European Patent Specification

Publication number: 0 073 231 B1
Int. Cl.: F 23 D 1/00, F 23 M 3/04
Date of filing: 12.02.82
Application number: 82900901.8
International application number: PCT/US82/00186
International publication number: WO 82/03111 16.09.82 Gazette 82/22

Combustion Method and Apparatus Therefor.

Priority	Proprietor: TransAlta Resources Investment Corporation
03.03.81 US 239943 02.02.82 US 344067	110-12th Avenue S.W. Box 1900
	Calgary Alberta T2P 2M1 (CA)
Date of publication of application: 09.03.83 Bulletin 83/10	Inventor: MORIARTY, Michael P.
	2354 Knollhaven Street
	Simi Valley, CA 93065 (US)
Publication of the grant of the patent: 28.12.88 Bulletin 88/52	Representative: Wächtershäuser, Günter, Dr. Tal 29
	D-8000 München 2 (DE)
Designated Contracting States: DE FR GB	References cited:

- US-A-4 054 028
- US-A-4 102 277
- US-A-4 173 118
- US-A-4 250 820
- US-A-4 256 703

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention.)

References cited:
US-A-4 259 911
US-A-4 283 373
US-A-4 285 283
US-A-4 292 953
The present invention relates to a method for substantially reducing emission of gaseous sulfur compounds formed during fuel combustion in accordance with the preamble of Claim 1.

Such a method is known from US-A-3,717,700. Within the past few years there has been an increasing concern with the immediate and long-term problems resulting from the ever-increasing pollution of the atmosphere. With this concern has come an awareness at all levels that steps must be taken to halt the increasing pollution and, if at all possible, to reduce the present pollution levels. As a result of this awareness, a substantial amount of money and effort is being spent by business and governmental agencies to develop standards and measures for preventing significant discharge of pollutants into the atmosphere. Among the pollutants of concern are the various oxides of nitrogen and gaseous sulfur compounds present in the waste gases discharged from many refining and chemical plants and the flue gases from power plants which generate electricity by combustion of fossil fuels. A predominant form of nitrogen oxide released to the atmosphere is nitric oxide (NO) which, upon release into the atmosphere, comes into contact with oxygen and can react therewith to form nitrogen dioxide (NO₂) or any of the other numerous oxides of nitrogen, many of which are known to be toxic to both plant and animal life. The gaseous sulfur compounds may be present in many forms, such as H₂S, COS, SO₂, and the like. These gaseous compounds are released into the atmosphere, come into contact with oxygen and moisture, and can react to form sulfuric acid, resulting in the so-called "acid rains", known to be detrimental to both aquatic and plant life.

Principally, three approaches have been utilized in attempts to reduce the emission of gaseous sulfur compounds. They are (1) removal of the sulfur constituents from the fuel prior to its combustion or partial combustion, (2) use of an additive to react with the sulfur during combustion, and (3) scrubbing of the gaseous effluent to remove the sulfur constituents prior to its release into the atmosphere. To obtain a substantially complete removal of the sulfur constituents prior to combustion requires the use of expensive solvents for extraction of the sulfur components, which also extract a significant fraction of the fuel energy. Such methods have not proven to be altogether satisfactory in view of both cost and effectiveness. The predominant method now practiced for removal of the sulfur constituents comprises scrubbing the effluent gases with an absorbent for removal of the sulfur constituents prior to discharging the gases into the atmosphere. A disadvantage with this approach, however, is the high capital and operating costs involved in treating the large volumes of effluent gas to remove the small quantity of dispersed gaseous sulfur compounds. Indeed, for an average utility power plant, the cost of a facility for treating the effluent gas can be in excess of $100 million.

Much effort has been directed to attempting to react the sulfur compounds present in the fuel with an additive to form solid compounds during the combustion process. Advantages of this approach are that: (1) the absorbent can be placed in more intimate contact with the fuel sulfur compounds and, therefore, the absorbent treats a higher concentration of these sulfur compounds; (2) the capture of the fuel sulfur in a solid, easily removable form is accomplished in existing equipment, the burner; and (3) the solid sulfur compounds can then be removed by existing filtration equipment, which is normally used for the removal of the ash constituents of the fuel. The principal disadvantage of this approach heretofore has been that excessive amounts of absorbent had to be added to the fuel to obtain a high percentage of removal of the sulfur constituents of the fuel. Indeed, most of the literature suggests that a molar ratio of absorbent to sulfur of at least 3 or higher is necessary to remove 70% or more of the sulfur.

