Method and apparatus for production of smoke filter components.

Priority: 30.09.81 US 307115
12.01.82 US 338846

Date of publication of application:
13.04.83 Bulletin 83/15

Publication of the grant of the patent:
30.04.86 Bulletin 86/18

Designated Contracting States:
BE CH DE FR GB IT LI NL

References cited:
EP-A-0 059 041
US-A-3 986 144
US-A-4 149 546
US-A-4 164 438

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The present invention pertains to a method and an apparatus for imparting a desired shape to a cylindrical object such as a component of a smoke filter or other smoking apparatus. More particularly, it pertains to a method and apparatus for providing deformations of any desired shape in such an object, preferably by means of a combination of pressure and heat.

Cigarette filters comprising a cylindrical rod of cellulose acetate or another suitable filtering material are well known. The filtration of the tobacco smoke can be made more efficient by providing grooves of various shapes and sizes in the exterior peripheral surface of the filter rod. For example, US—A—3,811,451, issued May 21, 1974, to Berger for a Tobacco Smoke Filter, discloses a filter of cellulose acetate containing a pouch filled with a more highly sorbent material such as activated charcoal, and having a plurality of longitudinal flutes which extend the greater part of the length of the filter from one end thereof.

US—A—4,022,221, also to Berger, discloses a filter having, in one embodiment, a plurality of longitudinal flutes or grooves formed in the axially central portion of the external surface thereof. In another embodiment, the flutes extend from the end of the filter adjacent the tobacco rod to a point near the mouth end of the filter, and in a third embodiment, a helical groove is provided in the peripheral surface of the filter. US—A—3,768,489, issued October 30, 1973, to Kiefer et al., for a Tobacco Smoke Filter, discloses a filter of cellulose acetate or the like, the filtration characteristics of which are improved by the provision of two longitudinal grooves in the exterior of the filter. The two grooves are located diametrically opposite each other and are axially offset from each other. In another embodiment, the two flutes are axially aligned with each other, and the ends of the filter are cut oblique to the axis thereof. In a third embodiment, a plurality of circumferentially adjacent grooves are provided on each side of the filter, and in a fourth embodiment a sectoral recess is formed on each side of the filter in place of the grooves.

Various methods for forming grooves, flutes, and other external deformations in filters are known. For example, in US—A—3,811,451, the flutes are formed by means of crimping. In US—A—4,022,221, it is similarly contemplated to form the flutes by means of crimping wheels such as those shown therein.

The filter plugs are first heated by exposure to high temperature water vapor or by means of high frequency electromagnetic radiation, for example, to plasticize the cellulose acetate of which they are made. After being heated, the filter plugs are shaped by means of a device comprising three drums rotating about parallel axes. Each of the drums has grooves formed in its peripheral surface parallel to its axis to receive the filter plugs.

Each filter plug is initially fed while in a heated state to the first drum, which receives it in a peripheral groove and carries it to the point where the first and second drums are closest. The gap between the first and second drums is quite small, and as the filter plug reaches this point it is deformed by an indenter disposed in a peripheral groove of the second drum, the first drum serving as a counterpunch. As the filter plug is deformed in this manner, it is simultaneously transferred from the first to the second drum, which then conveys it to the third drum, on which indenters are also disposed. As the filter plug reaches the gap between the second and third drums, it is deformed a second time by one of the indenters on the third drum. The second drum acts as a counterpunch for this process.

After the filter plug is punched for the second time, it remains on the second drum, which carries it to a fourth drum that removes it from the second drum by means of suction and then releases it into a discharge chute.

By this method, the filter rod is shaped by a series of very quick punching operations each of which is performed by a punch disposed on one drum while another drum, carrying the filter plug, serves as a counterpunch. In order for the desired shape to be impressed on a filter plug satisfactorily, the portion of the surface that is to be deformed must be in contact with the heated forming element for a certain minimum period of time which is a function of the filter plug material. Accordingly, the short time allotted by Lebet to form each groove in the filter plug would make it impossible to shape filter plugs at an acceptable speed.

Another method and apparatus for shaping filter rods are disclosed in US—A—4,145,546, issued April 17, 1979, to Luke et al., for the “Production of Tobacco-Smoke Filters”. This patent discloses using a rotating drum to move the filter plugs past a stationary heated forming unit defined by the inner surface of an arcuate stator positioned adjacent the peripheral surface of the drum and spaced a uniform distance therefrom. The filter plugs are borne by the drum in a manner that permits them to rotate about their own longitudinal axes. The rotation of the drum carries each filter plug along the length of the stator. As this occurs, the filter plug, being free to rotate, rolls along the inner surface of the stator, the shape of which is imparted to the filter plug.

It is believed to be impossible, using the method disclosed by Luke et al., to shape filter plugs satisfactorily at a rate of more than 200—300 filter plugs per minute. Since a cigarette maker routinely produces about 4,000 cigarettes per minute, this low rate is unacceptable. The problem is believed to be that, using this method, the filter plugs remain in contact with the heated
forming element a sufficient length of time to be properly shaped only if the drum is rotated at a relatively slow speed.

US—A—3,483,873, issued December 16, 1979, to Hinzmann, for an "Apparatus for Making Holes in Tobacco Rods or the Like", discloses an apparatus in which holes are formed in a tobacco rod by means of pins provided in the periphery of a drum about which the tobacco rods are rolled by means of an endless belt.

EP—A—0 059 041, not published at the filing date of this application, describes an apparatus for embossing longitudinal grooves in the periphery of cigarette filter elements by means of heated dies arranged on the inner surfaces of troughs carried by two conveyors. During embossing, the troughs of each conveyor cooperate in facing pairs to enclose each filter portion.

