Mechanical press and method of assembly.

Priority: 08.09.81 US 299828

Date of publication of application: 23.03.83 Bulletin 83/12

Publication of the grant of the patent: 23.07.86 Bulletin 86/30

Designated Contracting States: CH DE FR GB IT LI SE

References cited:
DD-A-106301
DE-A-3004310
FR-A-953075
FR-A-2302683
FR-A-2381620
US-A-3858432

Proprietor: The Minster Machine Company
240 W. Fifth Street
Minster Ohio 45865 (US)

Inventor: Schockman, Robert L.
252 Oak Street
St. Henry Ohio, 45883 (US)
Inventor: Busse, Vernon E.
37 S. Frankfort Street
Minister Ohio 45865 (US)
Inventor: Wissman, Terry L.
316 Lane Street
New Bremen Ohio 45869 (US)
Inventor: Schoch, Daniel A.
47 Crestwood Drive
Minister Ohio 45865 (US)

Representative: Jennings, Guy Kenneth et al
GILL JENNINGS & EVERY 53-64 Chancery Lane
London WC2A 1HN (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The present invention relates to mechanical presses. Conventionally such presses consist of a bed which is mounted to a platform or the floor of the shop, a vertically spaced crown portion in which the drive assembly for the slide is contained, and one or more uprights rigidly connecting the bed and crown and maintaining the bed and crown in vertically spaced relationship. The crown contains the drive assembly, which typically comprises a crankshaft having one or more eccentric thereto and connections connected to the eccentricities of the crankshaft at their upper ends and to the slide at their lower ends, either directly or through a piston arrangement.

The slide is mounted within the uprights for vertical reciprocating motion and is adapted to have the upper half of the die set mounted to it with the other half mounted to the boister, which is connected to the bed. At one end of the crankshaft, there is usually mounted a flywheel and clutch assembly wherein the flywheel is connected by a belt to the output pulley of a motor so that when the motor is energized, the massive flywheel rotates continuously. When the clutch is energized, the rotary motion of the flywheel is transmitted to the crankshaft which causes the connecting arms to undergo rotary-oscillatory motion that is transmitted to the slide assembly by means of a wrist pin, for example, so that the rotary-oscillatory motion is converted to straight reciprocating motion. The slide is usually mounted in the space defined by the crown, bed and uprights and is guided for rectilinear movement along an axis substantially perpendicular to the plane of the bed.

In the standard press (for example as described in U.S. Pat. 3,858,432), the crown, uprights and bed are formed as separate units and are connected to each other by means of large tie rods which extend downwardly through openings in the crown, upright and bed and are secured in place by means of large nuts. Due to the very large torque which must be applied to the nuts in order to load the tie rods properly, it is standard practice to heat the tie rods, tighten the nuts and then permit the tie rods to cool thereby contracting in length and becoming loaded to the proper degree. In a press of this type, the crankshaft and connection arms are installed in the crown from beneath, which means in practice that they are installed with the crown inverted, and then the crown containing the crankshaft and connections is assembled on top of the uprights followed by shrinking down the tie rods. This assembly procedure is time consuming and difficult to perform because it necessitates the handling of the large crown casting and a difficult insertion of the components making up the drive assembly. A further disadvantage is the difficulty in servicing the press because to obtain full access to the drive assembly, it is necessary to heat up the tie rods, remove the top nuts, and remove and invert the crown.

According to the invention, a press of this general type, that is to say one comprising a rigid frame including a crown and a bed interconnected by at least one upright, a slide mounted for rectilinear movement between the crown and bed and a drive assembly comprising a crankshaft, and at least one connection arm assembly connected at one end to an eccentric on the crankshaft and at the other end to the slide, and a pair of bearing blocks within which the crankshaft is rotatably supported is characterised in that the crown includes a crank chamber which has an opening at the bottom, through which the connection arm assembly protrudes, is closed at the top only by a removable cover plate and includes at least two support members for the bearing blocks whereby, after removal of the cover plate, the drive assembly is insertable into and removable from the crank chamber through the open top of the chamber as an assembled unit.

