NUTATING SNAP ACTION SWITCH APPARATUS.

Priority: 17.09.81 US 303234

Date of publication of application: 30.03.83 Bulletin 83/13

Publication of the grant of the patent: 02.05.85 Bulletin 85/18

Designated Contracting States: DE FR GB

References cited:
US-A-2 894 080
US-A-3 567 888
US-A-4 145 590

IBM TECHNICAL DISCLOSURE BULLETIN, vol. 21, no. 9, February 1979, New York (US) R.H. HARRIS: "Buckling-spring key actuator with two-force pretravel", pages 3727

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

International Business Machines Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

Harris, Richard Hunter
2013 Eagleton Ct.
Raleigh, NC 27609 (US)

Bonneau, Gérard
Compagnie IBM France Département de Propriété Industrielle
F-06610 La Gaude (FR)

Description

Technical field

This invention relates to keyboards and key switch entry mechanisms in general and specifically to a rotating snap action apparatus for such key switches.

Background art

Numerous cam action snapping actuators for key switches are known in the prior art. These devices take many known forms. For example, US-A-3,587,888 shows one such design in which the cam follower pivoted to a key stem of a push button is arranged to follow a molded or machined track and cam member to provide snap action of engaging electrical contacts. While only two moving parts are employed, the parts are connected together through a pivot and precise machining and tolerance conditions with careful fitting together of the assembled parts is required for reproducible operation. This is a deficiency in today's highly competitive environment where reduction of manufacturing costs and simplification of mechanisms are highly sought after.

CH-A-260410 illustrates another type of mechanism in which a pivoted lever handle with intermittently pivoted connectors apply off center forces to a generally notatable or oscillatable plate member. While the actions of the operable plate may be similar in some respects to those desired in the present invention, the complexity of the device with carefully machined parts and fitting together of numerous pivots is a distinct drawback.

Still another class of switches utilize inclined ramps or cam surfaces to snap a resilient spring member. A typical such mechanism is shown in US-A-3,387,184 where an inclined ramp and cam surface fixed to a moving plunger operates on a spring wire contactor. Such devices which operate on stressed wire spring members to create contact suffer from contact bounce and mechanical breakage as is well known. Also, such devices may be more complex to manufacture and assemble.

General cammed members contained in a key stem or push button for operating contact devices are of course well known. For example, the previously mentioned Swiss patent and the US-A-3,387,184 mentioned above show such types of structure. Another such device may be seen in US-A-3,943,307 in which two separate spring loaded slide members each having separate paths, are movable against spring loading into a convergent path. There are cams on the slides to engage with and move the actuators of first and second switches and the arrangement is such that one slide moves to block the path of the other. Such devices or key locks which prevent depression of multiple keys simultaneously are similarly well known.

While a great variety of mechanisms exists, the foregoing are exemplary of the general state of the art insofar as is known to the Applicant. All of the mechanism are somewhat more complex, contain many numerous parts or many unreliable structures and are more difficult to assemble than would be ideally desired in today's environment.

Summary of the invention

In view of the foregoing deficiencies in the known prior art, it is desired to provide an improved switch actuator apparatus that provides snap actions both on the make and on the break actuation, make and break being terms of art known in the industry.

Therefore, the object of the present invention is an electrical switch actuating apparatus having only two molded plastic moving parts: a rocking base plate provided with a central pivot provided with a molded upstanding cam surface, which interacts with molded cam surfaces on a key stem arranged in opposition thereto. The base plate and the key stem are biased apart by a simple resilient compression spring means. The compression spring also supplies a rocking torque about the pivot of the rocking plate tending to hold the plate tilted in a given direction against a base. Upon depression of the key button with the cooperating cam surfaces on the key stem and base plate, the base plate may be rocked in one or more directions about the pivot point when the force of the spring has been overcome. By properly arranging the cam surfaces, action in a first axis can be made to occur in a reversible manner followed by a sudden irreversible, snap action. This may be followed by other snapping motions in other axes, thereby causing the rocking plate to rock about its central pivot in a generally orbital or nutational motion from its starting position and back to its rest position as the key stem is first depressed and then released. These actions are controlled to occur at precise positions in the key stem travel and with a precisely repeating force characteristic. The output or motion of the rocking plate may be sensed at its periphery by allowing the plate to operate transducer contacts of any desired type well known in the art.

