Method and means for controlling the course of a bore hole.

Priority: 02.02.82 GB 8202987

Date of publication of application:
10.08.83 Bulletin 83/32

Publication of the grant of the patent:
02.10.85 Bulletin 85/40

Designated Contracting States:
AT BE DE FR GB IT NL

References cited:
DE-B-1 066 514
FR-A-1 593 999
FR-A-2 369 412
US-A-3 561 549
US-A-3 713 500
US-A-4 067 404
US-A-4 319 649

Proprietor: SHELL INTERNATIONALE
RESEARCH MAATSCHAPPIJ B.V.
Carel van Bylandtlaan 30
NL-2596 HR Den Haag (NL)

Inventor: Feenstra, Robijn
Volmerlaan 6
NL-2288 GD Rijswijk (NL)
Inventor: Kamp, Anthony Willem
Volmerlaan 6
NL-2288 GD Rijswijk (NL)

Representative: Aalbers, Onno et al
P.O. Box 302
NL-2501 CH The Hague (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention.)

Description

The invention relates to drilling in underground formations in the search for valuable materials such as oil and natural gas. In particular, the invention relates to a method and means for controlling the course of a bore hole during drilling thereof.

In this specification and in the claims, the expression "the course of a bore hole" refers to the azimuth of the bore hole, being the direction of the bore hole with respect to the magnetic North Pole, as well as to the deviation of said bore hole, which is the direction of the bore hole with respect to the vertical.

While drilling a bore hole in underground formations, the bore hole tends to drift away from the desired course, as a result of the reaction of the drill bit and the drill string to the formations traversed, especially if such formations are dipping formations. The bore hole is regularly surveyed in order to determine the actual course thereof and the results of these surveys are used to decide whether the course of the bore hole needs to be corrected and to determine the extent of the corrections.

Various means for controlling the course of a bore hole are known in the art. Examples of these means are the "variable bent sub" and the "orienting tool". The variable bent sub comprises a pipe section equipped with remotely controlled servo-mechanisms capable of controlling the degree of deflexion of the pipe section. An example of a variable bent sub is described in French Patent Application No 7269163, publication No. 2,175,520 (filed 16th March, 1972; inventor: Russell, M.K.). The orienting tool comprises a housing and shoes that can be extended laterally with respect to the housing by means of remotely controlled servo-mechanisms. Further details of the orienting tool are given in U.S.A. Patent Specification 3,561,549 (filed: 7th June, 1968; issued: 9th February, 1971; inventors: Garrison, E.P. and Tschirky, J.E.).

A major disadvantage of the above-mentioned steering means resides in their complexity and the cost of the servo-mechanisms thereof.

The object of the invention is a simple and reliable means for controlling the course of the bore hole, which means do not include a complex control or adjusting mechanism.

A further object of the present invention is to provide a simple and reliable method for controlling the course of a bore hole which method allows to change the direction of drilling without requiring the drill string to be lifted from the hole and to be run in again each time when the drilling direction is to be changed.

Another object of the present invention is to provide a simple and reliable method of drilling straight and curved bore hole sections at will by simply manipulating the drill string by means of the rotary table at the drilling floor.

The means according to the invention for controlling the course of a bore hole during drilling thereof in an underground formation includes a down-hole motor provided with a housing and an output shaft, a first stabilizer and a second stabilizer, both stabilizers being mounted on the housing such that the first stabilizer is located nearer to the output shaft than the second stabilizer as disclosed in FR-A-1,593,999, wherein the central axes of the stabilizers are parallel to each other and at least the central axis of the second stabilizer is parallel to the central axis of the output shaft.

In an attractive embodiment of the present invention both stabilizers are mounted eccentrically on the motor housing, the eccentricity of the second stabilizer being greater than the eccentricity of the first stabilizer.

According to the invention, the method for controlling the course of a bore hole that is being drilled in underground formations by means of a drill bit driven by a down-hole motor provided with a housing and an output shaft in which output shaft is in the operative position during drilling of the bore hole tilted with respect to the bore hole includes the steps of: (a) lowering in the bore hole a drill string with the down-hole motor connected to the lower end thereof and having a drill bit connected to the output shaft, (b) actuating the down-hole motor to rotate the drill bit and applying a predetermined weight on bit, the method being characterised in simultaneously with step (b) rotating the drill string over periods that are preceded and followed by selected periods during which the down-hole motor is activated but the drill string is not rotated.