In the method according to this invention, a cylindrical heat-formable object is shaped by being moved along an apparatus for shaping a cylindrical, heat formable object, comprising transport means for transporting the cylindrical object along a predetermined path and heated forming means carried on the transport means for thermally deforming a portion of the cylindrical object to impart a predetermined shape thereon, characterised in that the heated forming means comprise a plurality of heated formers which are arranged immovably relative to the transport means and that an adjustable belt moving adja-

cent to and independent of the transport means is provided for pressing the cylindrical object with adjustable pressure against at least one of the formers for a sufficient time to cause the predetermined shape to be imparted to the cylindrical object while the transport means is transporting the cylindrical object along the predetermined path.

Further, in accordance with the invention there is provided an apparatus for shaping, wherein the high-resistance portion comprises a ni-chrome wire portion, and the low-resistance portion comprises a copper wire portion having a greater cross-sectional area and a lower resistivity higher than the ni-chrome portion.

According to one preferred arrangement of the present invention, a plurality of units for forming the cylindrical objects are provided about the periphery of at least one rotatable drum. Each forming unit, or former, includes one or more heated elements to form the desired flutes. Means for pressing the article against the elements are also provided.

The cylindrical object is placed in contact with one of the forming units, or formers, where it remains a sufficient length of time to have a desired pattern of one or more flutes or other deformations produced in one portion of it. The article is then removed from the first former and placed in contact with another to have another portion of its surface shaped in the desired manner. The second former may be either on the same drum as the first former or on a different drum. If desired, the object can be successively brought into contact with more than two formers.

According to one preferred embodiment of the invention, two rotatable drums each have an equal number of formers disposed about their circumference, each former being so oriented as to be able to receive a cylindrical object with the axis of the latter parallel to that of the drum. It is preferred that the articles being shaped be retained in the former sections by means of vacuum suction exerted from the interior of the drums. An endless belt is provided adjacent each drum to press the articles against the formers, which are of a type that operate on the articles by a combination of heat and pressure. The amount of pressure applied to the articles by the belts is preferably adjustable.

It is desired that the article not roll about its longitudinal axis while in contact with the forming unit, as the deformations to be made will not necessarily be symmetric. Accordingly, the belt is caused to move parallel to the adjacent drum surface at such a speed as to prevent the article from rolling.

The two drums bearing the formers are arranged to rotate in opposite directions about parallel axes, and are spaced a small distance apart. The rotation of the drums is synchronized such that when the article has been transported by the first drum to the gap between the two drums, it is for a brief moment simultaneously in contact with a former on each drum. The article is transferred at this point to the second drum, preferably by terminating the vacuum suction exerted on the article by the first drum and simultaneously causing the second drum to apply suction to pull the article against a former on the second drum. The second former shapes the side of the article opposite that previously shaped by the former on the first drum.

When the second side of the article has been given the desired shape, the article is released at a predetermined location for conveyance to the next work station.

According to a second preferred embodiment, all of the formers are disposed on the periphery of a single rotatable drum. Two pressure belts are provided, circumferentially spaced from each other about the periphery of the drum and each adjacent a different portion of the peripheral surface of the drum. A roll block is located beside the drum and between the belts. The roll block is so shaped and positioned that as the rotation of the drum carries an article past it on a former, the roll block forces the article out of the former and onto the surface of the drum. The article is rolled along the drum surface between the drum and the stationary roll block onto the next adjacent former. The formers are spaced such a distance apart along the surface of the drum that in moving from one former to the next, each article is rotated through a total angle equal to an odd number of half-turns about its axis, so that the side of the article that is left unshaped by the first former faces the heated elements of the second former.
A third preferred embodiment of the invention comprises a first drum having grooves provided in its peripheral surface. Individual heated flute forming elements are mounted in the drum periphery, the number of flute forming elements between each two drum grooves preferably being equal to the number of depressions to be formed in each filter rod. A pressure belt is provided to press the filter plugs against the drum periphery. The filter plugs are fed to the drum and are received in the drum grooves. The belt is moved at a speed slightly different from, preferably less than, that at which the drum rotates. As a result, as they are carried by the rotation of the drum, the filter plugs are caused to roll relative to the drum surface, slowly, in a direction opposite that of the rotation of the drum. The speed differential is selected to be such that each filter plug is caused to roll backward one drum groove, and therefore to roll over one complete set of flute forming elements, before being released by the drum. In this manner, four flute forming elements are located between each two drum grooves, each filter plug is provided with four peripheral flutes.

Where the heated formers are disposed on the drum or drums which transport the filter plugs, there is either no relative motion between the formers and the filter plugs during deformation of the latter, or only very slow relative motion between them. This assures that the filter plugs remain in contact with the heated forming elements sufficiently long to be shaped properly. This is particularly true in the case of the first and second preferred embodiments, in which the formers themselves carry the filter plugs. The larger the circumference of the drum is, the more formers can be disposed on it, and the more filter plugs can be processed per minute. By making the drum large enough, i.e. providing enough formers on it, as high a speed as desired can be achieved.

The invention will be further described by way of example, with reference to the drawings, in which,

Figure 1 is an isometric view of one preferred embodiment of apparatus constructed according to the principles of the present invention; Figure 2 is a perspective view of a detail of the embodiment of Figure 1; Figure 3 is a schematic side view of another detail of the embodiment of Figure 1; Figure 4 is a schematic side view showing the essential features of a second preferred embodiment, and Figure 5 is a schematic side view of a third preferred embodiment.

As shown in Figure 1, one preferred embodiment of apparatus for carrying out the method of the invention is a free-standing unit 10. The article-forming apparatus proper is mounted on a vertical frame or panel 12 supported on a table 14. A vacuum fan 18 to provide vacuum suction for a purpose explained below, a control box 18 and a main drive electric motor 20 to power the apparatus and the vacuum fan 18 are also provided. The apparatus also includes a hopper drum 22, two heated drums 24, 26 carrying formers 28, and a final transfer drum 30, all mounted on panel 12 for rotation about respective horizontal axes by motor 20 via a drive belt 32 and a conventional system of gears 34 (not shown in detail).

