Anordnung zur Wiedergabe von graphischen Informationen.

Priorität: 24.06.82 SE 8203946

Veröffentlichungstag der Anmeldung: 25.01.84 Patentblatt 94/4

Bekanntmachung des Hinweises auf die Patenterteilung: 21.09.88 Patentblatt 88/38

Benannte Vertragsstaaten: CH DE FR GB LI

Entgegennahmen: US-A-4 074 254

Patentinhaber: ASEA AB, S-721 83 Västeras (SE)

Erfinder: Lundström, Jan- Erik, Rustbodsgatan 15, S-724 81 Västeras (SE)

Vertreter: Boecker, Joachim, Dr.- Ing., Rathenauplatz 2-8, D-6000 Frankfurt a.M. 1 (DE)

Beschreibung

Die Erfindung betrifft eine Anordnung zur Wiedergabe von graphischen Informationen gemäß dem Oberbegriff des Anspruches 1.

Die Anordnung enthält einen Symbolspeicher, in dem Informationen über die Punktmuster der verfügbaren Symbole gespeichert sind, sowie einen Bildspeicher, in dem Informationen über die Lage der zu dem gerade vorliegenden Bild gehörenden Symbole gespeichert sind.

Bei Bildschirmen des raster-scan-Typs gibt es im wesentlichen zwei sich widersprechende Forderungen hinsichtlich des Aufbaus der Speicherung von Informationen im Bildspeicher des Schirms.

Eine weitere Forderung an eine Wiedergabeanordnung der genannten Art besteht darin, daß die Eingabe und das Löschen einzelner Zeichen oder des ganzen Bildes schnell und einfach durchführbar ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Wiedergabeanordnung der eingangs genannten Art zu entwickeln, mit der ein einfaches und schnelles Regenerieren der Symbole auf dem Bildschirm, schnelles Auslesen des Informationsinhaltes des Bildes, eine schnelle und einfache Eingabe und Lösung von Zeichen und eine schnelle Lösung des ganzen Bildschirms möglich ist.

Zur Lösung dieser Aufgabe wird eine Anordnung der eingangs genannten Art vorgeschlagen, die erfüllungsgemäß die im kennzeichnenden Teil des Anspruches 1 genannten Merkmale hat.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unterasprüchen genannt.

Anhand der in den Figuren gezeigten Ausführungsbeispiele soll die Erfindung näher erläutert werden. Es zeigen

Fig. 1 schematisch den Aufbau einer Wiedergabeanordnung nach der Erfindung,
Fig. 2 detaillierter ein Ausführungsbeispiel für die Wiedergabeanordnung nach Figur 1 mit Darstellung des Daten- und Informationsflusses zwischen den einzelnen Einheiten der Wiedergabeanordnung,
Fig. 3 ein Beispiel für die Wiedergabe mehrerer Zeichen (Symbole) auf einem Bildschirm gemäß der Erfindung,
Fig. 4 den Informationsinhalt des Hilfspeichers bei der Wiedergabe der in Figur 3 gezeigten Zeichen,
Fig. 5 den Wortauffaub in dem Bildspeicher,
Fig. 6 den Wortauffaub im Symbolspeicher,
Fig. 7 ein Beispiel für ein Symbol und dessen Wiedergabe im Symbolspeicher,
Fig. 8 den Zusammenhang zwischen dem Adresseninformationsspeicher und dem Symbolspeicher,
Fig. 9 einen Programmablaufplan für den Bildprozessor bei der Wiedergabeanordnung nach Figur 1 und 2 bei der Regenerierung des Bildes,
Fig. 10 einen Programmablaufplan für den Bildprozessor beim Auslesen des Informationsinhaltes des Bildes,
Fig. 11 einen Programmablaufplan für den Bildprozessor bei der Eingabe eines neuen Symbols im Bild,
Fig. 12 einen Programmablaufplan für den Bildprozessor beim Löschen eines ganzen Bildes.