In this specification and in the claims, the term "stabilizer" is used to refer to a plurality of blades which project outwards from a housing or sleeve in order to guide the housing or the sleeve in a bore hole. The expression "central axis of a stabilizer" refers to the central axis of the surface of revolution that envelops the blades of the stabilizer, and the expression "diameter of the stabilizer" refers to the diameter of this surface of revolution.

It will be appreciated that the drill string is rotated by rotating the rotary table that is located at the drilling floor. When the drill string should not rotate, drill string rotation as a result of the reaction torque of the down-hole motor is prevented by locking the rotary table.

The invention will now be explained by way of example in more detail with reference to the drawings, wherein:

Figure 1 shows a side-view of the means for controlling the course of a bore hole;

Figure 2 shows a cross-section of Figure 1 over the line II—II, drawn to a scale different from the scale of Figure 1;

Figure 3 shows a longitudinal section over the lower end of a vertical bore hole;

Figure 4 shows a longitudinal section over the lower end of the vertical bore of Figure 3, but extended with a curved section that is being drilled by the method according to the invention;

Figure 5 shows a longitudinal section over the lower end of a vertical bore hole; and
drilling fluid is circulated through the interior of the drill string in order to actuate the turbine, and a predetermined weight is applied on the drill bit.

It will be appreciated that corrections on the course of the bore hole should be made from time to time in order to keep the bore hole on the desired course. The result of these corrections is that the bore hole will consist of straight and curved sections that succeed each other in downward direction.

With reference to Figures 3–6 it will be explained that with the use of the means according to the invention curved and straight sections can be drilled at will. Drilling of a curved section of the bore hole is done by rotating the drill bit with the turbine, and applying a predetermined weight on bit, and simultaneously therewith not rotating the drill string. Drilling of a straight section of the bore hole is done by rotating the drill bit with the turbine under weight and simultaneously therewith rotating the drill string.

The method for drilling a curved section of the bore hole will now be explained with reference to Figure 3 showing a longitudinal section over the lower end of vertical bore hole that is to be extended with a curved section (see Figure 4) to be drilled with the means according to the invention. For the sake of ready understanding, the drill string assembly, consisting of the drill string, the turbine and the drill bit are not shown in Figures 3–6.

Reference is first made to Figure 3. The drill string assembly (not shown) has been lowered in the bore hole 30 and the drill bit rests on the bottom 31 of the bore hole 30. The stabilizers 13 and 14 (see Figure 1) will fit in the bore hole 30 and their central axes 18 and 19 (see Figure 1) will substantially coincide with the central axis 32 of the bore hole 30. The drill string is rotated until the stabilizers are oriented such that the eccentric blades 13C and 14C thereof (see Figure 1) are facing the east side 33 of the bore hole wall. As the stabilizers are mounted eccentrically on the turbine housing and as the eccentricity E of the second (upper) stabilizer is greater than the eccentricity e of the first (lower) stabilizer, the turbine is tilted in counter clockwise direction with respect to the central axis 32 of the bore hole in such a way that the central axis of the output shaft is positioned in the position indicated by the dash-dot line 20'. As the central axis of the drill bit coincides with the central axis of the output shaft, further drilling with the turbine driven drill bit will deepen the bore hole 30 in the direction in which the central axis 20' is positioned. As the drill string, and consequently also the turbine housing are not rotated, the eccentric blades continue to face to the east side 33 of the bore hole and consequently the central axis 20' of the output shaft will stay in its deviated position with respect to the central axis 32 of the bore hole. When the bore hole is further deepened and the first (lower) stabilizer and subsequently the second (upper) stabilizer enter the deviated extension of the bore hole, the tilt of the turbine will increase, and
further drilling results in an increasing deviation of the bore hole extension. As this interaction between the deviated bore hole and the tilted turbine continues, a curved section of the bore hole having a gradually increasing curvature is drilled. A longitudinal section over the lower end of the straight bore hole 30 extended with a curved section 34 is shown in Figure 4. The azimuth of the curved section 34 is the azimuth of the eccentric blades.

When the drill string (not shown) is lowered in the bore hole 30 and when the drill string is rotated until the eccentric blades face the west side 35 (see now Figure 5) of the bore hole 30, the turbine tilts in opposite direction such that the central axis of the output shaft (and consequently also the central axis of the bit) will coincide with the axis 20°. Further drilling with the turbine driven drill bit without simultaneously rotating the drill string will result in forming a curved section 36 of the bore hole (see Figure 6). Since the eccentric blades are facing the west side 35 of the bore hole, the section curves in a direction opposite to the curved section 34 (see Figure 4). The deviation of the curved section 36 increases with increasing depth and the azimuth of the curved section is the azimuth of the eccentric blades.