Assembly of the apparatus is exceptionally easy. A molded plastic rocking plate is inserted in a housing with its pivot bearing against a base support. The compression spring is fitted over a projection on the rocking plate and is engaged with a similar projection on the key stem which is inserted in the top of a housing surrounding the rocking plate means. This completes the assembly. Switches of this character may be ganged together in an apertured universal housing having spaces for numerous key buttons or may be placed in individual housings and grouped together or apart over the surface of a circuit board or similar means which can contain the transducer elements actuated by the snapping key mechanism.

As a preferred embodiment and as the best mode contemplated for carrying out the present invention, a further description is given with regard to a specific embodiment shown by way of
example and not by limitation in which the following is a brief description.

Brief description of drawings

Figure 1 illustrates an exploded partially cut away view of a single key actuator assembly apparatus according to the present invention. Figure 2 is a typical force and displacement chart showing forces and displacements for the mechanism.

Figures 3A, 3B and 3C illustrate a partial schematic portion of the actuator in three different stages of operation taken from a viewpoint of the left oblique in Figure 1.

Figures 4A, 4B and 4C illustrate sequential views of the operative components taken from a 90° orthogonal view to that shown in Figures 3A, 3B and 3C of the apparatus in Figure 1.

Figure 5 illustrates a simplified view of an operating plate of the preferred embodiment and illustrates the nature of some of the forces and motions encountered.

Figure 6 illustrates another form of the preferred embodiment of the rocking plate member.

Figure 7 illustrates a detailed key force and key travel chart explaining the various actions of engagement and disengagement of the cam surfaces for the preferred embodiment of the invention.

Description of the invention

The preferred embodiment of the present invention is described in Fig. 1. The electrical switch actuation mechanism is shown in an exploded pictorial form. The mechanism operates generally by means of cammed surfaces to produce a series of orbitally oscillating or nutating, rocking snap actions of a rocking plate 5. Depression of a key button 1 moves a key stem 2 on which the key button rides. The stem 2 has a plurality of different cam surfaces described in greater detail below which interact with a cam member on the rocking plate 5. These, in concert with the action of spring 4, produce a first rocking motion about a first axis with a snap actuation at a given point in the travel. This is followed by a second snap and rocking action of the rocking plate 5. These occur about second and third axes in the same general plane of the rocking plate but at different angular orientations from the first actions. The result is that an intersecting vertical axis through the plane of the rocking member will generally process or nutate in an orbital fashion about the central pivot point.

In Figure 1, key button 1 of molded plastic may be attached to a molded plastic stem 2 slidably supported in a guide or housing of molded plastic 3. A compression spring 4 of ordinary helical sort is shown for mounting between the rocking plate member 5 and the underside of the key stem 2 by a mounting means 4A and 4B shown to be projections in the plastic molded parts. The helical coil spring can slide over these projections to prevent it sliding laterally under the compression forces generated.

A three-dimensional axis diagram of the X, Y, and Z axes is illustrated in Figure 1 as an aid to understanding the motions.

A cam surface member 5A is molded on or attached to the base plate 5. Member 5A has numerous camming surfaces and angles thereon shown generically as surfaces 6, 7, 8 and 14. These surfaces interact at various times with a molded set of cam surfaces on key stem 2. This include the cam surfaces 9, 10, 11, 15 and 16 and will be described in greater detail below.