Fig. 2 zeigt detaillierter den Aufbau der zentralen Teile einer Wiedergabebeeinflussung nach der Erfindung. Nachstehend wird die Erfindung unter Zugrundelegung eines gedachten Ausführungsbeispiels beschrieben, bei dem der Bildschirm 720 Bildelemente in X-Richtung und 336 Bildelemente in Y-Richtung hat. Diese Bildelemente werden in Bildelementmatrizen, hier Tesseln genannt, benutzt, wobei jede Bildelementmatrize quadrisch ist und aus 3 mal 3 Bildelementen besteht. Die Bildschirmfläche enthält also 240 mal 112 Tessel. Es wird angenommen, daß der Symbolvorrat (Zeichenvorrat) 512 verschiedene Symbole umfaßt und daß der Hilfsspeicher 2 in Form von 8-Bit-Worten organisiert ist. Die Anzahl von Farben beträgt 64. Die einzelnen Einheiten in Figur 2 sind wie folgt organisiert (eingeteilt):

Adressentransformationsspeicher 5: 512 Wörter zu je 15 bits (der Symbolspeicher enthält 215 Wörter).

52.000 Wörter zu je 11 bits (9 bits Mustereinformation + 2 Verkettungsbits).

Symbolspeicher 6: 32.000 Wörter zu je 18 bits (9 bits Symbolcode, 8 bits Farbinformation, 1 Definitionsbit).

Bildspeicher 7: 3.360 Wörter zu je 8 bits (1 bit für jedes Tessel auf dem Bildschirm).

Hilfsspeicher 2: 3 mal 720 mal 9 bits (1 Tessel = 3 Rasterzeilen, 720 Bildelemente pro Rasterzeile, jedes Bildelement 9 bits, davon 8 bits Farbinformation und 1 bit Information).

Zeilenpuffer 4: 2 Sätze von je 240 mal 23 bits (240 Tessel in X-Richtung, jedes mit einer möglichen Adresse für den Symbolspeicher, sowie 8 bits Farbinformation für jedes Tessel).

Adressennotizspeicher 3: zählt bis 30 (Anzahl Wörter in X-Richtung im Hilfsspeicher 2).

53.440 zählt bis 112 (Anzahl Tesselzeilen in Y-Richtung).

X-Zähler 1b: 3 bits.

Prioritätscodierer 1d: 8 bits (gleich Wortlänge im Hilfsspeicher).

Der Bildprozessor 1 enthält, wie aus Vorstehendem und aus Figur 2 hervorgeht, einen Mikroprozessor 1a, einen X-Zähler 1b, einen Y-Zähler 1c, einen Prioritätscode 1d sowie ein Datenregister 1e. Der Prozessor steuert den Funktionsablauf der Einheiten 5, 6, 7, 2, 4, 3, 1b, 1c, 1d und 1e und den Datenfluß zwischen diesen Einheiten sowie die Videoschaltkreise 11. Der Prozessor enthält ferner ein X-Register mit einer Kapazität von 3 bits. Der X-Zähler 1b gibt die aktuelle X-Koordinate an, gerechnet in Anzahl von Wörtern im Hilfsspeicher. Da jedes Wort im Hilfsspeicher aus 8 bits besteht, zählt der X-Zähler also in Einheiten von je 8 Tessel in X-Richtung. Der Y-Zähler gibt die aktuelle Y-Koordinate an, gerechnet in Tesseln. Das Datenregister 1e nimmt ein Wort nach dem anderen vom Hilfsspeicher entgegen und speichert jedes Wort. Dem Prioritätscode 1d wird das gerade im Datenregister gespeicherte Wort zugeführt, und dieser gibt das signifikanteste bit im Wort an. Diese Information wird dem X-Register zugeführt, welches die Information über die Lage des signifikantesten bits in X-Richtung speichert. Der Inhalt des X-Zählers 1b zusammen mit dem Inhalt des X-Registers gibt daher
die Koordinate des aktuellen Tessel in X-Richtung an. Ein Adressier- und Steuerbus (Vielfachleitung) 9 sowie ein Datenbus 10 sorgen für den Fluß von Steuersignalen und Information tragenden Signalen zwischen den Einheiten 1, 2, 3, 4, 5, 6 und 7. Der Kommunikationsprozessors 12 steuert die Einheiten 2, 5, 6 und 7 über einen Adressier- und Steuerbus 13, und der Informationsfluß zwischen diesen Einheiten und dem Kommunikationsprozessor fließt über einen Datenbus 12a.

Für die beiden Prozessoren 1a und 12 kann ein Mikroprozessor des Typs Motorola 6800/68000, Intel 8080/8086 oder dergleichen verwendet werden. Der Bildspeicher 7, der Adressentransformationspeicher 5, der Hilfspeicher 2, die Zeilenpuffer 4 und der Adressennotizspeicher 3 können integrierte Schaltkreise (IC) des Typs 4116, 6116 (RAM) oder dergleichen sein. Der Symbolspeicher 6 kann ein IC des Typs 2716, 2764 (EPROM) oder dergleichen sein. Der Prioritätscodeierer 1d kann ein IC des Typs 74H184 sein. Das Datenregister 1e kann ein IC des Typs 74273, 74373 oder 74374 sein.