As discussed with reference to Figures 3—6, the azimuth of a curved section is the azimuth of the eccentric blades. Hence a curved section of a bore hole can be drilled in any desired direction by rotating the drill string until the eccentric blades are positioned in the desired direction.

The curved section 34 (see Figure 4) has been drilled with the eccentric blades facing the east side 33 of the bore hole. If after drilling of the curved section 34 the drill string is rotated over an angle of 180°, the eccentric blades will face the west side of the bore hole. Further drilling with the eccentric blades facing west will result in drilling a section that is curved in the same direction as the section 36 (see Figure 6). After another 180°—rotation of the drill string the eccentric blades will point again to the east side of the bore hole, and further drilling will result in drilling a section that is curved in the same direction as the section 34 (see Figure 4). When the drill string is rotated over 180° at regular intervals during drilling of the bore hole, it will be appreciated that the bore hole will proceed in a downward direction. However, such a bore hole is not straight as it consists of a series of curved sections. Continuous rotation of the drill string, however, as shown rotation makes it possible with the rotation of the drill bit actuated by the turbine will result in a straight hole.

It will be appreciated that the curved or straight sections drilled with the method according to the invention may be drilled as an extension of an existing hole of which the lower end is curved and/or deviated from the vertical instead of being vertical as shown in Figures 3—6. In addition thereto, the existing hole may have been cased.

The method for drilling curved and straight sections of a bore hole allows drilling a bore hole that consists of a sequence of curved and straight sections. Thus the means according to the invention is used to control the course of a bore hole, and drilling of such a bore hole with a turbine driven drill bit is done by rotating the drill string over periods that are preceded and followed by selected periods during which the turbine drives the drill bit but the drill string is not rotated.

Although drilling curved and straight sections of a bore hole by means of a turbine equipped with two eccentric stabilizers as shown in Figure 1 will give good results, even better results will be obtained when the lower end of the drill string is centralized in the bore hole by means of a concentric stabilizer inserted in the lower part of the drill string at some distance above the turbine.

There is a tendency to increase the length of turbines in order to increase the power thereof. It will be appreciated that these long turbines are more slender than the relatively short turbine that is shown in Figure 1. For relatively long turbines, two eccentric stabilizers mounted on the housing thereof may often not be sufficient and it will then be attractive to mount the second eccentric stabilizer near the middle of the turbine housing and to place a third stabilizer concentrically at or near the upper end of the housing.

In the arrangement shown in Figure 1, the first (lower) stabilizer 13 is placed eccentrically with respect to the central axis of the output shaft 12 of the turbine 10. This is done to avoid drilling of oversized holes. When oversized holes are not considered to have adverse effects on drilling and subsequently completing the bore hole, the lower stabilizer may be placed concentrically with respect to the output shaft.

The method for controlling the course of a bore hole as described with reference to the Figures 3—6 is not restricted to the use of the means according to the invention as shown in Figures 1 and 2 of the drawings. If desired, the method can also be applied by using any one of those drilling means including a turbine driving a drill bit and having the output shaft thereof tilted with respect to the central axis of a bore hole during drilling thereof.

The invention is not restricted to the application of stabilizers with four straight blades. Any other type known in the art such as stabilizers with spiral shaped blades may be applied. The blades may be provided with wear resistant inserts to minimize wear of the blades.

Also, the invention is not restricted to the application of stabilizers that are directly connected to the housing of the down-hole motor. If desired, the stabilizers may be mounted on a sleeve that fits around the housing of the down-hole motor, which sleeve is secured in a suitable manner to the housing of the down-hole motor in order to prevent axial and rotational displacement of the sleeve with respect to the housing of the down-hole motor. Such construction is disclosed in French Patent Specification 1,593,999 (filed: December 4, 1968; issued: July 10, 1970; inven-
Patentansprüche


2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittelachse des ersten Stabilisators mit der Mittelachse der Ausgangswelle zusammenfällt.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittelachsen beider Stabilisatoren parallel zur Mittelachse der Ausgangswelle sind, wobei die Exzentrität des zweiten Stabilisators größer als die Exzentrität des ersten Stabilisators ist.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein dritter Stabilisator, dessen Mittelachse mit der Mittelachse der Ausgangswelle zusammenfällt, nahe am Ende des Gehäuses angeordnet ist, das dem Gehäuseende gegenüberliegt, aus welchem die Ausgangswelle herausragt, und daß der zweite Stabilisator zwischen dem ersten und dem dritten Stabilisator angeordnet ist.