The interaction of the various cam surfaces produce rocking motions of the plate 5 about a central pivot 12. They thereby impart motion to an affixed interrupter or switch actuating flag member 13 which is rigidly attached to plate 5. In Figure 1, member 13 has been broken away and rotated approximately 45° to enable a better view of the pivot 12 to be obtained.

If a view is taken looking down on the top of member 5A, the motions which will be produced in various directions are identified with regard to the small vector diagram positioned adjacent to member 5A. The motions produced are first in a direction identified by the small letter a in the diagram which represents the rocking motion in the Z plane in a first direction. The depression of a key stem will be followed by another rocking motion in the Z plane with the direction of an arrow identified by letter b. This is primarily about the Z axis as can be seen and is followed by a return to the original position identified by the small letter c which is a rotation in the Z plane, primarily about the X axis. As may be easily understood, the flag member 13 can be used to actuate a wide variety of transducer or sensor means. For example, the flag member 13 can actuate electrical contacts (not shown), magnetic proximity, capacitive, inductive, or optical sensors. Similarly, the force of flag 13 moving with the rocking plate 5 can be utilized to operate diaphragm switch mechanisms positioned beneath the member 5 (not shown).

Assembly of the mechanism shown in Figure 1 begins by inserting the stem 2 into the guide 3. Stem 2 would typically have a molded flange or upper direction stopping means to keep it from moving too far upward. This is shown generally as the molded flange 17 which cooperates with the underside of an aperture in the housing 3 to limit the upward direction travel to an extreme position.

Spring 4 is then placed on the stem 2 over the mounting point 4A. Plate 5 is then positioned with point 4B inside the other end of spring 4. A bottom support (not shown) is assembled under all of the various key actuator positions on a keyboard so that each plate 5 compresses the respective spring 4 and the cam surfaces 7, 8 and 14 moving into proper relationship to the stem 2 and its cam surfaces 10, 15 and 16. As thus assembled, the cam surface 8 will be slightly below cam surface 10. Surface 7 will contact
surface 16, and surface 14 will contact the lower part of surface 15. Spring 4 creates a moment or torque on plate 5 about the central pivot point 12 that will insure this relationship with cam surfaces. Assembly is concluded by pressing a button 1 onto the top of each stem 2.

A more complete description of the various cam surfaces and their orientation when the key button is not depressed is given as follows:

Surface 6 carried on the cam member of rocking plate 5 is generally parallel to the Y axis and intersects the Z and X axes at 45°. This surface is facing away from the observer in Figure 1.

Surface 7 is generally parallel to the XY plane and faces away from the observer at 45° in Figure 1.

Surface 8 is generally parallel to the Z axis and intersects the X and Y axes at 45° facing the observer in a slanted fashion in Figure 1.

Surface 14 is parallel to the YZ plane and, completes the surfaces of the cam member molded as a part of the rocking plate 5. Cam surface 9 borne by the key stem 2 is generally parallel to the Y axis and intersects the X and Z axes at 45°. This faces the observer in Figure 1 and is also parallel with surface 6.

Cam surface 10 is generally parallel to the Z axis and intersects the X and Y axes at 45°. It faces away from the observer in Figure 1 and is also parallel to the surface 8.

Surface 11 is generally parallel to the XY plane facing the observer in Figure 1 and is also parallel with surface 7.

Surface 15 is parallel to the YZ plane, facing away from the observer in Figure 1, and is coplanar with surface 14.

Surface 16 is parallel to the XY plane facing the observer in Figure 1 and is also coplanar with surface 7.

All of the surfaces described are generally flat and have straight edges which may be provided with slight bevel, curvature or edge relief to reduce wear and to provide smooth operation. The angles of the surfaces and the actual number of surfaces may be varied to change the forces at different points in a touch curve to be described later.

Force applied to the keytop 1 will cause stem 2 to travel downward in guide 3 compressing spring 4 and causing sliding to occur between various surfaces. In a first step, the sliding will occur between surfaces 7 and 16 and also between surfaces 14 and 15. Surfaces 8 and 10 will approach each other. This provides a low force key travel of key motion which will be described in greater detail later with regard to Figure 7.