Figur 3 zeigt ein Beispiel für eine Zeichendarstellung (Wiedergabe) auf einem Bildschirm des raster scan-Typs. Als Beispiel ist gezeigt, wie das Wort "good" auf den Bildschirm geschrieben ist. Mit einem Kreis "o" sind die Koordinaten gekennzeichnet, die sich am besten für die Regenerierung der Zeichen eignen, d. h. die obere linke Ecke jedes Zeichens, also der Teil des Zeichens, auf den der Elektronenstrahl beim Durchlaufen des Bildschirms zuerst trifft. Mit einem "X" sind die Koordinaten gekennzeichnet, die sich am besten zum Auslesen der Informationsinhalt des Bildes eignen. Aus dem Informationsinhalt ergibt sich nämlich, daß das Wort "good" auf der Rasterlinie Nr. 10 geschrieben steht. Das "Revier" jedes Zeichens ist mit dickeren Linien in Fig. 3 umgrenzt.

Figur 4 zeigt ein Beispiel für den Informationsinhalt im Hilfspeicher 2 bei der Abbildung (Wiedergabe) des Bildes gemäß Figur 3. Die oberen linken Ecken der vier Zeichen sind im Hilfspeicher mit Einen in den YX-Koordinaten (3, 27), (6, 2), (6, 9) und (6, 16) notiert. Die Codepositionen (Definitionspunkte) sind mit Einsen in den YX-Koordinaten (10, 2), (10, 9), (10, 16) und (10, 23) notiert. In die übrigen Speicherzellen stehen Nullen. Das "Revier" der Zeichen ist gestrichelt umrandet. Die stärkeren vertikalen Linien zeigen die Grenzen für die Worteinteilung im Hilfspeicher, wo jedes Wort eine Breite von 8 bits hat.

Figur 5 zeigt den Wortauffbau im Bildspeicher. Jedes Wort hat eine Länge von 18 bits. Das erste sog. Kennzeichnungsbst hat folgende Bedeutung:

- 0: obere linke Ecke des Symbols
- 1: Definitionsproven des Symbols

Das Wort enthält außerdem 8 bits, die eine Farbinformation enthalten, sowie einen Symbolcode von 9 bits.

Figur 6a zeigt den Wortauffbau im Symbolspeicher 6, wo jedes Wort eine Länge von 11 bits hat. Die ersten bits im Wort, meistens zwei bits sind sog. Verkettungsbits, welche die folgende Bedeutung haben:

- 01: das Symbol setzt sich in Schreibrichtung fort,
- 10: das Symbol ist vorläufig in Schreibrichtung zu Ende, setzt sich jedoch in der nächsten Zeile weiter fort,
- 11: das Symbol ist zu Ende.

In den Fällen, in denen die beiden ersten bits des Wortes eine der drei genannten Kombinationen bilden, enthalten die restlichen neun bits Informationen über das bitmuster für ein Tessel des aktuellen Symbols. Die drei ersten bits bestimmen den Inhalt der Zeile a d es Tessel (Fig. 6a), die folgenden drei bits den der Zeile b und die drei letzten bits den der Zeile c des Tessel.

Den anderen Fall zeigt Fig. 6c. Die ersten drei bits haben die Kombination 000, was bedeutet, daß das Zeichen in der vorliegenden Zeile zu Ende ist, und daß der linke Rand des Zeichens in der nächsten Zeile relativ zum linken Rand auf der vorliegenden Zeile verschoben ist. Die restlichen 8 bits des Wortes beschreiben das Zeichen und die Größe der genannten Verschiebung.