5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der zweite Stabilisator nahe am Ende des Gehäuses angeordnet ist, das dem Gehäuseende gegenüberliegt, aus welchem die Ausgangswelle herausragt.

6. Verfahren zum Regeln der Richtung eines Bohrloches, das in einer unterirdischen Formation mittels eines Bohrers gebohrt wird, der von einem im Bohrloch befindlichen Motor angetrieben wird, welcher mit einem Gehäuse und einer Ausgangswelle versehen ist, die in ihrer Arbeitsstellung während des Bohrens des Bohrloches bezüglich des Bohrloches geneigt ist, wobei das Verfahren die folgenden Schritte umfaßt: (a) Ab senken eines Bohrgestänges mit dem am unteren Ende desselben befestigten Bohrloch-Motor und mit einem an der Ausgangswelle befestigten Bohrer in das Bohrloch, (b) Betätigen des Bohrloch-Motors, um den Bohrer zu drehen und aufbringen eines vorbestimmten Gewichtes auf den Bohrer, dadurch gekennzeichnet, daß gleichzeitig mit Schritt (b) das Bohrgestänge während Zeitspannen gedreht wird, denen ausgewählte Zeitspannen vorausgehen und nachfolgen, während denen der im Bohrloch befindliche Motor betätigt, aber das Bohrgestänge nicht gedreht wird.

Revendications

1. Un dispositif pour contrôler la direction d'un
trou de sonde qui est foré dans une formation souterraine, lequel dispositif comprend un mo-
teur descendu dans le puits pourvu d’un loge-
ment et d’un arbre de sortie, un premier stabili-
teur et au moins un deuxième stabilisateur, les
deux stabilisateurs étant montés sur le logement
de façon que le premier stabilisateur soit situé
plus près de l’arbre de sortie que le deuxième
stabilisateur, caractérisé en ce que les axes cen-
traux des stabilisateurs sont parallèles entre eux
et qu’au moins l’axe central du deuxième stabili-
sateur soit parallèle à l’axe central de l’arbre de
sortie.
2. Un dispositif selon la revendication 1,
caractérisé en ce que l’axe central du premier
stabilisateur coïncide avec l’axe central de l’arbre
de sortie.
3. Un dispositif selon la revendication 1,
caractérisé en ce que les axes centraux des deux
stabilisateurs sont parallèles à l’axe central de
l’arbre de sortie, l’excentricité du deuxième stabili-
sateur étant supérieure à l’excentricité du pre-
mier stabilisateur.
4. Un dispositif selon l’une quelconque des
revendications 1—3, caractérisé en ce qu’un troi-
sième stabilisateur, ayant un axe central coïnci-
dant avec l’axe central de l’arbre de sortie, est
placé près de l’extrémité du logement opposée à
l’extrémité du logement de laquelle l’arbre de
sortie fait saillie, et le deuxième stabilisateur est
disposé entre le premier stabilisateur et le troi-
sième.
5. Un dispositif selon l’une quelconque des
revendications 1—3, caractérisé en ce que le
deuxième stabilisateur est placé près de l’extré-
mité du logement qui est opposée à l’extrémité
du logement de laquelle l’arbre de sortie fait
saillie.
6. Un procédé pour contrôler la direction d’un
trou de sonde que l’on forre dans des formations
souterraines au moyen d’un trépan entraîné par
un moteur descendu dans le puits, pourvu d’un
logement et d’un arbre de sortie, lequel arbre de
sortie est, dans sa position de fonctionnement
durant le forage du trou de sonde, incliné par
rapport au trou de sonde, comprenant les étapes
qui consistent à: (a) faire descendre dans le trou
de sonde un train de sonde avec le moteur
descendu dans le puits relié à son extrémité
inférieure et ayant un trépan relié à son arbre de
sortie, (b) actionner le moteur descendu dans le
puits de façon à faire tourner le trépan, et appli-
quér un poids prédéterminé sur le trépan caracté-
risé en ce que, simultanément avec l’étape (b), on
fait tourner le train de sonde pendant des pé-
riodes qui sont précédées et suivies de périodes
choisies durant lesquelles le moteur descendu
dans le puits est actionné, mais on ne fait pas
tourner le train de sonde.