Filter plugs 36 of cigarette smoke filter material, e.g. cellulose acetate, are stored in a hopper 38, from which they are dispensed once at a time to the hopper drum 22. A jam detector (not shown) of conventional design is provided on the hopper drum 22 to halt the operation of the filter feed in the event that a filter plug 36 becomes stuck in the hopper 38. The hopper drum 22 has grooves or flutes parallel to its axis disposed around its peripheral surface to receive the filter plugs 36, which are retained in the grooves by means of vacuum suction applied by the vacuum fan 18 from the interior of the hopper drum 22 via small apertures (not shown) provided in the grooves for that purpose. Vacuum suction is similarly used to retain the filter plugs 36 in place on the other drums 24, 26 and 30.

The hopper drum 22 carries filter plugs 36 to point A, where they are transferred to the first heated drum 24. This transfer is preferably effected by simultaneously terminating the vacuum suction holding the filter plug 36 on the hopper drum 22 and applying vacuum suction to cause it to adhere to drum 24. Methods of controlling the vacuum suction to achieve this purpose are well known to those skilled in the art.

The heated drums 24, 26 are each provided in the embodiment shown with forty flute formers 28, one of which is shown more clearly in Figure 2. (It will be understood that the number of formers can be varied according to convenience.) As can be seen from the figures and as will be explained below, each flute former 28 defines a bed on which a filter plug 36 can be received. When each filter plug 36 reaches point A, it is released by the hopper drum 22 and received on the bed defined by one of the flute formers 28 of the first heated drum 24. As the drum 24 rotates, one side of the filter plug 36 is shaped by contact with the heated former 28.

The filter plug 36 is carried by the first heated drum 24 to point B, where it is transferred in the manner described above to a flute former 28 on the second heated drum 26. The latter shapes the other side of the filter plug 36 while transporting it to point C and then transfers it to the final transfer drum 30, which releases the filter plug 36 at point D. A conveyor belt (not shown) or other conventional means can be provided at point D to receive the filter plug 36 and take it to the next work station. These transfers are effected in the same manner as that from hopper drum 22 to drum 24.

First and second adjustable endless pressure belts 40, 42 are mounted on rollers 44a—d and 46a—d, respectively. As can be seen from the figures, belts 40, 42 follow a portion of the peripheral surface of heated drum 24, 26, respectively, and are pressed against the drum to the belt tensioning system.
drums 24, 26 against the flure former 28 carrying it. The pressure exerted on the filter plugs 36 by belts 40, 42 can be adjusted by means of pressure rollers 58 (shown schematically in Figure 3), which take up slack in the belt 40, 42. In addition, clamp rollers 48, 50 are mounted on panel 12 by means of shafts 52 and 54, and are spring biased rotatably around the axes of the shafts 52 and 54 in such a manner as to clamp the belts 40 and 42 against drive rollers 44d and 46d to ensure correct belt speed. The amount of the spring biasing is adjustable by conventional means (indicated schematically at 56 in Figure 3).

The flure formers 28 have the structure shown in Figure 2. Each flure former 28 comprises a heat resistant ceramic insert 60, which can for example be alumina ceramic, and which is received in a recess 62 in the periphery of the heated drum 24 or 26 as shown in Fig. 3. The ceramic insert 60 has a generally T-shaped cross-section, the cross-piece of the T being received in the recess 62. The free end of the stem of the T is concave and serves as a bed to receive the filter plug 36, as indicated in Figure 2. Clamps (not shown) made of electrically resistant material and screws (not shown) are used to secure the inserts 60 to the drums 24 and 26.

In the preferred embodiment shown in Figures 1-3 the filter plugs 36 are 4-up 108's, i.e., filter plugs 108 millimeters in length which will each be cut into four cigarette filters of 27 millimeters length. In this embodiment, the flutes to be formed are longitudinal and extend part of the way along the length of the filter from one end thereof.

When a filter rod 36 is placed on the former 28, four straight axial grooves or flutes are formed in one side of it by heated flure forming elements 66 as in Fig. 2 which each comprise a length of, for example, ni-chrome wire bent into the shape of the flute to be made. The number and placement of the flure forming elements 66, as well as their shape, can be varied as needed. The pieces of ni-chrome flure forming elements wire 66 are soldered to lengths 68 of larger diameter copper wire in such a manner as to connect the four ni-chrome wires 66 of each former 28 with each other in series. The copper wires 68 are connected to those of the other flure formers 28 of the drum 24 or 26 by clamps 64 (one shown in Figure 2), made of an electrically conductive material, such that all the ni-chrome wires 66 on a single drum are connected in series, as indicated in Figure 3.

The design described above for the formers 28 could be simplified by replacing the copper wires 68 and the ni-chrome wire 66 with wire of a single thickness and material, for example, ni-chrome. It has been found in practice, however, that this arrangement is much less satisfactory than that shown in Figure 2, because bending the ni-chrome wire to form it into the desired shape creates constriction in it. The constriction, having smaller cross-sections than the remaining portions of the wire, are regions of relatively high resistance. The ohmic heating produced in the bends is therefore considerably greater than that produced in the remaining portion of the length of the wires. This results in the formation of unsatisfactory flutes in the filter plugs 36. The structure shown in Figure 2 avoids this problem.

The use of two types of wire having different diameters has an additional advantage. Since the copper wire, in addition to having a larger diameter than that of the ni-chrome wire 66, also has a lower resistivity than the latter, it will be apparent that the voltage drop per unit length of the copper wire 68 will be substantially lower than that occurring in the ni-chrome wires 66. The heat generated per unit length of the ni-chrome wires 66 will accordingly be substantially greater than that produced per unit length of the copper wires 68. The heat is concentrated in the areas where it is useful, that is, in the areas where the flutes are to be formed. The design shown in Figure 2 thus reduces the power consumption of the apparatus of the invention.