When surface 8 contacts surface 10, a sudden increase in force without further key deflection will be experienced. This results in the simultaneous engagement of surfaces 9 and 6 and surfaces 8 and 10. The key force now will create forces that cause the rocking plate 5 to rotate counter clockwise so that spring 4 will be further deflected upward as the rocking plate rocks as well as for further compression produced by further downward travel at the key stem 2. The top of the rocking plate identified as portion 5A moves in the depression shown by the small letter a in the diagram as plate 5 rotates about point 12. This provides the high force portion of the pretravel that is shown in Figure 7 and discussed in further detail below.

Notice that the left corner of the rocking plate 5 shown in Figure 1 will move downward while the right corner moves upward, while the front and rear corners, respectively, merely rotate. It may be seen that the plate 5 is generally planar and is rotating about an axis in the XZ plane, generally 45° to the XZ axes.

As the rocking plate 5 rotates counter clockwise, engagement of areas between surfaces 8 and 10 will be decreased. The make point of the switch defined as that at which actuation should be defined, occurs when the engagement between surfaces 8 and 10 decreases to zero and there is no longer any surface left to maintain the counter clockwise position of the cam member and rocking plate 5. At the “make” action point, surfaces 7, 11 will slide relative to each other until surface 14 and 15 make contact with one another or force f in Figures 2 and 5 is applied and the upper end of plate 5A will move in the direction shown by arrow b in Figure 1. Force f replaces the normal force between surfaces 14 and 15. Therefore, when f is applied, surfaces 14 and 15 are normally not touching.

At this time, the key force will decrease instantaneously because the forces generated between surfaces 8 and 10 will be removed and spring 4 will be allowed to extend slightly to a lower force position. At this instant, the left and right corners of the rocking plate 5 will be returned toward the initial vertical position and the front corner will be in the downward position while the rear corner is in an upward position. For simplicity, the left and right corners are those shown in Figure 1, the front corner is that to which the flag actuating member 13 is attached and the rear corner is diagonally opposite to that at which 13 is attached.

Additional depression of key stem 2 will not change the position of the rocking plate 5. To further guarantee this, the lower part of surface 7 may be relieved slightly to eliminate even minute movements of the rocking plate 5. In this position, the key force is caused by spring 4 being compressed and by sliding friction between surfaces 14, 15 and surfaces 7 and 11.

When the key force is reduced by removing the force applied to key button 1, stem 2 will move upward under the impetus of spring 4 and the engagement of area between surfaces 7, 11 will be decreased. The “break” point at which the end of actuation should be detected will occur when the area of contact between surfaces 7 and 11 is reduced to zero. This will allow the upper end of rocking plate 5 shown as end 5A to return to the initial position along path c in Figure 1. At this
position, each corner of the rocking plate 5 will have returned fully to its initial position. A slight decrease in key force is experienced because spring 4 will instantaneously extend to a slightly lower force position upon the disengagement of surfaces 7 and 11.

The aforementioned instantaneous increases and decreases in spring force are accompanied by snap actions which are irreversible and cannot be reversed by a human operator. Any given switch sensing technique can be employed with this mechanism. Either the front or rear corners of the rocking plate 5 can be utilized to trigger and sense make and break actions whether they are normally opened or normally closed operations. If both corners are used on the same rocking plate, a transfer switching function can be utilized as is known in the art.

As depicted in Figure 1, the actuator flag 13 is shown to be the type that could be employed with optical sensors. Flag 13, shown in Figure 1, actually projects straight out toward the observer in the figure and would obscure the pivot point 12. For clarity then, flag 13 has been shown broken and rotated away 45° to the right in Figure 1. At the make point in the switch actuation, the flag 13 will snap downward with some force to interrupt a light beam or to actuate key contacts or proximity sensing mechanisms not shown. During the second part of key travel, the flag will snap upward to its original position. Any type of proximity or contact system could be employed for sensing the motions of this key mechanism.