As a result, with the cover plate removed, the drive assembly can be lowered through the open top of the crown, without the need for the usual inversion, and after passing the connection arm assembly through the opening in the bottom and locating the bearing blocks on the supports, the assembly can be bolted in position. Other components can then be fitted and the driving connections completed, after which the cover plate can be fitted in position. It is not uncommon for presses to have removable top panels so that a degree of maintenance work can be performed on the press, and for example FR-A-2,302,668 shows a removable top plate for the crown of a press to permit access to a portion of the drive assembly for maintenance purposes. However, this provides no indication of the present invention since the entire drive assembly cannot possibly be installed into the press through the opening in the top because the crankshaft must extend inwardly from the side through an opening.

Thus a method in accordance with the invention for assembling the drive assembly and slide to the frame of a mechanical press of the general type referred to above is characterised in that the connection arm assembly is first connected to the crankshaft, the interconnected crankshaft and the connection arm assembly is subsequently lowered into the crank chamber through the open top thereof while guiding the connection arm assembly through the opening in the bottom of the crown until the bearing blocks rest on the support surfaces and one end of the connection arm assembly protrudes through the opening in the bottom of the crank chamber, and the slide is then connected to the end of the connection arm assembly protruding through the opening.

Since it is not necessary for the crown to be removable for purposes of inversion, the press frame comprising the bed, uprights and crown can be formed as a single integral casting, so that tie rods are no longer necessary to hold these three major components together. The drive assembly can more easily be assembled apart from the crown and then lowered in place as a
single unit with the necessary connections made in the crown in a relatively short period of time due to the accessibility of the crown through the top opening. Furthermore, maintenance of the drive assembly is facilitated because it can be completely removed simply by disconnecting the slide, removing the top cover plate and lifting the entire drive assembly out of the crown.

An example of press in accordance with the invention will now be described with reference to the accompanying drawings, in which:—

Figure 1 is an exploded perspective view of the complete press;
Figure 2 is a sectional view of a crown and drive assembly of the press;
Figure 3 is a sectional view taken along line 3—3 of Figure 2 and viewed in the direction of the arrows;
Figure 4 is an enlarged fragmentary view of a sealing arrangement for pistons and cylinders;
Figure 5 is a sectional view taken along line 5—5 of Figure 2 and viewed in the direction of the arrows;
Figure 6 is a fragmentary sectional view of a slide and guidepost assembly;
Figure 7 is a sectional view taken along line 7—7 of Figure 6 and viewed in the direction of the arrows; and
Figure 8 is a top perspective view of the crown area of the press.

Figure 1 illustrates the press 11 in exploded form, and it will be noted that the major sub-assemblies of the press are modular in nature. The press comprises a frame 12 which is a single casting and comprises a bed 14 supported on legs 16, four uprights 18 integral with bed 14 and extending upwardly therefrom, and a crown 20 integral with uprights 18. Bed 14 includes three horizontal chambers 22 extending laterally therein and being inter-connected at their ends to form a single oil sump within bed 14. As will be described later, sump 22 receives the oil which has dripped through thermal exchange devices on uprights 18 so that it can be pumped upwardly again to crown area 20.

Crown 20 comprises sides 24 and 28 and removable doors 36 and 30 and a bottom 32 integral with sides 24 and 28. It will be noted that the crown 20 terminates in an upper edge 33 so that the top of crown 20 is open. Vertical web-like partition members 34 are also integral with sides 24, 28 and bottom 32. A pair of bearing support pads 36 are integral with partition elements 34 and bottom 32 and each include a very accurately machined bearing block support surface 38 which is parallel with the surface 40 of bed 14 on which bolster plate 42 is mounted. The sides 24—36 and bottom 32 of crown 20 together define the crank chamber indicated as 44.

As will be described in greater detail at a later point, crown 20 is open in the upward direction so that the drive assembly 46 can be inserted vertically therein in a completely assembled form as a modular sub-assembly. After the drive assembly 46 is in place, cover-plate 48 is bolted to crown 20 and motor assembly 50 is mounted thereon.