The flure forming elements 66 are heated, as noted, by the passage of electric current through them. The means by which the current is supplied to them is shown in Figure 3. (For the sake of clarity, Figure 3 shows only eleven formers 28, rather than the actual number of about forty.)

The drums 24 and 26 each comprise an insulative body 70 in whose peripheral surface the recesses 62 receiving the ceramic inserts 60 are defined. Two annular conductive slip rings 72 and 74 are disposed in and concentric with the insulative body 70 and are spaced apart radially by an annular region 76 of insulative material. Two ni-chrome wires 78 and 80 electrically connect the two ends of the series circuit loop comprising the flure forming elements 66 to slip rings 72 and 74, respectively. Electrical power is supplied to the flure forming elements 66 by means of a power line 82 and is connected to two conductive brushes 84 and 86, which respectively connect the conductors of the power line 82 to slip rings 72 and 74. This arrangement provides current to the flure forming elements 66 to heat them.

The control box 18 is preferably provided with first and second meters 88 and 90, which respectively indicate the currents flowing at any instant through the flure forming elements 66 of the first and of the second heated drums 24 and 26 (These two currents can preferably be controlled independently.) A vacuum gauge 92 is also provided, for example, mounted on the vertical panel 12, to indicate the strength of the vacuum suction used to retain the filter plugs 36 in the grooves of the drums 22, 24, 26 and 30. In addition, a digital speed gauge 94 and a production counter 96 are provided to indicate, respectively, the number of filter plugs being processed per minute and the cumulative production since the beginning of the shift.

In operation, a filter plug 36 to be shaped is fed from the hopper 38 to the hopper drum 22, which transfers it to the first heated drum 24. Drum 24 carries the filter plug 36 from point A to point B as indicated in Figure 1, and while carrying it forms
nine flutes in one side of it (see Figure 2). The filter plug 36 is then transferred at point B to the second heated drum 26, which forms an additional four flutes in the other side of the filter plug 36 while carrying it to point C, where it is passed to the final transfer drum 30. The filter plug 36 is then carried to point D and released by drum 30 to be taken to the next work station.

It has been found that if all the flutes forming elements 66 are the same diameter, the first four flutes formed in each filter plug 36 are slightly larger than the last few to be formed. The cause for this is believed to be that, during the formation of the first four flutes, most of the slack in the paper wrap is removed, causing a certain amount of shrinkage. As a result, when the last four flutes are made, the skin of the filter plug is tauter and therefore more difficult to deform than previously.

In order to overcome this problem, it is preferred that the flute forming elements 66 used to form the first four flutes should be slightly smaller in diameter than those used to make the last four flutes. It has been found especially suitable for the ni-chrome wires 66 of the flute forming elements 28 on the first drum 24 to be, for example, No. 20 gauge wire, and the ni-chrome wires 66 of the forms 28 of the second drum 26 to be, for example, No. 18 gauge wire. It has been found that this arrangement compensates for the shrinkage of the filter plug skin and results in the formation of flutes of equal size.

Up to 2,800 filter plugs per minute can be shaped using the double drum apparatus 10 described above. Since each filter plug is subsequently cut into from two to six filters (four in the embodiment shown), it will be clear that the apparatus described herein is capable of processing filters at least as fast as a cigarette maker can produce cigarettes.

Figure 4 shows another preferred embodiment of the invention, in which only one heated drum 24 is used in place of the two such drums 24, 26 employed in the embodiment of Figure 1.

In the embodiment of Figure 4, both sides of each filter plug 36 are shaped on the single heated drum 24, which is identical in structure to the heated drum 24 described above and hence will not be described in detail. Two pressure belts 40, 42 are arranged adjacent the periphery of drum 24 to press the filter plugs 36 against the flute forming elements 66. Pressure belts 40 and 42 are as described above, except that in the embodiment of Figure 4 they are both adjacent the same heated drum 24. A kick-out mechanism in the form of a roll block 98 is positioned adjacent drum 24 between pressure belts 40 and 42. The end of the roll block 98 facing the oncoming stream of filter plugs 36 has a flange 100 extending toward the drum 24, the purpose of which is explained below.

The filter plugs 36 are supplied to drum 24 by the hopper drum (not shown in Figure 4). Each filter plug 36 is received on a former 28 and held there by vacuum suction, as in the embodiment of Figure 1. As the drum 24 rotates counterclockwise (in the view of Figure 4) to carry the filter plug 36 to point E, the flute forming elements 66 it rests on form four flutes in one side of it. At point E, the filter plug 36 strikes flange 100 and is forced thereby off the flute former 28. This process can be facilitated by deactivating the vacuum suction applied to filter plug 36 when the filter plug 36 reaches point E.

The side of the roll block 98 facing the drum 24 is uniformly spaced from the surface of the drum 24 a distance equal to the diameter of the filter plugs 36. The roll block 98 therefore causes the filter plug 36 to roll along the drum surface after being knocked off the former 28 by the flange 100. The filter plug 36 is rolled in this manner onto the next flute former 28 (counting clockwise in Figure 4), from which the roll block flange 100 has just in the meantime ejected the filter plug 36 that previously occupied it.

In this embodiment the spacing between adjacent formers 28 is such that each filter plug 36 is rotated through a total angle equal to an odd number of half turns in being moved from one flute former 28 to the next by the roll block 98. The side of the filter plug 36 that has already been fluted while moving to point E now contacts the pressure belt 40 as the filter plug 36 is moved by the drum’s rotation counterclockwise from point F, and the other side of the filter plug 36 is shaped. The filter plug 36 is then transferred to a final transfer drum (not shown in Figure 4), which releases it for conveyance to the next work station, as in the embodiment of Figure 1.