As will be described below, an excellent force travel and touch profile is achieved by this device. The make and break points are crisply defined and are positive and non-teasing in actuation. The low force pretravel portion of key motion is desirable and the physical key hysteresis or separation between the make and break points is a similarly well known desirable feature.

Figure 2 is a plot of force and deflection at the output end of the flag member 13 at the corner of plate 5 and the displacement y of key stem 2. Fig. 2 is to be read as follows. There is initially no downward motion of flag 13 and no force exerted by flag 13. The force f results when plate 5 rocks flag 13 downward by the rotation about the axis indicated with the δ in Figure 5. The small f is the reaction force or force that can be generated at the corner of the plate 5 whereas the large capital F is the force produced by spring 4. The small letter f could represent the reaction of a small dimple for applying force to a diaphragm membrane switch, for example, or the output of flag member 13 could be employed for this purpose.

Figure 6 shows the flag member 13 affixed to plate 5 as well as a pivoting point formed as dimple 12 on the bottom surface of plate 5.

Figures 3A through 3C illustrate a view taken from the left front oblique in Figure 1 of the operative portions of the mechanism. Figures 4A—4C illustrate another view of the operative portion of the mechanisms taken at 90° to the views represented in Figure 3A or from the left rear direction of the views in Figure 1. These diagrams sequentially indicate the position of the operative elements at various portions in the key travel in key stem 2 and are to be used in conjunction with Figure 7 which is a key force and displacement chart.

Turning to Figure 7, the total key force in grams is plotted against the total key travel in thousands of an inch. A certain amount of precompression is applied by assembling spring 4 in a partially compressed state. The precompression serves a dual purpose in maintaining the key button and stem 1 and 2 in the upward position and providing a certain threshold of force that must be exceeded before the key button 1 will begin to move. This is illustrated by approximately 18 gram initial preload force required to cause key travel to begin in Figure 7.

In the segment of the draft shown by the circled letter A, spring 4 will begin to compress, but there will be no movement in plate 5. During this portion of key travel, surfaces 14, 15, and 7 and 16 slide over one another. At point B in the diagram, surfaces 8, 10, and 6, 9 engage one another and key travel temporarily stops until sufficient force is applied. Approximately 41 to 42 grams of force are required to produce sliding between these surfaces. At point C, sliding among the cam surfaces 8, 10, and 6, 9 beings and rocking plate 5 will rotate about an axis in the XZ plane identified in Figure 1 as the small letter a. When sliding between these aforementioned surfaces occurs, spring 4 can compress further during this segment shown in Figure 7 identified by the letter D. At point E in the figure, a sudden snap action occurs which produces the tactile feel defining the make point. It is at this point that the cam surfaces 8, 10, and 6, 9 disengage suddenly while surfaces 11 and 7 engage. During the portion of the diagram identified by the circled F, plate 5 will rotate about the Z axis in the XZ plane and spring 4 will relax somewhat, while surfaces 7 and 11 slide over one another. At the point labelled G in the diagram, surfaces 7 and 11 remain engaged while either surfaces 14 and 15 or force f limit the rotation of plate 5 about the Z axis. During this portion, spring 4 has been extending slightly and the relaxation has ended when plate 5 reaches the limit of rotation. Throughout the section labelled H in the diagram, plate 5 is immobile and spring 4 compresses further, with surfaces 11, 7 and 14, 15 sliding over one another. At point I, the key stem 2 reaches a down stop and can be depressed no further. A rapid or vertical increase of force with no further key travel occurs at this point.