Figur 7 zeigt ein weiteres Beispiel für ein Symbol und dessen Wiedergabe im Symbolspeicher 6. Das Symbol besteht aus 13 Tessel (Symbolsymatrizen) mit je 3 mal 3 Punkten: b, c, d, f, g, h, i, j, k, m, n, o und p. Das mit kleinem m bezeichnete Tessel ist das Definitionstessell des Symbols, also das Tessel, das den Definitionspunkt enthält. Es wird beim Ableisen des Informationsinhaltes des Bildes benutzt. Das Symbol wird im Symbolspeicher durch 16 Wörter a bis p beschrieben, deren Bedeutung aus der folgenden Tabelle hervorgeht:
Worte im Symbolspeicher:

<table>
<thead>
<tr>
<th>Wörter</th>
<th>Auskunft:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 00</td>
<td>+12</td>
</tr>
<tr>
<td>b 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>c 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>d 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>e 001</td>
<td>-2</td>
</tr>
<tr>
<td>f 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>g 10</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>h 000</td>
<td>+0</td>
</tr>
<tr>
<td>i 000</td>
<td>+4</td>
</tr>
<tr>
<td>j 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>k 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>l 000</td>
<td>-1</td>
</tr>
<tr>
<td>m 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>n 10</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>o 01</td>
<td>PUNKTMUSTER</td>
</tr>
<tr>
<td>p 11</td>
<td>PUNKTMUSTER</td>
</tr>
</tbody>
</table>

Anmerkung:
Relative Adresse zum Definitionsposten (m)
Fortsetzung in derselben Zeile, Sprung 2 Schritt
Das Symbol ist in Schreibrichtung der vorliegenden Zeile zu Ende.
Keine Linksverschiebung in der folgenden Zeile
Linksverschiebung von +4 in der nächsten Zeile
Linksverschiebung von -1 in der nächsten Zeile
Das Symbol ist in der Schreibrichtung der vorliegenden Zeile zu Ende
Das Symbol ist zu Ende.

Figuur 9 zeigt eine Programmablaufplan, die die Funktion des Bildprozessors bei der Abbildung (Wiedergabe) eines Bildes auf dem Bildschirm beschreibt. Es wird vorausgesetzt, daß das Bild in dem Bildschirm gespeichert ist. Die Wiedergabe eines konstanten und unveränderten Bleibildes geschieht in der Weise, daß das ganze Bild beispielsweise 50 mal pro Sekunde auf den Bildschirm geschränkt wird. Diese wiederholte Wiedergabe eines unveränderbaren Bildes wird Regenerierung genannt. Dieser Verlauf soll nachstehend anhand des Programmaufbauplans in Fig. 8 und der oben beschriebenen Figuren erläutert werden.

In der Ausgangslage sind die Zeilenpuffer 4, der Adressennotizspeicher 3, der X- und der Y-Zähler 1b und 1c sowie das Datenregister 1c auf Null gestellt.

Die X- und Y-Zähler 1b/1c zusammen mit den drei bits von der Prioritätscodierer 1d bilden nun die Adresse für den Platz im Bildspeicher 7, der Code für das angetroffene Symbol enthält (siehe Figur 5 für dieses Format).

Der Ablauf wird in dieser Lage ganz von den Verkehrsbits gesteuert, die der Prozessor 1a in dem
Symbolspeicher 4 vorgenommen:
A. Solange die Verkettungsbits 01 betragen, geht das Zeichen auf derselben Zeile weiter. Der Prozessor führt daher Lesungen unter fortlaufenden Adressen im Symbolspeicher 6 aus, und der vorstehend beschriebene Ablauf geht weiter.

Die Startadresse des Symbols im Satz 1 wird nun auch vom Prozessor auf Null gestellt.
Die weitere Verarbeitung über das Datenregister 1e erfolgt in der unter C beschriebenen Weise.

E. Wenn die Verkettungsbits 11 betragen, so ist das Symbol zu Ende und der Prozessor stellt ganz einfach die Startadresse des Symbols in dieser Zeile auf Null. Das Symbol ist damit für diesen Regenerierungzyklus vollständig dargestellt, die Regenerierung des Symbols im vorliegenden Zyklen also abgeschlossen.
Wenn die gesamte erste Tenselle-Zeile auf den Bildschirm geschrieben ist, beginnt der ganze Ablauf wieder von neuem. Im Vergleich zu der ersten Zeile gibt es jedoch einen wichtigen Unterschied im Arbeitsablauf, nämlich die Behandlung des Adressennotizspeichers 3.

Während der Regenerierung der zweiten Zeile dient der Satz 1 des Adressennotizspeichers 3 der Fortsetzung der Zeichen. Er übernimmt also die Funktion, die der Satz 2 beim Regenerieren der 1. Zeile hatte. Dieses Wechselspiel zwischen den beiden Sätzen setzt der Prozessor fort, wobei die jeweilige Funktion eines Satzes davon abhängt, ob eine gerade oder eine ungerade Zeile bearbeitet wird.