A third preferred embodiment of the invention is shown schematically in Figure 5. In this embodiment, as in that of Figure 4, a single heated drum 102 is used. The drum 102 has a relatively large number, for example, forty, grooves 104 provided equally spaced apart its periphery. (For the sake of clarity, only ten such grooves 104 are actually shown in Figure 5). In this embodiment the formers 128 each comprise four electrically heated ni-chrome wires 106a mounted in a ceramic insert 108 provided in a recess 110 in the drum periphery. Each ni-chrome wire is preferably connected to a current source by copper or other low-resistance wires in the manner shown in Figures 2 and 3. One such former 128 is provided between each two of the drum grooves 104, the two forward wires 106a of each former 128 preferably being No. 20 gauge wire and the two rearward wires being No. 18 gauge wire for the reasons explained above in connection with the embodiment of Figures 1—3.

The hopper drum 22 and the off-take drum or final transfer drum 30 are both located adjacent the heated drum 102. Both are substantially as described in connection with the embodiment of Figures 1—3 and therefore will not be described again.

A single pressure belt 112 is provided adjacent the drum 102. The belt is mounted on several rollers, of which two rollers 114a and 114e are shown, and is wrapped around approximately
300° of the periphery of the drum 102. A device (not shown in Figure 5 but like that shown in Figure 3) is provided to take up slack in the belt 112, and to adjust the pressure the belt 112 exerts on the filter plugs 36. The belt 112 is driven at a speed slightly different from the speed of rotation of the drum 102.

The filter rods 36 are fed to the drum 102 by the hopper drum 22, as in the embodiments described above. Each filter plug 36 is received in a respective groove 104, where it is held by vacuum suction. As the drum 102 rotates, the slight speed differential between it and the belt 112 causes the filter plugs 36 to roll along the surface of the drum 102. Preferably, the belt 112 moves more slowly than the drum 102, causing the filter plugs 36 to roll backward relative to the drum surface. This relative motion of the filter plugs 36 and the drum 102 causes each filter plug 36 to roll backward over a former 128. The speed differential is such that each filter plug 36 rolls backward one drum groove 104, in the process rolling over four of the nichrome wires 108a, while being carried by the drum 102. As a result, each filter plug 36 has four equally spaced longitudinal flutes 120 at the time it is transferred from the heated drum 102 to the off-take drum 30.

It will be appreciated that the straight nichrome wires shown and described with reference to the preferred embodiments could be replaced with flute forming elements having any desired shape. In addition, formers of several different shapes could be provided on one drum. In the embodiment of Figure 5, for example, formers of different shapes could be disposed in succession on the drum periphery, one former between each two adjacent drum grooves. In this case, the difference in speed between the drum periphery and the belt 112 would be such as to roll each filter plug 36 a distance of n grooves 104 along the drum surface.

Those skilled in the art will appreciate that instead of using a free standing machine, the method of invention could be practised by incorporating any of the embodiments described above in a machine that processes the fluted filter plugs further. For example, the final transfer drum could be employed to deliver the filter plugs directly to a cutter to be cut into doubles, i.e. segments comprising two filters end to end. The doubles would then be attached to tobacco rods and severed to yield finished cigarettes.

In addition, instead of disposing the formers on the periphery of one or more drums, they could be supported for transportation along any desired predetermined path, provided only that enough pressure can be maintained on the filter plugs while in contact with the formers to ensure that the desired deformation occurs.

It will also be appreciated that the invention enables the production of machinery capable of producing grooved cigarette filter components at a rate similar to that at which cigarettes can be produced by a cigarette making machine.

Claims

1. An apparatus for shaping a cylindrical, heat formable object (36), comprising transport means (24, 102) for transporting the cylindrical object along a predetermined path and heated forming means carried on the transport means for thermally deforming a portion of the cylindrical object to impart a predetermined shape thereto, characterised in that the heated forming means comprise a plurality of heated formers (28, 128) which are arranged immovably relative to the transport means (24, 102) and that an adjustable belt (40, 112) moving adjacent to and independent of the transport means is provided for pressing the cylindrical object with adjustable pressure against at least one of the formers for a sufficient time to cause the predetermined shape to be imparted to the cylindrical object while the transport means is transporting the cylindrical object along the predetermined path.

2. An apparatus according to claim 1 wherein each former (28) comprises an electrically heated conductive element (66/68, 106a).

3. An apparatus according to claim 2, wherein the conductive element includes a high-resistance portion (66) having a shape to be imparted to the cylindrical object (36), and a low-resistance portion (68) having a lower electrical resistance per unit length than the high-resistance portion.

4. An apparatus according to claim 3, wherein the high-resistance portion (66) comprises a nichrome wire portion, and the low-resistance portion (68) comprises a copper wire portion having a greater cross sectional area and a lower resistivity higher than the nichrome portion.

5. An apparatus according to any preceding claim, further characterised by second transport means (26) having a plurality of heated formers (28) disposed on it, the second transport means being arranged for receiving the cylindrical object (36) from the first transport means and for transporting it along a second predetermined path; and further means (42) for maintaining the cylindrical object in operative contact with at least one of the formers disposed on the second transport means.

6. An apparatus according to claim 5, wherein the first and second transport means are arranged to enable a cylindrical object (36) to be transferred directly from a former (28) disposed on the first transport means (24) to a former (28) disposed on the second transport means (26), in such a manner that the cylindrical object is deformed on one side while being carried by the first transport means and on another side while being carried by the second transport means.