The release path is somewhat different. The release curve has been drawn to retrace the original form, in part, but has been shown slightly offset in the figure so that the path may be observed. During the section labelled J in Figure 7, the key is being released as spring 4 is relaxing. Throughout the segment K surfaces 7, 11 and 14, 15 slide over one another, while spring 4 relaxes.
further. At point L, commonly called the break point, surfaces 14 and 15 slide over one another while surfaces 7 and 11 disengage suddenly while 7 and 16 engage suddenly. At this point, plate 5 will rotate about the X axis suddenly, while spring 4 will relax in a sudden snap action that produces a tactile release feel defining the break point.

The total displacement in key travel between the make point E and the break point L is defined as hysteresis. The displacement between 0 and point B is called the low force pretravel section of the curve. Between points G and I it is called overtravel. The travel of the key until the make point is reached is called total pretravel.

Continuing now with the operation of the key mechanism from point L, as the force on the key button is further relieved, surfaces 14, 15 and 7 and 16 slide over one another and spring 4 relaxes until the original position is attained at the end of section M of the curve.

Returning to Figure 1, it will be noted that a bottom support plate in the sensing means to interact with actuating flag 13 were not shown. Numerous sensors could be used. Optical beam interrupters which may be interrupted by the flag could be employed. These consist of well known optical source and sensors with or without fiber optical conductors to conduct light to and from the vicinity of flag 13.

The mechanism may be easily made of molded plastic parts, there being only three moldings at a minimum and only two moving parts. A single spring element is required for the entire key actuator assembly. It produces an excellent feedback characteristic which is nonteseable and in effect, instantaneous snap action. It is amenable to the actuation of many different types of transducers as noted above. Any type proximity sensors such as an electrical capacitance, inductance, or optical interruption can be employed. The actuator can be utilized in the normally open or normally closed mode and lends itself easily to actuation of elastic diaphragm switches as pointed out earlier.

Application of the invention

As noted above, this specific snap action and clearly defined make and break points make this key mechanism ideally suited to a variety of industrial and business machine applications. The adaptability of the mechanism to a variety of sensing or transducer types is similarly important. Capacitive key boards employing capacitive proximity sensors are well known in the keyboard art and are extremely important in today’s marketplace. Similarly, elastic diaphragm contact switches are equally important and provide another viable segment of keyboard technology. The adaptability of the present snap action mechanism to all of these environments is an important attribute. Its simplicity of structure and assembly is apparent and lends itself easily to automated production techniques including but not limited to automatic assembly mechanisms. These features plus the essentially non-corrosive, nonconductive and nonstressed nature of the internal working parts of the actuator make for a highly reliable and universally adaptable actuator mechanism as will be appreciated by those of skill in the art.

Claims

1. A nutating snap action switch apparatus comprising:
 - a housing (3) having an opening;
 - a key stem (2) slidable received within said opening with means on said key stem (17) for limiting said sliding in the extreme outward direction from said opening;
 - a resilient biased spring means (4) for biasing said key stem toward said extreme outward position;
 - a rocker plate mechanism (5) having a generally planar base, a generally centrally located pivot means (12) on one side thereof and a generally upstanding cam member (5A) affixed to the opposite side of said planar base at a position not colinear with said pivot, and means (4B) for mounting one end of said resilient biased spring means on the surface opposite the surface of said pivot;
 - said rocker mechanism and said key stem being generally coaxially arranged in said housing with said resilient biased spring means positioned therebetween and tending to bias said rocker mechanism and key stem in opposite directions, said rocker mechanism being biased eccentrically in a given direction about said pivot;
 - a set of cam surfaces (8, 10, 11, 15, 16) on said key stem positioned to contact cam surface (6, 7, 8, 14) on cam member (5A) on said rocker plate mechanism;
 - said cam surfaces being configured to impart motions to said rocker mechanism when said key stem is depressed against the urging of said resilient biased spring means, said motions being to first rock said rocker mechanism in a first axis about said pivot, and, with continued depression of said key stem, to cause a sudden transfer of engagement of said cam surfaces and to allow a sudden spring urged snap motion of rocking in another axis about said pivot; and
 - upon release of depression of said key stem, said cam surfaces and spring causing a sudden snap restoration of engagement of the surfaces originally engaged at the start of said depression of said key stem, said restoration producing a rocking in another axis about said pivot and restoring said rocker mechanism to its original starting position.