Bolster plate 42 to which bolster 52 is mounted is bolted to the upper surface 40 of bed 14 in a manner to ensure that the upper surface 54 of bolster 52 is absolutely parallel to the bearing block support surfaces 38 of bearing support pads 36 in crown 20. In a manner well known in the art, bolster 54 is adapted to have the lower half of the die set (not shown) mounted thereto.

Slide 56 is mounted on four guideposts 58 (Figure 6) that are rigidly connected to and depend downwardly from crown 20 and is adapted to slide over the guideposts in a rectilinear manner within the opening 60 between top plate 20 and bolster 54 and between the left and right pairs of uprights 18. Slide 56 comprises a center portion 62, four web members 64 extending outwardly therefrom in a horizontal direction, and four bushing assemblies 66 integrally connected to web members 64. Web members 64 are relatively thin in relation to their height so that the mass of the slide 56 can be maintained as low as possible yet there is sufficient stiffness and rigidity to resist deformation in the vertical direction. By way of example, web members 64 could have a thickness of 65 mm and a height of 140 mm. The bushing assemblies 66 each comprises an opening 68 extending completely therethrough and adapted to receive and be guided by guideposts 58 (Figure 6). A slide plate 70 is removably mounted to the lower surface of slide 56 and includes a drill hole pattern suitable for the particular die set used.

Referring now to Figures 2 through 5, the drive assembly 46 will be described in greater detail. Drive assembly 46 comprises a crankshaft 72 having three eccentrics 74, 76 and 78 thereon, crankshaft 72 being rotatably supported within main bearing blocks 80, which are supported on the upper support surfaces 38 of pads 36. Bearing blocks 80 are of the split type and each comprises a cap 82 connected to the lower portion thereof and to pads 36 by bolts 84. Main bearings 86 are mounted within bearing blocks 80 and the portions 88 of crankshaft 72 are journaled therein.

A brake disc 90 is frictionally mounted to the rightmost end of crankshaft 72 as viewed in Figure 2 by means of annular spring 92, and a brake caliper 94 is mounted to bracket 96 by stud and nut assembly 98 such that it engages brake disc 90 when energized. Bracket 96 is connected to cover plate 48 by screws 100.

Still referring to Figure 2, a clutch hub 102 is frictionally clamped to crankshaft 72 by annular spring 104, and has a plurality of calipers 106 rigidly connected thereto by bolts 108. A flywheel 110 is rotatably supported on crankshaft 72 by bearings 112 and is driven by a flat belt 114. Belt 114 is disposed around motor pulley 116, which is driven by motor 50. When motor 50 is energized, flywheel 110 constantly rotates but does not drive crankshaft 72 until clutch calipers 106 are energized. At that time, the friction disc 118 of flywheel 110 is gripped and the rotating motion of flywheel 110 is transmitted to crankshaft 72.
through calipers 108 and hub 102. Solid-state limit switch 120 is driven by a pulley and belt arrangement 122 from the end of crankshaft 72 and controls various press functions in a manner well known in the art. Rotary oil distributor 124 supplies oil to the left end of crankshaft 72.

Motor 50 is connected to cover plate 48 by means of bracket 126 connected to mounting plate 128 by bolts 130, plate 128 being connected to cover plate 48 by studs 132 and lock nuts 134, 136, and 138. The tension on belt 114 can be adjusted by repositioning plate 128 on studs 132 by readjusting the positions of lock nuts 134 and 136 along studs 132.

In the preferred embodiment, the drive assembly 46 comprises two connection assemblies 140 each comprising a connection arm 142 having a connection cap 144 connected thereto by stud 146, to move perpendicularly between the respective connection arms 142 and the eccentrics 74 and 78 of crankshaft 72. Connection assemblies 140 are similar to those disclosed in United States Patent number 3,858,432 and comprise pistons 150 rotatably connected to connection arms 142 by wrist pins 152 and bearings 154. Keys 156 lock wrist pins 152 to pistons 150.

Pistons 150 are slidably received within cylinders 158, the latter including flanges 160 connected to the lower surface 162 of crown 20 by screws 164 and sealed thereagainst by O-rings 166 (Figure 4). Seals 168 provide a sliding seal between pistons 150 and their respective cylinders 158 and are held in place by seal retainers 170 and screws 172 (Figure 4).