7. An apparatus according to claim 5 or 6, wherein each former (28) includes an electrically heated conductive element (66 and 68) including a wire (66) having a shape for forming a flute in the cylindrical object, the wires of the formers of the first transport means (24) being smaller in diameter than the wires of the formers of the second transport means (26).
8. An apparatus according to claim 6, 7 or 8, wherein the magnitudes of the electrical currents flowing through the formers (28) of the first and second transport means (24, 26) respectively, are controllable independently of each other.

9. An apparatus according to any preceding claim wherein the or each transport means comprises a respective rotary drum (24/26, 102) having respective formers (28, 128) disposed on the periphery thereof.

10. An apparatus according to any preceding claim, further comprising kick-out means (98) located adjacent the transport means (24, 26) for removing a cylindrical object (36) from one former after it has been deformed thereby on one side, and placing it in a second former to be deformed on its other side.

11. An apparatus according to claim 10, wherein the kick-out comprises a stationary roll block (98) spaced from the transport means (24, 26) by a distance approximately equal to the diameter of the cylindrical object (36).

12. An apparatus according to any of claims 1 to 4, wherein the transport means is a drum (102) having a plurality of grooves (104) in its peripheral surface to receive cylindrical objects, and wherein each former (128) is disposed between a respective pair of adjacent grooves.

13. An apparatus according to claim 12, wherein each former (128) comprises four wires (106a), each wire having a shape for forming a single flute in a cylindrical object (36).

14. A method for shaping a cylindrical heat formable object, in which a cylindrical object is moved by a first transport means along a first predetermined path while being maintained in operative contact with and stationary relative to a first heated former to impart a predetermined shape to a portion of the object; and the object is then moved by a second transport means along a second predetermined path while maintained in contact with and stationary relative to a second heated former to impart a predetermined shape to another portion of the object; said first and second heated formers being stationary relative to the respective transport means.

15. A method according to claim 14, wherein the first and second paths are circular arcs that lie on a single circle; and wherein the object is removed from the first former, and moved along the circle to the second former.

16. A method according to claim 15, wherein the first and second formers are supported on first and second rotatable drums for motion along the first and second paths, respectively; and wherein the object is transferred from the first former directly to the second former.

17. A method for shaping a cylindrical heat formable object, in which the object is moved along a predetermined path and brought into operative contact with a plurality of heated formers to impart a shape to the cylindrical object while it is travelling along the said path, characterised in that the formers are supported in a surface moving along the path and the cylindrical object after contacting at least one of the formers is rolled along the surface by contact with an adjacent element not moving at the same speed as the surface, to contact at least one other of the formers.

18. A method according to claim 17, wherein the formers are spaced circumferentially round the peripheral surface of a drum, and the cylindrical object is rolled round the peripheral surface by an endless belt moving at a speed different from that of the drum to contact a series of individual forming elements sequentially.

Revendications

1. Dispositif pour conformer un objet cylindrique façonnable à chaud (36), comprenant des moyens de transport (24, 102) pour transporter l’objet cylindrique le long d’un trajet prédéterminé et des moyens de façonnage chauffés portés sur les moyens de transport pour déformer par voie thermique une partie de l’objet cylindrique afin d’impartir à celui-ci une forme prédéterminée, caractérisé en ce que les moyens de façonnage chauffés comprennent plusieurs éléments de façonnage chauffés (28, 128) qui sont disposés de manière immobile par rapport aux moyens de transport (24, 102) et en ce qu’une courroie réglable (40, 112) se déplaçant au voisinage des moyens de transport et indépendamment de ceux-ci est prévue pour appliquer l’objet cylindrique avec une pression réglable contre au moins l’un des éléments de façonnage pendant un temps suffisant pour obliger la forme prédéterminée à être impartie à l’objet cylindrique pendant que les moyens de transport transportent l’objet cylindrique le long du trajet prédéterminé.

2. Dispositif selon la revendication 1, dans lequel chaque élément de façonnage (28) comprend un élément conducteur électriquement chauffé (68/69, 106a).

3. Dispositif selon la revendication 2, dans lequel l’élément conducteur comprend une partie à haute résistance (66) présentant une forme à impartir à l’objet cylindrique (36), et une partie à faible résistance (68) présentant une résistance électrique par unité de longueur plus faible que la partie à résistance élevée.

4. Dispositif selon la revendication 3, dans lequel la partie à haute résistance (66) comprend une portion de fil ni-chrome, et la partie à faible résistance (68) comprend une portion de fil de cuivre présentant une surface en section transversale plus grande et une plus faible résistivité supérieure à la partie en ni-chrome.

5. Dispositif selon n’importe quelle revendication précédente, caractérisé en outre par de seconds moyens de transport (26) présentant plusieurs éléments de façonnage chauffés (28) disposés sur eux, les seconds moyens de transport étant agencés pour recevoir des premiers moyens de transport l’objet cylindrique (36) et pour le transporter le long d’un second trajet prédéterminé, et d’autres moyens (42) pour maintenir...
l’objet cylindrique en contact opérationnel avec au moins l’un des éléments de façonnage disposés sur les seconds moyens de transport.

6. Dispositif selon la revendication 5, dans lequel les premiers et seconds moyens de transport sont agencés pour permettre à un objet cylindrique (36) d’être transféré directement d’un élément de façonnage (28) disposé sur les premiers moyens de transport (24) à un élément de façonnage (28) disposé sur les seconds moyens de transport (26), d’une manière telle que l’objet cylindrique soit déformé sur un côté pendant qu’il est transporté par les premiers moyens de transport et sur un autre côté pendant qu’il est transporté par les seconds moyens de transport.

7. Dispositif selon la revendication 5 ou 6, dans lequel chaque élément de façonnage (28) comprend un élément conducteur électriquement chauffé (68 et 69) comprenant un fil (66) présentant une forme permettant de façonner une cannelure dans l’objet cylindrique, les fils des éléments de façonnage des premiers moyens de transport (24) étant plus petits en diamètre que les fils des éléments de façonnage des seconds moyens de transport (26).

