METHOD AND APPARATUS FOR MONITORING THE TOOL STATUS IN A MACHINE TOOL WITH CYCLIC MACHINING.

Priority: 13.04.81 SE 8102372

Date of publication of application: 04.05.83 Bulletin 83/18

Publication of the grant of the patent: 10.04.85 Bulletin 85/15

Designated Contracting States:
AT BE CH DE FR GB LI NL

References cited:
CH-A-469 534

Derwent's abstract No. K7409B/46, SU 648 349 (ROST AGRIC MECH ENG) 28 February 1979

Proprietor: KB WIBRA
Gamla Vägen 3
S-722 33 Västeras (SE)

Inventor: FORSGREN, Roland
Gamla Vägen 5
S-722 33 Västeras (SE)
Inventor: GARPENDAHL, Gunnar
Stekelvägen 33
S-184 00 Akersberga (SE)
Inventor: ERIKSSON, Hans
Repmslägresgatan 21G
S-763 33 Uppsala (SE)
Inventor: WALLENTIN, Bengt
Björkvägen 16A
S-191 41 Sollentuna (SE)

Representative: Mrazek, Werner
Dr. Ludwig Brann Patentbyra AB Drottninggatan
7 Box 1344
S-751 43 Uppsala (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
The present invention relates to a method and an apparatus for monitoring the tool status in a machine tool with cyclic cutting machining, for instance a milling machine.

Within the machining industry there has been a demand for monitoring the status of the tools in continuously operating machine tools. This monitoring shall especially include tool wear and failure. The demand for such monitoring has recently increased as the machine tools have become smaller and lighter, which has led to increased stresses on the machines. Since the power and speed also has increased the time margins for failures that previously existed have decreased. The problems are common for all cyclically operating tool machines.

From CH—A—469,534 a method and apparatus for monitoring and controlling the tools of a machine tool are previously known. According to this method the overall vibrations of the machine tool are measured and processed for obtaining a smooth D.C. voltage that can be used to control the adjustment of the tools in order to obtain maximum efficiency as regards machining of the work piece. This known method, however, is totally unacceptable as regards detection of for instance tool failure, which is usually a transient process that is very hard to detect, especially if this effect is disguised by the noise of the overall vibrations from the machine tool, as is the case in the method disclosed in this Swiss patent.

The object of the present invention is to remove or reduce the problems mentioned above in connection with machine tools. Thus, the object of the invention is a method and an apparatus for monitoring the condition of the tools in cyclically operating machine tools.

Of special importance is that the method in accordance with the present invention can be applied to already installed machine tools without a radical redesign of these machines.

The objects mentioned above are fulfilled by a method and an apparatus in accordance with the attached patent claims.

The invention will be described in detail with reference to the attached drawings, in which:

Fig. 1 is a schematic view of a work spindle of a machine tool;
Fig. 2 is an idealized picture of the electrical measuring signal of a vibration sensor under normal operation;
Fig. 3 is an idealized picture of the measuring signal of the vibration sensor in the case of a defective tool;
Fig. 4 is a block diagram illustrating the basic principle of the present invention;
Fig. 5 is a block diagram of another embodiment of the present invention; and
Fig. 6 shows the basic principle for a computerization of the monitoring system.

In accordance with the present invention some kind of sensor that converts the mechanical vibrations into electrical signals is used to measure the vibrations. Especially preferred is an accelerometer that easily can be placed on the frame of the machine. However, the invention is certainly not restricted to the use of only this kind of sensor and this location of the sensor. For instance, a position indicator or position sensor could also be utilized. Position, velocity and acceleration are different aspects of a vibration, and it is possible to convert an acceleration signal into a velocity and further into a position and vice versa. In connection with for instance a milling machine it has been found suitable to place an accelerometer (of piezo electrical type) on for instance the feed table.

Furthermore, the invention is certainly not re-
stricted to use of only one (vibration) sensor. Thus, several (position, velocity and acceleration) sensors in different combinations can be placed on different locations on the tool machine. However, for reasons of simplicity only the use of one accelerometer arranged on the frame of the machine for the recording of a measuring signal is described below.