Much effort has also been directed to retaining the solid sulfur compounds as solids throughout the remainder of the combustion process. The literature indicates that, although gaseous sulfur compounds are thermodynamically favored over the solid forms at normal combustion stoichiometry and temperatures, nearly all experiments show that some fraction of the solid forms survive the combustion process. (See G. Flamant, "Direct Sulphur Capture in Flames Through the Injection of Sorbents", Int'l Flame Res. Fdtn. Doc. nr. G 19/a/9, Nov. 1980.) In most cases, about half of the fuel sulfur survives the entire combustion process in the solid form, and some experiments have shown considerably higher retention.

Obviously, there still exists a need for an improved method and apparatus for the combustion of sulfur-containing fuels which would permit a reduction in excess of 70% and preferably in excess of 90% of the gaseous sulfur compounds which would otherwise be emitted and which would not require the use of a large excess of absorbent.

The present invention provides both a method and apparatus utilizing one or more zones for the combustion of fuels whereby minimal quantities of gaseous sulfur compounds are present in the resulting effluent gases.

The method of the present invention is characterized in that the oxygen content of the combustible mixture corresponds to about 25 to 40% of the total stoichiometric amount required for complete combustion of the fuel and that after combustion the resultant mixture of fuel and combustion products is kept at a temperature of from about 1 000 to 1 800°C for a time sufficient for a desired amount of the fuel sulfur to react with the alkaline absorbent and form solid sulfur compounds. The minimum residence time required for gasification and sulfur capture is a total of from about 50 to 600 milliseconds. Thereby, the mixture discharged from this first combustion zone has a substantially reduced emission of gaseous sulfur compounds compared with those that would otherwise be present as a result of conventional combustion.
For most applications a temperature range from about 1200° to 1600°K is preferred and may be required. Thus, certain fuels cannot ordinarily be gasified within practical time limits in an entrained flow combustor at temperatures below 1200°K. Also, while more rapid gasification will occur at temperatures about 1600°K, such higher temperatures require the use of costly high-temperature-resistant materials of construction. Also, some inorganic alkaline absorbents lose their effectiveness at these higher temperatures.

Practice of the present invention effectively controls emission of gaseous sulfur compounds while substantially reducing the quantity of inorganic alkaline absorbent required for reaction with the fuel sulfur constituent to form a more stable solid sulfur compound which can be retained in solid form throughout the remainder of the combustion process. This can readily be removed from the effluent gases by conventional filtration equipment.

A key feature of the invention is the manner in which fuel sulfur is efficiently captured in the solid form by utilizing controlled conditions of air/fuel stoichiometry, temperature, and residence time. In contrast to other approaches in which gaseous sulfur control was attempted through the introduction of an alkaline absorbent in large quantities, in accordance with the present invention it has been found that, under certain controlled conditions, substantially less inorganic alkaline absorbent is required to achieve substantial capture.

A second key feature of the invention is the manner in which air/fuel stoichiometry, temperature, and residence time are controlled to ensure that, once captured, the fuel sulfur constituent remains in a solid form throughout the remainder of the combustion process. In contrast to other approaches, which consider only the chemistry and chemical kinetics of oxidation and dissociation of the solid sulfur compounds, this invention also considers the chemical, physical, and thermal properties of the solid particles to ensure its retention in the solid form.

The present invention is based partly upon the discovery that the air/fuel mixture stoichiometry has a significant effect on the reaction which takes place between fuel sulfur and an inorganic alkaline absorbent in intimate contact with the fuel. Specifically, it has been found that within a certain narrow range of air/fuel stoichiometry during combustion, the reaction between the inorganic alkaline absorbent and any fuel sulfur constituent is quite rapid and efficient, such that the molar ratio of the absorbent to fuel sulfur constituent can be in a range as low as from about 1:1 to 3:1, while still obtaining 90% or more capture of the fuel sulfur constituents present.