8. Dispositif selon la revendication 6, 7 ou 8, dans lequel les intensités des courants électriques s’écoulant à travers les éléments de façonnage (28) respectivement des premiers et seconds moyens de transport (24, 26) sont contrôlables indépendamment l’une de l’autre.

9. Dispositif selon n’importe quelle revendication précédente, dans lequel les ou chaque moyens de transport comprennent un tambour rotatif respectif (24/26, 102) présentant des éléments de façonnage respectifs (28, 128) disposés sur leur périphérie.

10. Dispositif selon n’importe quelle revendication précédente, comprenant en outre des moyens extracteurs-culbuteurs (98) disposés dans le voisinage des moyens de transport (24, 26) pour extraire un objet cylindrique (36) de l’un des éléments de façonnage après qu’il ait été déformé par celui-ci sur un côté, et pour le placer dans un second élément de façonnage pour être déformé sur son autre côté.

11. Dispositif selon la revendication 10, dans lequel l’extracteur-culbuteur comprend un bloc de roulement fixe (98) espaçé des moyens de transport (24, 26) d’une distance approximativement égale à diamètre de l’objet cylindrique (36).

12. Dispositif selon l’une quelconque des revendications 1 à 4, dans lequel les moyens de transport sont un tambour (102) présentant plusieurs rainures (104) dans sa surface périphérique pour recevoir des objets cylindriques, et dans lequel chaque élément de façonnage (128) est disposé entre une paire respective de rainures adjacentes.

13. Dispositif selon la revendication 12, dans lequel chaque élément de façonnage (128) comprend quatre fils (108a), chaque fil présentant une forme permettant de façonner une cannelure unique dans un objet cylindrique (36).

14. Procédé pour conformer un objet cylindrique façonnable à chaud, selon lequel on déplace un objet cylindrique à l’aide de premiers moyens de transport le long d’un premier trajet prédéterminé pendant qu’il est maintenu en contact opérationnel avec un premier élément de façonnage chauffé et de manière fixe par rapport à celui-ci afin d’impacter une forme prédéterminée à une partie de l’objet, puis on déplace l’objet à l’aide de seconds moyens de transport le long d’un second trajet prédéterminé pendant qu’il est maintenu en contact avec un second élément de façonnage chauffé et de manière fixe par rapport à celui-ci afin d’impacter une forme prédéterminée à une autre partie de l’objet, lesdits premier et second éléments de façonnages chauffés étant fixes par rapport aux moyens de transport respectifs.

15. Procédé selon la revendication 14, dans lequel les premiers et seconds trajets sont des arcs circulaires qui sont situés sur un cercle unique, et dans lequel on extrait l’objet du premier élément de façonnage et on le déplace le long du cercle jusqu’au second élément de façonnage.

16. Procédé selon la revendication 15, dans lequel les premiers et seconds éléments de façonnage sont portés par des premier et second tambours rotatifs en vue d’un mouvement le long respectivement des premiers et second trajets, et dans lequel on transfère l’objet directement du premier élément de façonnage au second élément de façonnage.

17. Procédé pour conformer un objet cylindrique façonnable à chaud, selon lequel on déplace l’objet le long d’un trajet prédéterminé et on l’amène en contact opérationnel avec plusieurs éléments de façonnage chauffés afin d’impacter une forme à l’objet cylindrique pendant qu’il se déplace le long dudit trajet, caractérisé en ce que les éléments de façonnage sont portés sur une surface se déplaçant le long du trajet et, après que l’objet cylindrique soit venu au contact d’au moins l’un des éléments de façonnage, on le fait rouler le long de la surface par contact avec un élément adjacent ne se déplaçant pas à la même vitesse que la surface, afin de venir au contact d’au moins un autre des éléments de façonnage.

18. Procédé selon la revendication 17, dans lequel les éléments de façonnage sont espacés circunférentiellement autour de la surface périphérique d’un tambour, et on fait rouler l’objet cylindrique autour de la surface périphérique à l’aide d’une courroie sans fin se déplaçant à une vitesse différente de celle du tambour, afin qu’il vienne de manière successive au contact d’une série d’éléments individuels de façonnage.

Patentansprüche

1. Vorrichtung zum Formen eines zylindrischen, warmformbaren Gegenstandes (36), bei der eine Transporteinrichtung (24, 102) zum Transportieren des zylindrischen Gegenstandes längs eines vorbestimmten Weges und beheizte Formeinrichtungen vorgesehen sind, die von der Transporteinrichtung getragen werden, um einen
Teil des zylindrischen Gegenstandes thermisch zu verformen und um ihm eine vorbestimmte Form zu verleihen, dadurch bestimmten, daß die behandelten Formteile (28, 128) aufweist, die relativ zur Transporteindeckung (24, 102) unbeweglich angeordnet sind, und daß ein verstellbares Band (40, 112), das sich benachbart und unabhängig zu der Transporteindeckung bewegt, vorgesehen ist, um den zylindrischen Gegenstand mit veränderbarer Andrückkraft gegen wenigstens eines der Formteile eine ausreichende Zeit lang anzudrücken, und zu bewirken, daß der zylindrischen Gegenstand die vorbestimmte Form verliehen wird, während der die Transporteindeckung den zylindrischen Gegenstand längs des vorbestimmten Weges transportiert.

2. Vorrichtung nach Anspruch 1, bei der jedes Formteil (28) ein elektrisch beheiztes leitendes Element (66/68, 106a) aufweist.

3. Vorrichtung nach Anspruch 2, bei der das leitende Element einen hochhohmigen Teil (68), der die dem zylindrischen Gegenstand (36) zu verleihende Form hat, und einen niedrighohmigen Teil (68) enthält, das einen geringeren elektrischen Widerstand pro Längeneinheit als der hochhohmige Teil hat.