As was mentioned above the relevant part of the measurement will to a high extent be disguised in noise and signals resulting from normal operation. This means that the measuring signal that is produced by the sensor cannot be used directly without some form of signal processing. An idealized picture of the measuring signal is given in Figs. 2 and 3 for normal operation and operation with defective cutting edge, respectively. The real signal will, however, contain so much noise and irrelevant signals that the peaks indicated in Figs. 2 and 3 are difficult to recognize.

Thus, Fig. 2 shows an idealized picture of the measuring signal for an operation cycle, that is for one turn of the work spindle. The four peaks come from the engagement of each tool with the work piece. Since Fig. 2 relates to normal operation with essentially identical tools these four peaks are essentially identical. This means that a signal with a period T is obtained, that is a signal with frequency \(\frac{1}{T} \), where \(x \) is the number of fault-free cutting edges (four in this case).

Fig. 3 shows the corresponding idealized picture of the measuring signal in case of a defective cutting edge. The peak that corresponds to the engagement of the defective cutting edge with the work piece has been indicated by reference designation a. Since this cutting edge is defective it will not reach the work piece as it should and will therefore cut less material. The engagement is not as strong as previously, that is the amplitude becomes smaller. A consequence of this is that the following cutting edge 2 must cut more material, on the one hand the amount of material it will cut under normal operation and in addition the amount of material that the previous defective cutting edge has left. This results in a stronger engagement with the work piece, which can be seen from the higher amplitude b in Fig. 3.

A comparison between Figs. 2 and 3 shows that the period for the signal shape of Fig. 3 is four times as long as the period T of Fig. 2. Expressed in other words, the fundamental frequency of the signal shape of Fig. 3 is \(\frac{1}{4} \), while the fundamental frequency of the signal shape of Fig. 2 is 4\(\frac{1}{T} \). These statements are rather idealized. In practice one will never obtain exactly identical peaks as in Fig. 2. However, during normal operation signal components with frequency \(\frac{1}{T} \) and \(\frac{3}{T} \) are weak or are not present at all, while these signal components increase in case of a defective tool. This difference is utilized in accordance with the invention to detect tool failure or a defective tool.

As mentioned above, in practice one does not obtain the idealized signals according to Figs. 2 and 3 from the sensor. Actually one obtains very noise-rich signals. These signals must be processed in some way in order to make it possible to extract the essential information of Figs. 2 and 3. Fig. 4 shows the principles of an apparatus that does exactly this.

In order to simplify the description of Fig. 4 elements 3, 4, 5 and 6 are initially disregarded. The signal from the sensor (accelerometer) is designated by A. The signal A is led to a band pass filter F. The band pass filter F is controllable, that is the frequency band that the filter lets through can be controlled from outside. The filter can for instance be controlled to let through a narrow frequency band around the frequency f, as is shown in Fig. 4. The signal for controlling the filter F can for instance be a square wave or a pulse train with frequency f. This signal can for instance be a speedometer signal that is obtained by an optical reader and that represents the rotational speed of the spindle. Thus, the frequency f is the repetition frequency of the machining cycle.

With the aid of the parameter f (frequency) the filter F can now be controlled to let through certain frequency bands. The fundamental frequency band around f is only one of these possible frequency bands. With the aid of the same parameter f it is actually possible to adjust the filter to let through frequency bands at frequencies 2f, 3f, etc. In other words, it is also possible to study the influence of the harmonics on the measuring signal. With the aid of the same parameter f it is also possible to adjust the filter to let through frequency bands around the sub-harmonics \(\frac{1}{2} f \), \(\frac{1}{3} f \), \(\frac{1}{4} f \), etc. Thus, with only one parameter (f) it is possible to control the filter F to let through a frequency band around a frequency that depends on the parameter f. Certainly also other frequencies than the ones mentioned above are possible, the only restriction is that they should be unambiguously dependent on the parameter f.

Since it is possible to control the filter F in the way mentioned above one can choose the frequency band that gives the most significant output signal.

In the above discussion the filter F has been a single filter that can be controlled to a certain frequency band. In accordance with a further development of this idea the filter F can comprise several filter sections, so that for instance the fundamental frequency, the first overtone, the first undertone, etc. automatically can be filtered out of the input signal and then can be added again to form the output signal. Also in this case it is the parameter f that controls all of the filter sections. By measuring instead for instance the ratio between the signal f and the signal \(\frac{1}{4} f \) some information regarding the symmetry of the tool can be obtained.