2. Apparatus according to Claim 1 further comprising:
 - a sensor or transducer actuating means (13) attached to said rocker plate mechanism (5) for activating a sensor or transducer in response to said sudden snap actions of said mechanism.

3. Apparatus according to Claim 1, wherein the planar base of said rocker plate mechanism (5) comprises a projection (13) for mechanically
actuating switch contacts, said projection being on the same side of said mechanism as said pivot.

4. Apparatus according to any of Claims 1 to 3 wherein:

said cam surfaces are arranged to provide said snap actions in first and second axes respectively which are orthogonal to one another.

Patentansprüche

1. Schwenkender Schnappschaltapparat, der aufweiß:

- ein Gehäuse (3) mit einer Öffnung;
- einen Tastensteg (2), der verschiebbar in der Öffnung aufgenommen ist, mit darauf angeordneten Mitteln (17) zur Bewegung seiner Schliefbefahrt in die gegen das Aussenende verlaufende Richtung ab der Öffnung;
- elastische Ruckstellfelder (4), die den Tastensteg gegen die Aussenendstellung rückstellen;
- einen Kippplatte-Getrieb (5) mit einer im wesentlichen planaren Basis, im wesentlichen in der Mitte einer Seite dieser Basis angeordneten Zapfen (12) und einem im wesentlichen stehenden Nockenelement (5A), der an der gegenübereinanderliegende Seite der planaren Basis in einer im Verhältnis zu dem Zapfen nicht kollinearer Lage befestigt ist, und Mittel (4B) zur Bildung eines Endes der elastischen Ruckstellfelder auf der der Fläche des Zapfens gegenübereinanderliegenden Fläche;
- wobei der Kippgetrieb und der Tastensteg im wesentlichen koaxial in dem Gehäuse angeordnet sind, und die elastischen Ruckstellfelder inzwischen gelagert sind und zur Ruckstellung des Kippelements und des Tastenstegs in zueinander entgegensetzten Richtung neigen, wobei der Kippgetrieb exzentrisch in einer um den Zapfen laufenden Richtung rückgestellt ist;
- einen Satz von auf dem Tastensteg angeordneten Nockenflächen (9, 10, 11, 15, 16), die derart gelagert sind, dass sie mit einer Nockenfläche (6, 7, 8, 14) des angeordneten Nockenelements (5A) auf dem Kippplatte-Getrieb im Eingriff sind;
- wobei die Nockenflächen so aufgebaupd sind, dass sie dem Kippgetrieb Bewegungen erteilen, wenn der Tastensteg wegen der entsprechenden Wirkung der elastischen Ruckstellfelder niedergedrückt ist, wobei diese Bewegungen darin bestehen, zunächst dem Kippgetrieb in einer ersten Achse um den Zapfen zu schwenken, und bei fortgesetzten Niederdruckung des Tastenstegs unvermittelt eine Eingriff-Ubermitting bei den Nockenflächen zu bewirken und deshalb eine wegen der Feder eingesetzte Schnappschaltung zur Verschwenkung in einer anderen Achse um den Zapfen zu veranlassen; und
- wobei die Entspannung des niedergedrückten Tastenstegs die Nockenflächen und die Feder, die einer derartige Schappschaltung veranlassen, dass die anfänglich am Anfang der Nieder-
druckung des Tastenstegs in Eingriff stehenden

Nockenflächen in deren Ausgangslage zuruck-
stellen, wobei diese Ruckstellung in die Ausgangslage eine Verschwenkung in einer Achse um den Zapfen und die Ruckstellung des Kippgetriebs in der Ausgangslage veranlassen.