Wenn der X-Zähler 1b bis 30, der Y-Zähler 1c bis 112 gezählt hat und das Datenregister 1e auf Null gestellt ist, kann ein neuer Regenerierungzyklus beginnen. Als Spezialfall können die obere linke Ecke eines Symbols und die Codierung des Symbols zusammenfallen. In dieser Lage enthält der Bildschreiber eine Einzahlen die signifikanten bit MSB des Wortes (siehe Abschnitt 5). Dieser Spezialfall stellt keine Komplikation für den Prozessor 1a dar und erfordert keine besondere Behandlung dieses Prozessors, sondern MSB dient nur als Hilfe für den Kommunikationsprozessor, um die Codierung des Symbols zu identifizieren.

Figur 10 zeigt einen Programmablauflauf zum Ablesen des Informationsinhaltes eines Bildes. Das Lesen wird vom Kommunikationsprozessor 12 vorgenommen. Der Programmablauflauf zeigt das Ablesen des Informationsinhaltes des ganzen Bildes.

Wie aus den vorstehenden Ausführungen hervorgeht, werden durch die Erfindung große Vorteile für eine Wiedergabeanordnung der behandelten Art erreicht. Dies sind im wesentlichen folgende:

1. Der Konflikt zwischen der Regenerierung der Symbole und dem Ablesen des Informationsinhaltes des Bildes wird beseitigt.
3. Das Löschen eines ganzen Bildes geht schneller (weniger Vorgänge).
4. Die Regenerierung des Bildes wird vereinfacht.
5. Das Schreiben und Lesen im Bild wird vereinfacht.
6. Das Abändern des Bildes wird vereinfacht und geht schneller, da nur der Hilfsspeicher angesprochen zu werden braucht.
7. Der Bildschirm kann an Texte mit anderer Schreibrichtung als den oben beschriebenen, beispielsweise von rechts nach links oder spaltenweise, leicht angepaßt werden.
8. Im Rahmen des allgemeinen Erfindungsgedankens kann die beschriebene Wiedergabeanordnung in vielen verschiedenen Arten aufgebaut sein. Beispielsweise können zwei separate Hilfsspeicher verwendet werden, einer für die Definitionselemente und einer für die Startelemente. Ferner brauchen der Hilfsspeicher oder die Hilfsspeicher nicht gegenständlich vom Bildspeicher getrennt zu sein, doch wird vorausgesetzt, daß sie um die Vorteile mit der Erfindung zu erreichen, logisch (funktionsmäßig) vom Bildspeicher getrennt sind.

Als signifikantestes Bit wird in einer binären Zahl bekanntlich das Bit mit der höchsten Stellenwertigkeit bezeichnet, also das am weitesten links stehende Bit mit der Wertigkeit "Eins". In der vorliegenden Beschreibung wird als signifikantestes Bit (MSB) das am weitesten links stehende Bit des im Bildspeicher gespeicherten Wortes bezeichnet (Kennzeichnungsbild in Figur 5). Es kann die Wertigkeit Null oder Eins haben.

Patentansprüche

3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wortlänge im Hilfsspeicher kleiner als im Bildspeicher ist.

4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Wortlänge im Hilfsspeicher 1 bit beträgt.

5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie Geräte (1, 12) enthält, die bei der Wiedergabe (Abbildung) eines Bildes den Hilfsspeicher absuchen und beim Auftreffen auf ein Bildelement, das ein Startelement für ein Symbol ist, den Code dieses Symbols aus dem entsprechenden Platz im Bildspeicher holen.
Claims

1. System for presenting graphical information in the form of symbols (characters) of arbitrary size and in the form of dot matrices on a display device (11) of the raster scan type, such as a monitor, with a symbol memory (6), in which information about the dot patterns of the available symbols is stored, and with a refresh memory (7), in which information is stored about the position of the symbols included in the actual image, characterized in that an auxiliary memory (2) is provided in which information is stored about each symbol included in the actual image, on the one hand about the position of that element of the symbol in the image which is first written during presentation (start element), and, on the other hand, about the position of the definition element of the symbol, and that a code identifying the symbol is stored in that position of the refresh memory which corresponds to the position of the definition element of the symbol in the image.

2. System according to Claim 1 in which the refresh memory contains one word for each image element position on the monitor, characterized in that the auxiliary memory is a memory separated from the refresh memory, which, like the refresh memory, contains one word for each image element position on the monitor.