The press 11 is dynamically balanced to counteract the movement of connection assemblies 140 and slide 62 by means of a balance weight 176 connected to the eccentric 76 of crankshaft 72 by counterclockwise connection arm 178 and wrist pin 180. Bearings 182 and 184 have eccentric 76 and wrist pin 180, respectively, journaled therein, and key 186 locks wrist pin 180 to weight 176.

Referring to Figure 3, it will be seen that weight 176 is guided by means of a pair of guide pins 188 connected to the lower surface 162 of crown 20 bottom 32 by screws 190 extending through flange portion 192. Guide pins 188 are received within openings 194 and guided by bearings 196. An axial passageway 197 conducts lubricating oil to groove 198 in order to lubricate the interface between pins 188 and their respective bearings 196. It will be seen that the position of eccentric 76 relative to eccentrics 74 and 78 on crankshaft 72 is 180° out of phase so that weight 176 moves rectilinearly in the opposite direction as pistons 150 and slide 62 in order to dynamically balance the press. Pins 188 are parallel to guideposts 58 so that slide 62 and weight 176 move in opposite directions vertically.

Referring now to Figures 6 and 7, the guiding of slide 62, which is the subject of the pending application no. EP-A-0 074 717 will be described. Four guideposts 58 are rigidly connected to the bottom 32 of crown 20 by means of flanges 200, with screws 202 connecting flanges 200 to crown 20 and screws 204 connecting guideposts 58 to flanges 200. There are four such guideposts connected to crown 20 in a symmetrical pattern in alignment with the openings 88 in bushing portions 66 of slide 56, and it will be noted that, unlike prior mechanical presses, posts 68 have distal ends 206 which terminate short of bed 14. In prior art mechanical presses, it is more common to utilize tie rods extending from the crown to the bed on which the slide is guided, or the slide is guided by gib surfaces fastened to the corners of the uprights. As discussed earlier, the relatively short extension of guideposts 58 and the fact that they are connected only to the crown 20 is advantageous in ensuring that they are parallel to each other, a condition which is imperative if slide 56 is slide 56's proper to cause slide 56 to tilt about a horizontal axis parallel to the axis of crankshaft 72.

A pair of seal plates 208 and 209 are connected to the lower and upper ends of bushing portions 66 and contain seals 210 and 212 and O-rings 214 and 216, respectively. Bearings 218 having a spiral groove 220 therein are received within openings 88 in bushing portions 66 of slide 56 and serve to establish oil films between them and the outer surfaces of guideposts 58 as slide 56 reciprocates. A pair of radial passages 222 are connected with a pair of axial passages 224, and oil is supplied to spiral groove 220 through slot 226 from axial passage 228. Oil is supplied to passage 228 from hose 230 through fittings 232, 234, 236 and nipple 238, and is conducted away from guideposts 58 through drains 240 and 242.

Slide 62 is connected to the protruding ends of pistons 150 by screws 244 extending through the central portion 62 of slide 56, and slide plate 70 is connected to the slide center portion 62 by screws 246. As shown in Figure 2, cylinders 158 extend through openings 248 in the bottom 32 of crown 20.

As crankshaft 72 rotates, connection arms 142 reciprocate pistons 150 within cylinders 158 along axes parallel to the axes of guideposts 58. Although guideposts 58 guide slide 56 with very close tolerances, a front-to-back tilting problem has been observed in connection with slide 56 as it is reciprocated. As the eccentrics 74 and 78 of the crankshaft 72 move beyond their top dead center positions, they transmit to pistons 150 not only a component of force in the vertical direction, but also a horizontal component which, due to the rigid connection between pistons 150 and slide 56, tends to tilt about a horizontal axis parallel to the axis of crankshaft 72. Not only does this tilting movement of slide 56 result in accelerated wear of the guide bearing surfaces, but can result in unsatisfactory performance of the press in precision forming and stamping operations.