2. Schnappschaltapparat nach Anspruch 1, der weiterhin folgendes einschliesst:

- Mittel (13) zur Betaetigung eines Abfuell-
elementes oder eines Wandlers, die an dem Kipp-
platte-Getrieb (5) zur Betaetigung eines Abfuell-
elementes oder Wandlers im Ansprechau auf den unvermitteltten Schnappschaltungen des Getriebes angeschlossen sind.

3. Schnappschaltapparat nach Anspruch 1, in dem die planare Basis des Kippplatte-Getriebes (5) einen Vorsprung (14) zur mechanischen Betaetigung von Schaltern aufweist, wobei der Vorsprung auf der selben Seite des Getriebes wie der Zapfen angeordnet ist.

4. Schnappschaltapparat nach einem der Ansprüche 1 bis 3, in dem die Nockenflächen so ausgebildet sind, dass sie die Schnapp-
schaltungen jeweils in der ersten und zweiten Achse bewirken, die zueinander senkrecht angeordnet sind.

Revendications

1. Appareil interrupteur pivotant à action brusque comprenant:

- un boîtier (3) pourvu d’une ouverture;
- une tige de touche (2) reçue de façon coulissable dans ladite ouverture avec des moyens sur ladite tige de touche (17) pour limiter ledit coulisement dans la direction externe extrême à partir de ladite ouverture;
- un ressort de rappel souple (4) pour rappeler ladite tige de touche sur ladite position externe extrême;
- un mécanisme culbuteur en forme de plaque (5) ayant une base plane, un pivot central (12) monté sur un premier côté de ladite plaque et un élément à came verticale (5A) fixé sur le côté opposé de celle-ci à une position qui n’est pas co-linéaire audit pivot, et des moyens (4B) pour monter une extrémité culbuteur ressort de rappel souple sur la surface opposée à la surface dudit pivot;
- ledit mécanisme culbuteur et ladite tige de touche étant montés de façon coaxiale dans ledit boîtier, ledit ressort de rappel souple étant placé entre eux et tendant à rappeler ledit mécanisme culbuteur et ladite tige de touche dans des directions opposées, ledit mécanisme culbuteur étant rappelé excentriquement dans une direction donnée autour dudit pivot;
- un jeu de surfaces à came (9, 10, 11, 15, 16) sur ladite tige de touche placées de manière à faire contact avec les surfaces à came (6, 7, 8, 14) de l’élément à came (5A) placé sur ledit mécanisme culbuteur en forme de plaque;
- la configuration desdites surfaces à came étant telle qu’elles communiquemment des mouvements audit mécanisme culbuteur lorsque ladite tige de touche est enfoncée sous la pression dudit ressort.
de rappel souple, lesdits mouvements étant tout d'abord de faire basculer ledit mécanisme culbuteur dans un premier axe autour dudit pivot et, alors que ladite tige de touche continue d'être enfoncée, de provoquer brusquement le contact desdites surfaces à came et de permettre par pression du ressort un basculement brusque dans un autre axe autour dudit pivot; et par relâchement de ladite tige de touche enfoncée, lesdites surfaces à came et ledit ressort permettant un dégagement brusque des surfaces mises à l'origine en contact lorsque ladite tige de touche commence à être enfoncée, ledit dégagement produisant un basculement dans un autre axe autour dudit pivot et ramenant ledit mécanisme culbuteur à sa position de départ d'origine.

2. Appareil selon la revendication 1, comprenant en outre:

3. Appareil selon la revendication 1, dans lequel la base plane dudit mécanisme culbuteur (5) comporte une projection (13) pour actionner mécaniquement des interrupteurs, ladite projection se trouvant du même côté dudit mécanisme que ledit pivot.

4. Appareil selon l'une quelconque des revendications 1 à 3, dans lequel lesdites surfaces à came sont agencées de manière à fournir lesdites actions brusques respectivement dans des premier et second axes perpendiculaires entre eux.