3. System according to Claim 1 or 2, characterized in that the word length in the auxiliary memory is smaller than in the refresh memory.

4. System according to Claim 3, characterized in that the word length in the auxiliary memory is one bit.

5. System according to any of the preceding Claims, characterized in that it includes devices (1, 12) arranged to scan, during the presentation of an image, the auxiliary memory and on detecting a picture element that represents a start element for a symbol, to get the code of this symbol from the corresponding location in the refresh memory.

6. System according to any of the preceding Claims, characterized in that it includes devices (1, 12) which, during reading the information contents of the image, scan the auxiliary memory and on detecting a picture element that represents a definition element for a symbol, to get the code of this symbol from the corresponding location in the refresh memory.

Revendications

1. Dispositif pour restituer des informations graphiques sous la forme de symboles (signes) de dimensions quelconques et sous la forme de matrices de points sur un appareil de restitution (11) du type à balayage matriciel, par exemple sur un écran d’image, avec une mémoire à symboles (6) dans laquelle sont mémorisées les informations relatives au modèle de points des symboles disponibles, et avec une mémoire d’images (7) dans laquelle sont mémorisées des informations relatives à la position des symboles appartenant à l’image précisément présente, caractérisé par le fait qu’il comporte une mémoire auxiliaire (2) dans laquelle sont mémorisées des informations pour chaque symbole appartenant à l’image actuelle, d’une part, relatives à la position de l’élément de symbole dans l’image qui doit, lors de la réception, être écrit en premier lieu (élément de lancement), et, d’autre part, relative à la position de l’élément de définition du symbole, et qu’à l’emplacement de la mémoire d’images, qui correspond à la position de l’élément de définition du symbole dans l’image, est mémorisé un code qui identifie le symbole.

2. Dispositif selon la revendication 1, dans lequel la mémoire d’images comporte un mot pour chaque emplacement d’élément d’image sur l’écran d’image, caractérisé par le fait que la mémoire auxiliaire est une mémoire distincte de la mémoire d’image, qui comporte, tout comme la mémoire d’image, un mot pour chaque emplacement d’élément d’image sur l’écran d’image.

3. Dispositif selon la revendication 1 ou 2, caractérisé par le fait que la longueur des mots dans la mémoire auxiliaire est plus petite que dans la mémoire d’image.

4. Dispositif selon la revendication 3, caractérisé par le fait que la longueur des mots dans la mémoire auxiliaire est égale à 1 bit.

5. Dispositif selon l’une des revendications précédentes, caractérisé par le fait qu’il comporte des appareils (1, 12) qui, lors de la restitution (reproduction) d’une marge explorent la mémoire auxiliaire et préévent, lors de l’incidence sur un élément d’image qui est un élément de lancement pour un symbole, le code de ce symbole dans l’emplacement correspondant dans la mémoire d’image.

6. Dispositif selon l’une des revendications précédentes, caractérisé par le fait qu’il comporte des appareils (1, 12) qui à la lecture du contenu des informations de l’image explorent la mémoire auxiliaire et préévent lors de l’incidence sur l’élément d’image qui est un élément de définition d’un symbole, le code de ce symbole de l’emplacement correspondant dans la mémoire d’image.
FIG. 3

FIG. 4
START

X- u. Y-Zähler auf Null stellen

+1 in X

x = 31? nein

Lösche X, +1 in Y

nein

Hole Inhalt aus MS mit X und Y als Adresse

≠ 0? nein

weiteres Bit = 1? nein

Lösche das benutzte Bit aus dem MS

nein

MSB = 17? nein

Das Wort enthält Code u. Farbe des Symbols

nein

Übertrage Code u. Farbe für laufende Koordinate

nein

Auslegung vollendet

Ja

Ja
FIG. 11

START

Codex u. Paket an zutreffen den Koordinaten in BS speichern

Anzeigesignal aus ATS holen, Codex Adresse

Sende-Aus SS holen, Anzeigesignal Adresse

Berechne Koordinaten für obere linke Kante des Symbols vor Ge schützkoordinaten

DIESE KOORDINATEN IM BS LÖSCHEN

"Einsch." im entsprechenden Koordinaten im HS speichern

Ende
FIG. 12

START

X- u. Y-Zähler auf Null stellen

+1 in X

X=31?

nein

"Null" unter dem laufenden Adresse im HS speichern

2a

X-Zähler auf Null stellen

+1 in Y-Zähler

Löschen

ja

Y=113?

nein