Although the solution to this problem forms no part of the present invention, it is nevertheless important from a practical point of view. Thus, in order to counteract this tilting force precisely at the point that it is exerted on pistons
150, a pair of hydrostatic bearings 250 and 252 are provided in cylinders 158 at positions directly opposite each other in a front-to-back direction intersecting the axis of pistons 150 and lying along lines which are intersected by the respective wrist pins 152 as pistons 150 are reciprocated. This relationship is illustrated in Figure 5 wherein the slide is shown in its bottom dead center position. Fluid is supplied to hydrostatic bearings pockets 250 and 252 through passages 254 and 256 respectively. The pressure of the hydraulic fluid exerted at the four points shown resists the tendency of pistons 150 to tilt in the front-to-back direction, and because the hydrostatic forces applied in the area of the wrist pins 152, the maximum resistive effect of the forces is realized.

As alluded to earlier, press 11 is modular in nature and the major subassemblies thereof can be installed in preassembled form. This is particularly advantageous in connection with the drive assembly 46 comprising crankshaft 72 to which is attached the connections 142 and 178, pistons 150, weight 178, brake disc assembly 90, flywheel 110 and clutch caliper assembly 106, 102. Crown 26, which is integral with uprights 18, includes a driven assembly chamber 44 defined by sides 24, 26, 28 and 30 and bottom 32, and is open in the upward direction. When the entire drive assembly has been preassembled, it can be lowered into crank chamber 44 as shown in Figure 1 to the position shown in Figure 8. The lower portions of the main bearing blocks are first emplaced on the upper surfaces 38 of pads 36, the drive assembly is then lowered into place on the lower halves 80 of the bearing blocks, the top halves are emplaced and then fastened to the lower halves and to pads 36 by bolts 84.

After the drive assembly is in place, the cover plate 48 is attached to crown 20 and brake caliper and bracket assembly 94, 96, 98 is inserted through opening 333 to the position illustrated in Figure 2, whereupon it is secured in place by screws 100. Motor assembly 50 is then mounted to cover plate 48. Limit switch 120 is driven by the pulley on the end of crankshaft 72, and the belt 122 extends into chamber 44.

As drive assembly 46 is lowered into crown chamber 44, pistons 150 are guided through openings 248 (Figure 2) in crown 20 so that they protrude beyond the lower surface 182 of crown 20. Cylinders 158 can either be installed prior to the installation of drive assembly 46 or afterwards by pushing them upwardly through openings 248 and then holding them in place. Next, slide 56 is mounted to pistons 150 by screws which extend through the central portion 62 thereof. As the drive assembly 46 is lowered into chamber 44, the main bearing block portions 80, 82 pass between partition webs (Figure 1). The drive belt 114 from motor 50 to flywheel 110 extends through a notch 335 in top cover plate 48, which is shown in Figure 1.

Slide members 26 and 30 of crown 20 are removable so that the hydraulic connections and other adjustments can be made in connection with fluid unions 124 and 268. Bolster 52 and bolster plate 42 are mounted to bed 14 in the customary manner.

Claims

1. A mechanical press comprising a rigid frame including a crown (20) and a bed (14) interconnected by at least one upright (18), a slide (56) mounted for rectilinear movement between the crown and bed and a drive assembly (46) comprising a crankshaft (72), and at least one connection arm assembly (140) connected at one end to an eccentric (74, 78) on the crankshaft (72), and at the other end to the slide (56), and a pair of bearing blocks (82) within which the crankshaft is rotatably supported, characterised in that the crown includes a crank chamber (44) which has an opening (248) at the bottom, through which the connection arm assembly (140) protrudes, is closed at the top only by a removable cover plate (48) and includes at least two support members (38) for the bearing blocks (82), whereby, after removal of the cover plate (48), the drive assembly (46) is insertable into and removable from the crank chamber (44) through the open top of the chamber as an assembled unit.

2. A press according to claim 1 wherein the drive assembly (46) comprises two connection arm assemblies (140) connected to respective eccentricities (74, 78) on the crankshaft (72) and to the slide (56) and protruding through respective openings in the bottom of the crank chamber (44), the connection arm assemblies being insertable into the chamber through its open top and through the openings while assembled to the crankshaft.