The output signal of filter F is led to a comparator section 7, in this case comprising four comparators. The four comparators in the comparator section 7 sense the output signal of filter F and compare this signal to reference levels in each comparator at for instance 0, 5, 10 and 15 dB, respectively. If the output signal of filter F exceeds
a comparator level a corresponding indication lamp connected to each comparator is turned on. By studying the "shining lamp column" it is possible to obtain an indication of the present vibration level for the machine tool. The more lamps that are turned on in this column, the higher the vibration level and the more serious the tool failure.

If desirable the output signal from filter F can also be applied to for instance a printer for recording (block R in Fig. 4).

Tests and measurements have shown that the vibration signals in a milling machine are amplitude modulated with a signal of low frequency, which comes from the engagement of the tools with the work piece, and that this signal of low frequency is very weak. In order to obtain more reliable alarm signals the simple filtering out of the fundamental frequency described above should preferably be supplemented by further signal processing in a manner known per se. In the example of Fig. 4 this additional signal processing is accomplished by elements 3, 4, 5 and 6.

In order to suppress disturbing signals a prefilteration of the output signal of the accelerometer is preferred.

Below frequencies of the order of 250 Hz there are disturbing signals from for instance the power line and from the drive motor of the machine, and above frequencies of the order of 2000 Hz the natural frequency oscillations of the accelerometer start to influence the measurements. Blocking or filtering away these extreme ranges increases the signal-to-noise ratio. For this reason a further band pass filter 3 has been connected between the accelerometer and the filter F. This band pass filter 3 filters away said extreme ranges.

Furthermore, it is preferred to have a certain degree of pre-amplification of the signal. This is done in a pre-amplifier 4 between band pass filter 3 and filter F.

Since the vibration signals are amplitude-modulated a detector 5, which comprises a rectifier, is interconnected between pre-amplifier 4 and filter F. Thus, the information carrying parts of the signal are obtained. The detector can be peak-value-detecting and have a rise time of approximately 1 ms and a decay time of approximately 10—50 ms.

A rectifier 6 is preferably connected after filter F for rectifying the signal obtained from the filter.

Since filter F will give an output signal also during normal operation when the cutting edges all are intact, the comparators must be adjusted in such a way that no alarm signal is obtained during normal operation. This is done by adjusting the reference level of the comparators to 0.5, 10 and 15 dB, respectively, above the reference level of normal operation.

Fig. 5 shows an alternative embodiment of the apparatus in accordance with the present invention. For reasons of simplicity elements corresponding to elements 3, 4, 5 and 6 in Fig. 4 have been deleted in Fig. 5.

In the apparatus in accordance with Fig. 5 the accelerometer signal is applied to a filter section F, which in this case comprises four filters F1, F2, F3, F4. All of these filters are band pass filters. Filters F1, F2, F3 are controlled by the speed of the spindle over the speedometer signal f. Before this signal is applied to filter section F its frequency is multiplied in a multiplier M by the number of cutting edges (x). The frequency obtained from the multiplier M will be called the fundamental frequency in the following description. The signal from the multiplier now controls filter F1 to pass a narrow band at the fundamental frequency. The same signal is utilized also to control filter F2 to pass a narrow band around the first overtone (frequency 2.x.f). Furthermore, the signal is utilized to control filter F3 to pass a narrow band around the first undertone (frequency 1/2.x.f). Finally, the filter section F comprises a filter F4, which is independent of the output signal from multiplier M, and which only takes away the extreme frequencies, for instance the frequencies mentioned above in connection with the embodiment of Fig. 4. Thus, the last mentioned filter comprises a band pass filter with a relatively broad band as compared to filters F1, F2, F3.

The part of the apparatus in accordance with Fig. 5 that has been described until now corresponds essentially to the basic principles of the design in accordance with Fig. 4. The further development of the design in accordance with Fig. 5 comprises especially the more sophisticated reference value comparison that is performed. Thus, the apparatus in accordance with Fig. 5 comprises a reference value supply REF that supplies different reference values to four discriminators D1, D2, D3, D4 in a discriminator section D. These four reference values are those levels that would be obtained from filters F1, F2, F3, F4, respectively, during normal operation with intact tools. Thus, each discriminator D1—D4 has for instance logical I as output signal if the output from the corresponding filter exceeds, or alternatively with a predetermined amount exceeds, the corresponding reference value from the reference value supply REF. The four logical output signals from the discriminator section D are thereafter combined in a logical unit that can provide for instance an alarm signal to an indicator lamp if at least two of four or at least three of four discriminators have outputted alarm signals (for instance logical 1). This gives the advantage of only one lamp instead of a possibly irritating lamp column. When this single lamp shines it is clear that an alarm is really motivated.