In practicing the invention, a combustible fuel, an oxygen-containing gas, and an inorganic alkaline absorbent for fuel sulfur constituent are introduced into a first combustion sulfur-capture zone. Preferably, the oxygen-containing gas is air and is introduced in an amount to provide from about 25% to 40%, and preferably 32% to 37%, of the oxygen requirements for complete combustion of the fuel. The combustible air/fuel mixture will react to form combustion products, and the inorganic alkaline absorbent will react with the fuel sulfur constituent to form the desired, solid sulfur compounds. The resultant combustion mixture is maintained at a temperature of from 1000° to 1800°K for a time sufficient to complete the absorbent-sulfur reactions, thereby reducing the concentration of the gaseous sulfur compounds to a desired level. Subsequently, the solid sulfur compounds can readily be removed from the combustion mixture by conventional filtration techniques.

In accordance with a particularly preferred embodiment of the present invention, the mixture of fuel and combustion products discharged from the sulfur capture zone is passed into a nitrogenous compound destruction zone. More particularly, as taught in US—A—4427362 assigned to the assignee of the present invention, it is reported that during the initial combustion of fuel, nitrogenous compounds are formed; and an apparatus and method are disclosed therein for the destruction of such compounds. In accordance with that invention, a fuel-rich mixture of combustion products, or fuel alone, and an oxygen-containing gas, preferably air, are introduced into a nitrogenous compound destruction zone, the total air in the zone being controlled to provide from about 45% to 75%, and preferably from about 50% to 65%, of the oxygen requirements for combustion of the fuel. The overall mixture of fuel and air react to form fuel-rich combustion products, and the resultant mixture is maintained at a temperature of at least 1800°K for a time sufficient to reduce the concentration of nitrogenous compounds a desired amount, forming primarily elemental gaseous nitrogen. In the aforesaid application, higher temperatures are preferred. A temperature range of from 1800° to 2500°K is preferred.

When a calcium-containing inorganic alkaline absorbent is used in the sulfur capture zone of the present invention, calcium sulfide (CaS) is formed. When this calcium compound is passed to the nitrogenous compound destruction zone, it appears to greatly enhance the nitrogenous compound destruction process.

For most applications of the present invention, complete combustion of the fuel to obtain the maximum amount of heat is desired. In such instances, the mixture of fuel and combustion products discharged from the prior zone is passed into one or more subsequent combustion zones, during which time the temperature in such subsequent zones preferably is maintained within the range of from about 1800° to 2000°K while sufficient additional air is introduced to provide from about 100% to 120% of the total stoichiometric amount of oxygen required for complete combustion of the fuel. Even if there is no sulfur in the fuel, this temperature range is preferred to simultaneously prevent formation of nitrogen oxides and yet allow complete oxidation of the remaining products of the earlier fuel-rich combustion.
Fig. 1 is a graph depicting the percent of sulfur captured versus the air/fuel stoichiometry; Fig. 2 is a graph depicting the percent of sulfur captured versus the moles of calcium added per mole of sulfur in the fuel; Fig. 3 is a perspective view of a three-zone burner utilized for the preferred practice of this invention; and

Fig. 4 is a schematic view in cross section taken along lines 4–4 of Fig. 3.

The present invention in its broadest aspects provides both a method and an apparatus for the partial or complete oxidation of a sulfur-containing combustible fuel in one or more combustion zones with minimal or substantially reduced emission of gaseous sulfur compounds which normally are formed during combustion. In contrast to the methods and apparatus known heretofore, the present invention does not require high molar ratios of an inorganic alkaline absorbent to achieve substantial reduction in the emission of gaseous sulfur compounds. Indeed, in accordance with the present invention, molar ratios of inorganic alkaline absorbent to sulfur within the range of from about 1:1 to 3:1 are capable of providing a reduction in gaseous sulfur compound emission of 70% and higher. It is a particular advantage of the present invention that under the controlled conditions of stoichiometry and temperature described herein, the inorganic alkaline absorbents which may be present as constituents of the fuel ash will react efficiently with the fuel sulfur constituents to produce the desired, readily removable solid sulfur compounds, thus reducing the requirement for additional inorganic alkaline absorbent and reducing the subsequent waste disposal problem.

The present invention will now be particularly described with respect to a preferred embodiment, involving the complete oxidation of a sulfur-containing fuel, such as coal, in a plurality of zones, with substantially reduced emission of gaseous sulfur compounds as well as substantially reduced emission of oxides of nitrogen. Referring now to Fig. 1, therein is depicted a graph showing the percent of fuel sulfur captured versus air/fuel stoichiometry. The graph represents the results of two series of tests run to show the effect of air/fuel stoichiometry. Illinois No. 6 coal was combusted in the presence of lime, the lime being added in an amount to provide a molar ratio of two moles of lime per mole of sulfur in the fuel. Curve A was for a 6.0-ft-long (1.83 meter) combustor which provided a residence time of about 100 milliseconds, Curve B was for a 12-ft-long (3.66 meter) combustor which provided a residence time of about 200 milliseconds.