3. A press according to claim 2 wherein each connection arm assembly (140) comprises a connecting arm (142) connected to the crankshaft and a piston (150) pivotally connected to the connection arm at one end and connected to the slide at the other end, each piston being slidably received in a cylinder (158) rigidly connected to the bottom of the crown crank chamber.

4. A press according to any one of the preceding claims wherein the drive assembly further comprises a dynamic balancer weight (176) connected to the crankshaft by a connection arm (178), these further components also being insertable through the open top of the chamber while assembled to the crankshaft.

5. A press according to any one of the preceding claims, wherein the drive assembly further includes a flywheel (110), a clutch (106, 118) and a brake disc (90) mounted on the crankshaft, the further components also being insertable into the crank chamber through the open top while assembled to the crankshaft.

6. A press according to any one of the preceding claims, wherein the frame comprises the crown (20), bed (14) and uprights (18) as a single, integral casting.

7. A method of assembling the drive assembly
and slide to the frame of a mechanical press comprising a rigid frame including a crown (20) and a bed (14) interconnected by at least one upright (18), a slide (58) mounted for rectilinear movement between the crown and bed and a drive assembly (46) comprising a crankshaft (72), and at least one connection arm assembly (140) connected at one end to an eccentric (74, 78) on the crankshaft (72), and at the other end of the slide (58), characterised in that the connection arm assembly (140) is first connected to the crankshaft, the interconnected crankshaft and the connection arm assembly (140) is subsequently lowered into the crank chamber (44) through the open top thereof while guiding the connection arm assembly through the opening in the bottom of the crown until the bearing blocks (82) rest on the support surfaces and one end of the connection arm assembly protrudes through the opening (248) in the bottom of the crank chamber (44), and the slide (58) is then connected to the end of the connection arm assembly protruding through the opening.

8. A method according to claim 7 of assembling a press according to claim 3, wherein the piston (150) is guided through the cylinder during insertion of the drive assembly and protrudes through the lower end of the cylinder when the crankshaft (72) and connection arm assembly (140) is fully seated in the crown (20); and the slide (58) is then connected to the piston (150).

9. A method according to claim 8 further including connecting a dynamic balancer weight (176) to the crankshaft by a second connection arm (178) prior to the insertion of the crankshaft into the crank chamber and then inserting the weight and second connecting arm into the chamber together with the crankshaft and first mentioned connecting arm.

Patentansprüche

1. Mechanische Presse mit einem starren Rahmen, umfassend ein Querhaupt (20) und ein Bett (14), die durch wenigstens einen Ständer (18) miteinander verbunden sind, ferner einen Schlitten (58), der eine geradlinige Bewegung zwischen Querhaupt und Bett ausführt sowie einen Antrieb (46) mit einer Kurbelwelle (72) und wenigstens einer Pleuelstange (140), die mit ihrem einen Ende an einem auf der Kurbelwelle (72) sitzenden Exzenter (74, 78), und mit ihrem anderen Ende am Schlitten (58) angreift, ferner mit einem Paar Lagerblöcke (82), in denen die Kurbelwelle drehbar gelagert ist, dadurch gekennzeichnet, daß das Querhaupt ein Kurbelwellengehäuse (44) umfaßt, das eine Öffnung (248) im Boden aufweist, durch die die Pleuelstange (140) hindurchgreift, das oben durch lediglich einen abnehmbaren Deckel (48) abgesperrt ist und das wenigstens zwei Tragelemente (38) für die Lagerblöcke (82) umfaßt, wobei der Antrieb (46) nach Abnehmen des Dekkels (48) in das Kurbelwellengehäuse (44) durch das obere offene Ende des Gehäuses als zusammengerbaute Einheit einsetzbar und von diesem abnehmbar ist.