In its simplest form the reference value supply can comprise simple potentiometers, the voltage levels of which are adjusted to the characteristic vibration levels for normal operation. In this case there is a static reference value for each test frequency.

A more sophisticated apparatus can utilize for instance a tape recorder or a computer type memory as reference value supply. In this case it is possible to give the different phases in a machining process of a work piece different refer-
ence value levels. Thus, it can be perfectly normal also with intact cutting edges that the vibration level under certain machining phases temporarily increases or decreases. In order to avoid that the apparatus under such circumstances of normal increases and decreases outputs an alarm it is preferable to apply corresponding increases and decreases in the reference values to discriminators D₁, D₂, D₃ and D₄. In this case the reference values are dynamic reference values that follow the different phases of the machining process.

If the reference value supply REF is intended to provide dynamic reference values it is preferable to synchronize it with the present machining process. To obtain this function the output signal of the multiplier M can be used to control the application of the recorded reference values to the corresponding discriminator, or in connection with digitally controlled machines the control program can also control the reference value supply.

The method described above to utilize changes in characteristic frequency components for monitoring the tool status can also be expanded to contain control of the machine. Thus, the previously described alarm signals are only one example of how the information derived from the vibration signals can be used. The same information can also be used to directly control the entire process, for instance perform a tool change when a cutting edge is defected or when the cutting edges are worn out or to stop the machine on tool failure. In this case it is preferable to let for instance a microcomputer system control the entire monitoring process. A simple principle diagram for such a system is shown in Fig. 6.

In the embodiment of Fig. 6 the signals A₁, A₂ are as previously applied to the "signature analyzer" S. This analyzer can for instance comprise of the apparatus up to and including the band pass filters section F in Fig. 5. The analog signals from the signature analyzer are applied to an A-D-converter, which forms an interface to a computer system, for instance a microcomputer system μ. The microcomputer system μ performs the necessary evaluation of the output signal of the signature analyzer, that is the comparison with the reference levels. These can in binary form be stored directly in the data memory of the microcomputer system. In the case of dynamical reference values the data memory can for instance be divided into a sequence of data pairs, the first element in each pair referring to a predetermined discrete point of time, while the second element refers to the reference value present at said point of time for the frequency band in question. Preferably the reference values are scaled in such a way that the available quantization levels are maximally utilized. This means that also the measuring values from the signature analyzer should be scaled (damped, amplified) in a corresponding degree. The microcomputer sys-

tem therefore preferably over its A-D-converter controls the amplification of the measuring signal (the double-pointed arrow between the signature analyzer S and the A-D-converter).

The microcomputer system μ forms, in addition to an evaluation unit, also a control unit for the machine tool. Thus, when an alarm is released the computer system transmits a signal on line X for activation of a tool change. When the tool change has been performed the tool changing apparatus (not shown) sends a return signal (receipt) on line Y back to the computer system μ. Thereafter the machining process can continue.

The microcomputer system comprises a control unit B for external control. With this control unit the operator can order start/stop, reset the alarm and perform manual tool change. Furthermore, the operator can over the control unit program the machining process necessary for the present work piece and thereafter set the machine in monitoring mode.

The microcomputer can also be programmed to perform the entire signal analysis, that is replace all the filters, detectors and multipliers, etc. in Figs. 4 and 5.

The present invention has been described with reference to a special machine tool, namely a milling machine. However, it is appreciated that the invention is not restricted to only milling machines but that the same principles also can be used in connection with other types of cyclically machining machine tools such as, drilling machines, lathes or cutter machines, etc.

Furthermore, use of the spindle speed or multiples of this speed as frequency control parameters have been disclosed herein. Another equivalent parameter can be for instance motor speed (for example in connection with a drilling machine).

In certain applications it can be desirable not to output an alarm until certain secondary conditions have been fulfilled. For instance, in connection with the start of a machine it can be perfectly normal that the vibration level initially is rather high without there being any actual fault. In these cases it is not desirable to output an alarm. As a secondary condition one can use for instance that the power or temperature of the machine must exceed a predetermined value before an alarm can be outputted.

