European Patent Office
Office européen des brevets

EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 08.07.87
Application number: 83300214.0
Date of filing: 17.01.83

Mechanical seal assembly.

Priority: 08.02.82 US 346812
Date of publication of application: 24.08.83 Bulletin 83/34
Publication of the grant of the patent: 08.07.87 Bulletin 87/28
Designated Contracting States:
DE FR GB NL

Proprietor: BORG-WARNER CORPORATION
200 South Michigan Avenue
Chicago Illinois 60604 (US)

Inventor: Marsi, Joseph Alexander
4926 Elkridge Drive
R. Palos Verdes California (US)

Representative: Allden, Thomas Stanley et al
A.A. THORNTON & CO. Northumberland House
303-306 High Holborn
London WC1V 7LE (GB)

References cited:
FR-A-2 018 101
GB-A-1 439 236
US-A-2 823 057
US-A-3 421 783
US-A-3 628 799
US-A-4 172 678

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to mechanical seal assemblies. In US—A—3 628 799 assigned to Borg-Warner Corporation there is generally disclosed a mechanical seal assembly for sealing a rotary shaft to a stationary housing into which the shaft extends, the mechanical seal assembly comprising a stationary seal ring connected to the stationary housing, a rotatable seal ring connected for rotation with the rotary shaft, one of the seal rings being constructed of material which is more brittle than the other of the seal rings, and resilient means urging the seal rings toward one another such that a seal face on the stationary seal ring engages a seal face on the rotatable seal ring, the seal faces being lubricated by a fluid film flowing radially thereacross.

More specifically, the stationary seal ring is connected to the stationary housing by a pair of metal keys each received in registering keyways in the stationary seal ring and the stationary housing.

In the event that one of the seal rings is made of a brittle material, such as various carbon-graphite materials which combine the strength, hardness and wear resistance of carbon with the natural lubricity, higher thermal conductivity, dimensional stability and machinability of graphite, while the other seal ring is constructed of an even harder, but less brittle material, such as tungsten, various ferrous alloys and the like, in the absence of the lubricating fluid film between the relatively rotating seal faces, the seal rings can seize, resulting in a breakage of at least the seal ring constructed of the more brittle material.

In accordance with the invention the aforementioned generally disclosed mechanical seal assembly is characterised in that the stationary seal ring is connected to the stationary housing by at least two elastomeric keys non-rotatably mounted in keyways in the stationary seal ring and the stationary housing, the elastomeric keys providing a resilient connection between the stationary seal ring and the stationary housing which acts to absorb the shock induced by seizure of the seal rings in the event of an absence of lubricating fluid between their seal faces and thereby to reduce the risk of breakage or damage at least of the more brittle seal ring.

Preferably the elastomeric material of the elastomeric keys is selected from the usual elastomers used for O-rings and various gaskets which are selected for not only their usable temperature range, but their chemical resistance to the fluids to which they will be exposed. These properties are well known to those skilled in the mechanical seal art and are found in various standards for mechanical seals.

Attention is drawn to FR—A—2018101 which discloses elastomeric means as a rotatable driving connection between two rotary members which rotate together.

In order that the invention may be well under-
received in a groove 42 in the housing. The elastomer can be synthetic rubber and the like and can be selected from various elastomeric materials, such as neoprene (polymers based on 2-chlorobutadiene 1,3), Viton (a fluoro-elastomer), nitrile rubbers, ethylene-propylene rubbers, and similar materials used in the mechanical seal art on the basis of temperature and fluid resistance.

The keys 38 thus provide a resilient contact between the housing and the stationary seal ring and thus provide a cushion for absorbing dynamic forces in the tangential direction, especially if the faces begin to seize due to the absence or failure of the lubricating film between the seal faces. The keys also distribute bearing loads evenly and can prevent the breakage or rupture of seal rings made of brittle materials. The keys allow radial deflections of the stationary seal ring relative to the housing due to thermal and pressure effects without friction by deflecting readily under shear loads.

