>1</td>
<td>2.38, 5.00</td>
</tr>
<tr>
<td>j</td>
<td>do</td>
<td>2.4</td>
<td>0.6</td>
<td>1.2</td>
<td>5.60, 9.50</td>
</tr>
<tr>
<td>k</td>
<td>do</td>
<td>1.6</td>
<td>0.4</td>
<td>1.8</td>
<td>8.50, 14.63</td>
</tr>
<tr>
<td>l</td>
<td>do</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1.88, 3.13</td>
</tr>
<tr>
<td>m</td>
<td>do</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2.00, 3.38</td>
</tr>
<tr>
<td>n</td>
<td>do</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>do</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>do</td>
<td>5</td>
<td></td>
<td>5.4</td>
<td>2.63, 5.25</td>
</tr>
<tr>
<td>q</td>
<td>do</td>
<td>4</td>
<td></td>
<td>5.6</td>
<td>4.60, 7.50</td>
</tr>
<tr>
<td>r</td>
<td>do</td>
<td>3</td>
<td></td>
<td>6.2</td>
<td>4.75, 8.75</td>
</tr>
<tr>
<td>s</td>
<td>do</td>
<td>2</td>
<td></td>
<td>7.5</td>
<td>6.00, 13.13</td>
</tr>
<tr>
<td>t</td>
<td>82.5 EOH + 17.5% MeOH</td>
<td>4</td>
<td></td>
<td>1 (sucrose)</td>
<td>2, 8.9, 14.70</td>
</tr>
<tr>
<td>u</td>
<td>37.5 EOH + 62.5% MeOH</td>
<td>4</td>
<td></td>
<td>1 (gelatin)</td>
<td>8, 9.75, 14.5</td>
</tr>
<tr>
<td>v</td>
<td>31.4 EOH + 68.6% MeOH</td>
<td>4</td>
<td></td>
<td>1 (acacia)</td>
<td>7, 6.63, 10.0</td>
</tr>
<tr>
<td>w</td>
<td>60% EOH + 40% MeOH</td>
<td>4</td>
<td></td>
<td>1 (methocel)</td>
<td>8, 11.25, 18.38</td>
</tr>
</tbody>
</table>

*P.E.G. 8000 bP.E.G. 600 *min. required to produce clear solution

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

Claims

1. An ingestible granulated *Psyllium* composition consisting essentially of granules of *Psyllium* powder, characterized in that the *Psyllium* is substantially instantly and uniformly dispersible in water by the presence on the surface of the *Psyllium* powder particles of a coating of an amount from 1 to 10% by weight of a non-toxic, normally solid, alcohol soluble, water dispersible polyethylene glycol, polyvinylpyrrolidone, or mixture thereof.
EP 0 104 167 B1

2. A composition according to Claim 1, wherein the coating comprises polyethylene glycol.
3. A composition according to Claim 1 whose coating consists of 2 to 5% by weight of the composition of polyethylene glycol.
4. A composition according to Claim 2 wherein the coating on the Psyllium powder particles contains an amount of polyvinylpyrrolidone so that the granules are significantly less friable than correspondingly granulated Psyllium coated with the same amount of the polyethylene glycol only.
5. A composition according to Claim 4 containing 2.5 to 4% by weight thereof of a polyethylene glycol and 2 to 0.5% by weight thereof of polyvinylpyrrolidone.
6. A composition according to Claim 2 or 5 wherein the polyethylene glycol has a molecular weight from 3,000 to 8,000.
7. A composition according to Claim 6 containing 4% by weight of polyethylene glycol and 1% by weight of polyvinylpyrrolidone.
8. A composition according to Claim 7 wherein the polyethylene glycol has a molecular weight of 3,350.
9. A method for producing an ingestible granulated Psyllium composition according to Claim 1, characterized in that Psyllium powder is wet granulated with an amount of a solution in a volatile organic solvent, or mixture thereof with water, of 1 to 10% by weight of the Psyllium of a non-toxic, normally solid, alcohol soluble, water dispersible polyethylene glycol, polyvinylpyrrolidone, or both, the resultant Psyllium granules when dry being substantially instantly and uniformly dispersible in water.
10. A method according to Claim 9 wherein the solvent is anhydrous.
11. A method according to Claim 9 wherein the solution comprises polyethylene glycol.
12. A method according to Claim 11 wherein the solution also contains an amount of polyvinylpyrrolidone so that the granules are less friable than corresponding granules produced from a solution of the same amount of the polyethylene glycol alone.
13. A method according to Claim 11 wherein the solvent is anhydrous.
14. A method according to Claim 10 or 13 wherein the solvent consists of at least 95% of ethanol.