In the above specific the discussion has always related to a situation in which an alarm is outputted when a measuring signal exceeds a reference level. In certain cases, however, it can also be useful to output an alarm when the reference level exceeds the measuring signal with a predetermined value. This can be the case for instance if none of the tools touch the work piece. In such an embodiment an alarm should be outputted if the measuring signal differs too much from the reference signal level.

From the discussion above it is clear that the invention can be modified and varied in many ways within the basic principle. Thus, the invention is not restricted by the present specification
but only by the attached patent claims.

Claims

1. Method of monitoring the tool status in a machine tool, characterized in that the vibration level (A) of the machine tool is measured within at least one narrow frequency band, which is controlled by the machining cycle frequency (f), and in that the obtained vibration level is compared to at least one corresponding reference level, an alarm signal being output if the detected vibration level deviates unacceptably from the reference level.

2. Apparatus for monitoring the tool status in a machine tool, comprising at least one sensor for detecting the vibrations of the machine tool, at least one band pass filter (F, F₁—F₃) for filtering of the signal (A) from the sensor, characterized in a frequency detector for detecting the machining cycle frequency (f) and for use in controlling the filter (F, F₁—F₃) in such a way that only one or several narrow frequency bands depending on said machining cycle frequency can pass through the filter, and an evaluation unit (7, D, μ) for comparing the output signals of the filter with at least one reference level and for outputting an alarm signal in case of unacceptable deviation from the reference level.

3. Apparatus in accordance with claim 2, characterized in a filter section (F) with three band pass filters (F₁—F₃) controlled by the machining cycle frequency.

4. Apparatus in accordance with claim 2 or 3, characterized in a storing unit (D, μ) for storing a reference level for each band pass filter (F₁—F₃).

5. Apparatus in accordance with claim 4, characterized in that the storing unit (D, μ) is a dynamic storing unit for storing reference levels that vary with time.

6. Apparatus in accordance with any of the preceding claims 2 to 5, characterized in that the sensor is an accelerometer.

7. Apparatus in accordance with any of the preceding claims 2 to 6, characterized in that the frequency detector is a speedometer.

8. Apparatus in accordance with any of the preceding claims 2 to 7, characterized in that the evaluation unit comprises a computer system (μ) with the aid of which measures can automatically be taken in case of unacceptable deviation from the reference level.

9. Apparatus in accordance with claim 8, characterized in that the computer is a microcomputer which provides all the controlling and signal processing means.

10. Apparatus in accordance with any of the preceding claims 2 to 9 for monitoring the tool status of a milling machine, characterized in that the frequency detector detects the spindle speed (f) of the milling machine.

Revenancements

1. Procédé de contrôle de l'état de l'outil, dans une machine-outil, caractérisé en ce que le niveau de vibration (A) de la machine-outil est mesuré à l'intérieur d'au moins une étroite bande de fréquence, qui est commandée par la fréquence (f) du cycle d'usinage, et en ce que le niveau de vibration obtenu est comparé à au moins un niveau de référence correspondant, un signal d'alarme étant émis si le niveau de vibration détecté s'écarte de façon inacceptable du niveau de référence.

2. Appareil pour le contrôle de l'état de l'outil dans une machine-outil, comprenant au moins un capteur pour détecter les vibrations de la machine-outil, au moins un filtre (F, F₁—F₃) à bande passante pour filtrer le signal (A) venant du capteur, caractérisé en ce qu'il comprend un détecteur de fréquence pour détecter la fréquence (f) du cycle d'usinage et l'utiliser dans la commande du filtre (F, F₁—F₃), de manière à ce que seulement une ou plusieurs étroites bandes de fréquence dépendant de la fréquence du cycle d'usinage puissent passer à travers le filtre, et une unité d'évaluation (7, D, μ) pour comparer les signaux de sortie du filtre avec au moins un niveau de référence et pour émettre un signal d'alarme en cas d'écart inacceptable par rapport au niveau de référence.

3. Appareil suivant la revenovation 2, caractérisé en ce qu'il comprend un dispositif de filtrage (F) comportant trois filtres (F₁—F₃) à bande passante, commandés par la fréquence du cycle d'usinage.