4. Vorrichtung nach Anspruch 3, bei der den hochhohmige Teil (68) einen Ni-Chrom-Drahtteil aufweist und der niedrighohmige Teil (68) einen Kupferdrahtabschnitt aufweist, der einen größeren Querschnitt und einen niedrigen spezifischen Widerstand größer als der Ni-Chrom-Teil hat.

5. Vorrichtung nach einem der vorangehenden Ansprüche, ferner gekennzeichnet, dadurch, daß eine zweite Transporteindeckung (28) vorgesehen ist, die eine Mehrzahl von behandelten Formteilen (25) hat, die auf dieser angeordnet sind, daß die zweite Transporteindeckung derart angeordnet ist, daß sie den zylindrischen Gegenstand (36) von der ersten Transporteindeckung aufnimmt und die diesen längs eines zweiten vorbestimmten Weges transportiert, und daß ferner eine Einrichtung (42) vorgesehen ist, die den zylindrischen Gegenstand in Wirkkontakt mit wenigstens einem der Formteile hält, die auf der zweiten Transporteindeckung angeordnet sind.

6. Vorrichtung nach Anspruch 5, bei der die erste und die zweite Transporteindeckung derart angeordnet sind, daß ein zylindrischer Gegenstand (36) direkt von einem Formteil (28), das auf der ersten Transporteindeckung (24) angeordnet ist, und zwar derart, daß der zylindrische Gegenstand auf einer Seite während des Tragens durch die erste Transporteindeckung und auf der anderen Seite während des Tragens durch die zweite Transporteindeckung verformt wird.

7. Vorrichtung nach Anspruch 5 oder 6, bei der jedes Formteil (28) ein elektrisch beheiztes, leitendes Element (66 und 68) enthält, das einen Draht (66) aufweist, der eine Form zur Formung einer Auskehrung in dem zylindrischen Gegenstand hat, und daß die Drähte der Formteile der ersten Transporteindeckung (24) im Durchmesser kleiner als die Drähte der Formteile der zweiten Transporteindeckung (28) sind.

8. Vorrichtung nach Anspruch 6, 7 oder 8, bei der die durch die Formteile (28) der ersten und zweiten Transporteindeckung (24, 26) jeweils gehenden elektrischen Stromstärken unabhängig voneinander regelbar sind.

9. Vorrichtung nach einem der vorangehenden Ansprüche, bei der die eine Transporteindeckung eine zugeordnete Drehtrommel (24/26, 102) aufweist, die jeweils an ihrem Umfang zugeordnete Formteile (28, 128) hat.

10. Vorrichtung nach einem der vorangehenden Ansprüche, welche ferner eine Entnahmeinrichtung (98) aufweist, die in der Nähe der Transporteindeckung (24, 26) vorgesehen ist, um einen zylindrischen Gegenstand (36) aus einem Formteil nach der hierbei vorgenommenen Verformung auf einer Seite zu entnehmen und ihn zu einer zweiten Formeindeckung zur Verformung auf der anderen Seite zu geben.

12. Vorrichtung nach einem der Ansprüche 1 bis 4, bei der die Transporteindeckung eine Trommel (102) hat, die eine Mehrzahl von Ausnehmungen (104) auf ihrer Umfangsfläche hat, um die zylindrischen Gegenstände aufzunehmen, und bei der jedes Formteil (128) zwischen einem zugeordneten Paar benachbarter Ausnehmungen angeordnet ist.

13. Vorrichtung nach Anspruch 12, bei der jedes Formteil (128) vier Drähte (106a) aufweist, wobei jeder Draht eine Form zur Formung einer einzigen Auskehrung in einem zylindrischen Gegenstand (36) hat.

14. Verfahren zur Verformung eines zylindrischen, warmformbaren Gegenstandes, bei dem ein zylindrischer Gegenstand mittels einer ersten Transporteindeckung längs eines ersten vorbestimmten Weges bewegt wird, währenddem er in Wirkkontakt mit einer ersten behandelten Formeinrichtung und stationär relativ zu hierzu gehalten wird, um einem Teil des Gegenstandes eine vorbestimmte Form zu verleihen, und bei dem der Gegenstand dann mittels einer zweiten Transporteindeckung längs eines zweiten vorbestimmten Weges bewegt wird, währenddem er in Kontakt mit einer zweiten behandelten Formeinrichtung und stationär relativ zur dieser gehalten wird, um dem anderen Teil des Gegenstandes eine vorbestimmte Form zu verleihen, wobei die ersten und zweiten behandelten Formeinrichtungen relativ zu den zugeordneten Transporteindeckung stationär sind.

15. Verfahren nach Anspruch 14, bei dem der erste und der zweite Weg Kreisbögen sind, die auf einem einzigen Kreis liegen, und bei dem der Gegenstand aus der ersten Formeindeckung entnommen und längs des Kreises zur zweiten Formeindeckung bewegt wird.

16. Verfahren nach Anspruch 15, bei dem die
erste und die zweite Formeinrichtung auf ersten und zweiten drehbaren Trommeln abgestützt sind, um sich längs des ersten und zweiten Weges jeweils zu bewegen, und bei dem der Gegenstand von der ersten Formeinrichtung direkt zu der zweiten Formeinrichtung übergeben wird.

18. Verfahren nach Anspruch 17, bei dem die Formeinrichtungen in Umfangsrichtung um die Umfangsfläche einer Trommel im Abstand angeordnet sind, und bei dem der zylindrische Gegenstand um die Umfangsfläche mit Hilfe eines endlosen Bandes gerollt wird, das sich mit einer Geschwindigkeit bewegt, die sich von jener der Trommel unterscheidet, um eine Reihe von einzelnen Formelementen sequentiell zu berühren.