2. Presse nach Anspruch 1, dadurch gekennzeichnet, daß der Antrieb (48) zwei Pleuelstangen (140) umfaßt, die an entsprechenden Exzentern (74, 78) auf der Kurbelwelle (72) sowie am Schlitten (56) angreifen und durch entsprechende Öffnungen im Boden des Kurbelwellengehäuses (44) hindurchgreifen, und daß die Pleuelstangen in das Gehäuse durch dessen oberes offenes Ende und durch die Öffnungen dann einsetzbar sind, wenn sie mit der Kurbelwelle zusammengebaut sind.


5. Presse nach einem der vorausgegangenen Ansprüche, dadurch gekennzeichnet, daß der Antrieb weiterhin ein Schwungrad (110), eine Kupp lung (106, 118) sowie eine auf der Kurbelwelle montierte Bremscheibe (90) umfaßt, und daß diese weiteren Komponenten ebenfalls in das Kurbelwellengehäuse durch dessen oberes offenes Ende einführbar sind, während sie mit der Kurbelwelle zusammengebaut sind.

6. Presse nach einem der vorausgegangenen Ansprüche, dadurch gekennzeichnet, daß der Rahmen das Querhaupt (20), das Bett (14) und die Ständer (18) als einziges, einteiliges Gußteil umfaßt.

7. Verfahren zum Zusammenbauen des Antriebs und des Schlittens mit dem Rahmen einer mechanischen Presse, umfassend einen starren Rahmen, der ein Querhaupt (20) und ein Bett (14) aufweist, die durch wenigstens einen Ständer (18) miteinander verbunden sind, einen Schlitten (58), der zwischen Querhaupt und Bett eine geradlinige Bewegung ausführt sowie einen Antrieb (46) mit einer Kurbelwelle (72) und wenigstens einer Pleuelstange (140), die an einem Ende an einem Exzenter (74, 78) auf der Kurbelwelle (72), und mit dem anderen Ende am Schlitten (56) angreift, dadurch gekennzeichnet, daß die Pleuelstange (140) zunächst mit der Kurbelwelle verbunden wird, daß sodann die miteinander verbundenen Teile Kurbelwelle und Pleuelstange (140) in das Kurbelwellengehäuse (44) durch das obere offene Ende abgesenkt werden, während die Pleuelstange durch die Öffnung im Boden des Querhauptes solange geführt wird, bis die Lagerblöcke (82) auf die tragflächen aufruhen und ein Ende der Pleuelstange durch die Öffnung (248) im Boden des Kurbelwellengehäuses (44) hindurchragt, und daß der Schlitten (58) sodann mit dem
Ende der Pleuelstange verbunden wird, das durch die Öffnung hindurchdragt.

8. Verfahren nach Anspruch 7 zum Zusammenbauen einer Presse gemäß Anspruch 3, dadurch gekennzeichnet, daß der Kolben (150) während des Einführens des Antriebes durch den Zylinder geführt ist und durch das untere Ende des Zylinders hindurchdringt, wenn die Kurbelwelle (72) und die Pleuelstange (140) vollständig am Querhaupt (20) anliegen, und daß der Schlitzen (56) sodann mit dem Kolben (150) verbunden wird.


Revidications

1. Presse mécanique constituée par un châssis rigide comprenant une tète (20) et un bâti (14) reliés par au moins un montant vertical (18), une glissière (56) montée de manière à effectuer un mouvement rectiligne entre la tête et le bâti, et un ensemble d'entraînement (46) comprenant un arbre de manivelle (72) et au moins un ensemble de bras de liaison (140) relié par une extrémité à un excentrique (74, 78) monté sur l'arbre de manivelle (72), et par l'autre extrémité à glissière (56), ainsi qu'une paire de blocs de paliers (82) dans lesquels l'arbre de manivelle est supporté en rotation, presse caractérisée en ce que la tête comprend une chambre de manivelle (44) munie, dans le fond de celle-ci, d'une ouverture (248) par laquelle sort l'ensemble de bras de liaison (140), la chambre n'étant fermée à sa partie supérieure que par une plaque de capot amovible (48), et comprenant au moins deux éléments de support (36) des blocs de paliers (82), de sorte qu'après avoir retiré la plaque de capot (48), on peut introduire et retirer de la chambre de manivelle (44), par la partie supérieure ouverte de celle-ci, l'ensemble d'entraînement (46) se présentant sous la forme d'un bloc complètement assemblé.