4. Appareil suivant la revenovation 2 ou 3, caractérisé en ce qu'il comprend une unité de stockage (D, μ) pour stocker un niveau de référence pour chaque filtre (F₁—F₃) à bande passante.

5. Appareil suivant la revenovation 4, caractérisé en ce que l'unité de stockage (D, μ) est une unité de stockage dynamique, pour stocker des niveaux de référence variants avec le temps.

6. Appareil suivant l'une quelconque des revenocations précédentes 2 à 5, caractérisé en ce que le capteur est un accéléromètre.

7. Appareil suivant l'une quelconque des revenocations précédentes 2 à 6, caractérisé en ce que le détecteur de fréquence est un tachymètre.

8. Appareil suivant l'une quelconque des revenocations précédentes 2 à 7, caractérisé en ce que l'unité d'évaluation comprend un système ordinateur (μ) au moyen duquel des mesures peuvent être exécutées automatiquement dans le cas d'un écart inacceptable par rapport au niveau de référence.

9. Appareil suivant la revenovation 8, caractérisé en ce que l'ordinateur est un microordinateur qui comporte tous les moyens de commande et de traitement de signal.
10. Appareil suivant l’une quelconque des revendications précédentes 2 à 9, pour contrôler l’état de l’outil d’une fraiseuse, caractérisé en ce que le détecteur de fréquence détecte la vitesse de broche (f) de la fraiseuse.

Patentansprüche

1. Verfahren zum Überwachen des Werkzeugzustandes in einer Werkzeugmaschine, dadurch gekennzeichnet, daß das Schwingungsniveau (A) der Werkzeugmaschine in mindestens einem schmalen Frequenzband gemessen wird, das durch die Bearbeitungszyklusfrequenz (f) gegeben wird, und daß das erhaltene Schwingungsniveau mit mindestens einem entsprechenden Referenzniveau verglichen wird, wobei ein Alarmsignal abgegeben wird, wenn das ermittelte Schwingungsniveau unannehmbar vom Referenzniveau abweicht.

2. Vorrichtung zum Überwachen des Werkzeugzustandes in einer Werkzeugmaschine, mit mindestens einem Sensor zur Wahrnehmung der Schwingungen der Werkzeugmaschine, mindestens einem Bandpaßfilter (F, F₁—F₃) zum Filtern des Signals (A) vom Sensor, gekennzeichnet durch einen Frequenzdetektor zum Erfassen der Bearbeitungszyklusfrequenz (f) und für die Verwendung bei der Steuerung der Filter (F, F₁—F₃) derart, daß nur ein oder mehrere schmale Frequenzbänder, die von der Bearbeitungszyklusfrequenz abhängen, durch das Filter gehen können, und durch eine Auswerteeinheit (7, D, μ) zum Vergleichen der Ausgangssignale des Filters mit mindestens einem Referenzniveau und zum Abgeben eines Alarmsignals im Falle einer unannehmbarer Abweichung vom Referenzniveau.

3. Vorrichtung nach Anspruch 2, gekennzeichnet durch einen Filterabschnitt (F) mit drei durch die Bearbeitungszyklusfrequenz gesteuerten Bandpaßfiltern (F₁—F₃).

4. Vorrichtung nach Anspruch 2 oder 3, gekennzeichnet durch eine Speichereinheit (D, μ) zum Speichern eines Referenzniveaus für jedes Bandpaßfilter (F₁—F₃).

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Speichereinheit (D, μ) eine dynamische Speichereinheit zum Speichern von Referenzniveaus, die sich mit der Zeit ändern, ist.

6. Vorrichtung nach einem der vorangehenden Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Sensor ein Beschleunigungsaufnehmer ist.

7. Vorrichtung nach einem der vorhergehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Frequenzdetektor ein Tachometer ist.

8. Vorrichtung nach einem der vorhergehenden Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die Auswerteeinheit ein Computersystem (μ) enthält, mit Hilfe dessen im Falle einer unannehmbarer Abweichung vom Referenzniveau automatisch Maßnahmen getroffen werden können.

10. Vorrichtung nach einem der vorangehenden Ansprüche 2 bis 9 zum Überwachen des Werkzeugzustandes einer Fräsmaschine, dadurch gekennzeichnet, daß der Frequenzdetektor die Spindeldrehzahl (f) der Fräsmaschine wahrnimmt.