Patentansprüche

2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß der Überzug Polyethylenglykol enthält.
3. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß der Überzug, bezogen auf die Zusammensetzung, zu 2 bis 5 Gew.-% aus Polyethylenglykol besteht.
4. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß der Überzug auf den Psylliumpulverkörnchen eine solche Menge an Polyvinylpyrrolidon enthält, so daß die Körnchen deutlich weniger bröckelig sind als entsprechendes granuliertes Psyllium, das nur mit der gleichen Menge an Polyethylenglykol überzogen ist.
5. Zusammensetzung nach Anspruch 4, dadurch gekennzeichnet, daß sie zu 2,5 bis 4 Gew.-% ein Polyethylenglykol und zu 2 bis 0,5 Gew.-% Polyvinylpyrrolidon enthält.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Lösungsmittel wasserfrei ist.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Lösungsmittel Polyethylenglykol enthält.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Lösung auch eine Menge an Polyvinylpyrrolidon enthält, so daß die Körnchen weniger bröckelig sind als entsprechende Körnchen, die von einer Lösung mit der gleichen Menge an Polyethylenglykol allein hergestellt sind.
13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Lösungsmittel wasserfrei ist.
14. Verfahren nach einem der Ansprüche 10 oder 13, dadurch gekennzeichnet, daß das Lösungsmittel zu mindestens 95% aus Ethanol besteht.
Reventions

1. Composition granulée, à base de graine de Psyllium, pouvant être ingérée, comprenant essentiellement des granules de poudre de Psyllium, caractérisée en ce que le Psyllium est dispersible de manière quasi-instantanée et uniformément dans l'eau, grâce à la présence sur la surface des particules de poudre de Psyllium d'un revêtement représentant entre 1 et 10% en poids de polyéthylène glycol, de polyvinylpyrrolidone ou d'un mélange de ces deux corps, dispersable dans l'eau, soluble dans l'alcool, normalement à l'état solide, et non toxique.

2. Composition selon la revendication 1, caractérisée en ce que le revêtement comprend du polyéthylène glycol.

3. Composition selon la revendication 1, caractérisée en ce que le revêtement comprend entre 2 et 5% en poids de la composition de polyéthylène glycol.

4. Composition selon la revendication 2, caractérisée en ce que le revêtement des particules de poudre de Psyllium contient une proportion de polyvinylpyrrolidone telle que les granules sont de manière significative moins friables que les granules de Psyllium revêtus de manière correspondante avec la même quantité de polyéthylène glycol seulement.

5. Composition selon la revendication 4, caractérisée en ce qu'elle comprend de 2,5 à 4% en poids d'un polyéthylène glycol et de 2 à 0,5% en poids de polyvinylpyrrolidone.

6. Composition selon la revendication 2 ou 5, caractérisée en ce que le polyéthylène glycol à un poids moléculaire compris entre 3000 et 8000.

7. Composition selon la revendication 6 contenant 4% en poids de polyéthylène glycol et 1% en poids de polyvinylpyrrolidone.

8. Composition selon la revendication 7, caractérisée en ce que le polyéthylène glycol a un poids moléculaire de 3550.

9. Procédé pour produire une composition granulée pouvant être ingérée, à base de graine de Psyllium, caractérisé en ce que la poudre de Psyllium est granulée par voie humide avec une quantité d'une solution dans un solvant organique volatile, ou dans un mélange de ce dernier avec de l'eau, représentant 1 à 10% en poids du Psyllium, de polyéthylène glycol, de polyvinylpyrrolidone, ou des deux, ces corps étant non toxiques, normalement à l'état solide, solubles dans l'alcool et dispersables dans de l'eau, les granules de Psyllium obtenus, une fois secs, étant dispersables dans l'eau quasi-instantanément et uniformément.

10. Procédé selon la revendication 9, caractérisé en ce que le solvant est anhydre.

11. Procédé selon la revendication 9, caractérisé en ce que la solution comprend du polyéthylène glycol.

12. Procédé selon la revendication 11, caractérisé en ce que la solution contient également une quantité de polyvinylpyrrolidone telle que les granules sont moins friables que les granules correspondants obtenus à partir d'une solution comprenant la même quantité de polyéthylène glycol seulement.

13. Procédé selon la revendication 11, caractérisé en ce que le solvant est anhydre.

14. Procédé selon la revendication 10 ou 13, caractérisé en ce que le solvant comprend au moins 95% d'éthanol.