2. Presse selon la revendication 1, caractérisée en ce que l'ensemble d'entraînement (46) comprend deux ensembles de bras de liaison (140) reliés aux excentriques respectifs (74, 78) de l'arbre de manivelle (72) et à la glissière (56), ces ensembles de bras de liaison faisant saillie par les ouvertures respectives du fond de la chambre de manivelle (44), et pouvant être introduits dans celle-ci par sa partie supérieure ouverte et par les ouvertures, tout en étant assemblés avec l'arbre de manivelle.

3. Presse selon la revendication 2, caractérisée en ce que chaque ensemble de bras de liaison (140) comprend un bras de liaison (142) relié à l'arbre de manivelle, et un piston (150) relié en pivotement, par l'une de ses extrémités au bras de liaison, et par son autre extrémité à la glissière, chaque piston venant se loger en glissement dans un cylindre (158) relié rigide au fond de la chambre de manivelle de la tête.

4. Presse selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ensemble d'entraînement comprend en outre une masse d'équilibrage dynamique (176) reliée à l'arbre de manivelle par un bras de liaison (178), ces éléments supplémentaires pouvant également être introduits par la partie supérieure ouverte de la chambre, tout en étant assemblés avec l'arbre de manivelle.

5. Presse selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ensemble d'entraînement comprend en outre un volant (110), un embrayage (108, 118) et un disque de frein (90) monté sur l'arbre de manivelle, ces éléments supplémentaires pouvant également être introduits dans la chambre de manivelle par la partie supérieure ouverte de celle-ci, tout en étant assemblés avec l'arbre de manivelle.

6. Presse selon l'une quelconque des revendications précédentes, caractérisée en ce que le châssis comprenant la tête (20), le bâti (14) et les montants (18), est réalisé sous la forme d'un moulage unique en fonte d'une seule pièce.

7. Procédé de montage de l'ensemble d'entraînement et de la glissière sur le châssis d'une presse mécanique constituée par un châssis rigide comprenant une tète (20) et un bâti (14) reliés par au moins un montant vertical (18), une glissière (56) montée de manière à effectuer un mouvement rectiligne entre la tête et le bâti, et un ensemble d'entraînement (46) comprenant un arbre de manivelle (72) et au moins un ensemble de bras de liaison (140) relié par une extrémité à un excentrique (74, 78) monté sur l'arbre de manivelle (72), et par l'autre extrémité à glissière (56), ainsi qu'une paire de blocs de paliers (82) dans lesquels l'arbre de manivelle est supporté en rotation, presse caractérisée en ce que la tête comprend une chambre de manivelle (44) munie, dans le fond de celle-ci, d'une ouverture (248) par laquelle sort l'ensemble de bras de liaison (140), la chambre n'étant fermée à sa partie supérieure que par une plaque de capot amovible (48), et comprenant au moins deux éléments de support (36) des blocs de paliers (82), de sorte qu'après avoir retiré la plaque de capot (48), on peut introduire et retirer de la chambre de manivelle (44), par la partie supérieure ouverte de celle-ci, l'ensemble d'entraînement (46) se présentant sous la forme d'un bloc complètement assemblé.

8. Procédé selon la revendication 7, pour monter une presse selon la revendication 3, procédé caractérisé en ce que le piston (150) est guidé dans le cylindre pendant l'introduction de l'ensemble d'entraînement, et sort par l'extrémité inférieure du cylindre lorsque l'arbre de manivelle (72) et l'ensemble de bras de liaison (140) sont complètement logés dans la tête (20); la glissière (56) étant ensuite reliée au piston (150).

9. Procédé selon la revendication 8, caractérisé
en ce qu'il consiste en outre à relier une masse d'équilibre dynamique (178) à l'arbre de manivelle par un second bras de liaison (178), avant l'introduction de l'arbre de manivelle dans la chambre de manivelle, puis à introduire la masse d'équilibre et le second bras de liaison dans la chambre, en même temps que l'arbre de manivelle et le premier bras de de liaison ci-dessus.