Claims

1. A mechanical seal assembly for sealing a rotary shaft (18) to a stationary housing (14) into which the shaft extends, the mechanical seal assembly comprising a stationary seal ring (12) connected to the stationary housing, a rotatable seal ring (16) connected for rotation with the rotary shaft, one of the seal rings being constructed of material which is more brittle than the other of the seal rings, and resilient means (24) urging the seal rings toward one another such that a seal face (20) on the stationary seal ring engages a seal face (22) on the rotatable seal ring, the seal faces being lubricated by a fluid film flowing radially thereacross, characterised in that the stationary seal ring is connected to the stationary housing by at least two elastomeric keys (38) non-rotatably mounted in keyways (34, 36) in the stationary seal ring and the stationary housing, the elastomeric keys providing a resilient connection between the stationary seal ring and the stationary housing which acts to absorb the shock induced by seizure of the seal rings in the event of an absence of lubricating fluid between their seal faces and thereby to reduce the risk of breakage or damage of at least the more brittle seal ring.

2. A mechanical seal assembly as claimed in claim 1, wherein the more brittle one of the seal rings (12, 16) is constructed of a carbon-graphite composition.

Patentansprüche

1. Gleitringdichtung zum Abdichten einer umlaufenden Welle (18) gegenüber einem stationären Gehäuse (14), in die sich die Welle hinein- und der stationäre Dichtring mit dem stationären Gehäuse verbunden ist, der drehtbare Dichtring mit der drehbaren Welle drehtfest verbunden ist, einer der Dichtringe aus einem spröderen Material als der andere Dichtring besteht und die elastischen Mittel die Dichtringe gegeneinander drücken, so daß eine Dichfläche (20) des stationären Dichtringes an einer Dichfläche (22) des drehbaren Dichtringes anliegt, wobei die Dichflächen durch einen radial darüberliegenden Strömungsmittelfilm geschmiert werden, dadurch gekennzeichnet, daß der stationäre Dichtring mit dem stationären Gehäuse durch mindestens zwei elastomere Paßfedertelle (38) verbunden ist, die in Nuten (34, 36) des stationären Dichtrings und des stationären Gehäuses drehtfest eingesetzt sind, wobei die elastomeren Paßfedertelle für eine elastische Verbindung zwischen dem stationären Dichtring und dem stationären Gehäuse sorgen, welche den Stoß äußert, durch den Festsitzen der Dichtflächen bei mangelnder Schmierung ihrer Dichtflächen auftritt und dadurch die Gefahr eines Zerbrechens oder Beschädigung zumindest des brüchigeren Dichtrings verringert.

2. Gleitringdichtung nach Anspruch 1, bei dem der brüchigere der Dichtringe (12, 16) aus einer Kohlenstoff-Graphit-Verbindung besteht.

Revendications

1. Joint mécanique assemblé pour rendre étanche un arbre rotatif (18) vis-à-vis d'un logement fixe (14) dans lequel l'arbre s'étend, le joint mécanique assemblé comprenant une bague d'étanchéité fixe (12) reliée au logement fixe, une bague d'étanchéité rotative (16) reliée pour rotation avec l'arbre rotatif, l'une des bagues d'étanchéité étant constituée d'un matériau qui est plus fragile que celui de l'autre bague, et un moyen élastique (24) sollicitant les bagues d'étanchéité l'une vers l'autre de sorte qu'une face d'étanchéité (20) de la bague d'étanchéité fixe est en contact avec une face d'étanchéité (22) de la bague d'étanchéité rotative, les faces d'étanchéité étant lubrifiées par une pellicule de fluide les traversant radialement, caractérisé en ce que la bague d'étanchéité fixe est reliée au logement fixe par au moins deux clevettes en élastomère (38) montées de manière à ne pas tourner dans des rainures à clavette (34, 36) de la bague d'étanchéité fixe et du logement fixe, les clevettes en élastomère fournissant une liaison élastique entre la bague d'étanchéité fixe et le logement fixe qui agit de manière à absorber le choc provoqué par le grippage des bagues d'étanchéité en cas d'absence de fluide de lubrification entre leurs faces d'étanchéité et à réduire ainsi le risque de bris ou d'endommagement d'au moins la bague d'étanchéité plus fragile.

2. Joint d'étanchéité assemblé selon la revendication 1, dans lequel la plus fragile des bagues d'étanchéité (12, 16) est constituée d'une composition carbone-graphite.