The results of the test clearly demonstrate that within a narrow band of stoichiometry, it is possible to capture a substantial percentage of the fuel sulfur utilizing a relatively low molar ratio of absorbent to sulfur. Specifically, with an air/fuel stoichiometric ratio of from about 0.25 to 0.40, it is possible to reduce by 90% or more the gaseous sulfur compounds which otherwise would be emitted to the atmosphere. It will be appreciated that the test conditions yielding the data shown in Fig. 1 were not optimized; therefore, greater capture rates could be expected within these combustor lengths or residence times. It also will be appreciated that in all instances, it may not be desired or necessary to eliminate the emission of all of the gaseous sulfur compounds. For example, generally the emission requirements for low sulfur coals, such as Western coals, are only that 70% of the gaseous sulfur compounds be removed; whereas for the higher sulfur Eastern coals, the requirements are more stringent and 90% removal may be required. Accordingly, the residence times and molar ratios of absorbent to sulfur are readily selected to achieve the desired reduction in emission of gaseous sulfur compounds.

Referring now to Fig. 2, therein is a graph depicting the percent of sulfur captured versus the moles of calcium added per mole of sulfur in the coal. As would be expected, the more calcium that is added, the higher is the percentage of sulfur that is captured. However, two significant features depicted here are the effect of different residence times and the effect of any inorganic alkaline absorbent contained in the coal. Specifically, lines 1 and 2 are typical plots for a low ash (negligible calcium content) Eastern coal. However, line 1 is for a coal combusted in a 6-ft combustor; and line 2 is for coal combusted in a 12-ft combustor, thus demonstrating the increased percent of sulfur captured by virtue of a longer residence time. Line 3 is for a Western coal, which contained 1.4 moles of calcium per mole of sulfur in the coal, combusted in a 6-ft (1.83 meter) combustor. From this it is seen that even with no calcium added, more than half of the sulfur was removed by the calcium in the ash. Many Western coals contain more than 2.0 moles of calcium per mole of sulfur. It will be appreciated, therefore, that by utilizing the proper stoichiometry, temperatures, and residence times, it is possible to combust Western coals and obtain all the sulfur capture presently required by the environmental laws with little or no additional calcium added to the coal.

High sulfur Eastern coals normally contain small concentrations of alkaline compounds and, therefore, nearly all of the inorganic alkaline absorbent necessary for the sulfur capture will have to be added. This additional absorbent preferably is ground into or otherwise intimately mixed with the fuel, to provide the same intimate fuel-absorbent contact provided by the alkaline compound normally contained in coal ash. In the tests yielding the data described by lines 1 and 2 in Fig. 2, lime was added to the coal before the coal was pulverized so that the lime was ground into the coal particles. It is generally preferred that the particle size of the inorganic alkaline absorbent added to the coal be the same as or smaller than that of the coal. An absorbent ground to a particle size where at least 70% passes through a 200-mesh screen (U.S. standard sieve size) is generally suitable.

Referring now to Fig. 3, a perspective view of a burner assembly 10 of the present invention is shown. A cross-sectional view of this burner assembly 10 is shown in Fig. 4. The term “burner” or “burner assembly” is used herein to refer to a device which brings together fuel and air, mixes these to form a
combustible mixture, and partially completes the combustion to achieve the desired composition of combustion products. Although general usage is not consistent, the term “burner” generally is considered to refer primarily to that part of a combustion device which brings together fuel and air and prepares the mixture for combustion (for example, Bunsen Burner). The term “combustor” is generally considered to refer to the burner plus that part of the device in which combustion is completed (for example, a gas turbine combustor). Such terms as “furnace” and “boiler” are generally considered to include not only the combuster but also various end uses of the heat of combustion, none of which are considered to be specific features of this invention.

This invention is concerned with controlling combustion to the degree necessary to achieve low emissions of gaseous sulfur compounds in a wide variety of applications. In no application is it necessary to contain combustion within the device constructed to achieve this purpose until combustion has been completed, i.e., until all chemical species have been converted to the lowest energy state. In some applications, the desired combustion products might actually be the fuel-rich gases resulting from partial combustion. For these reasons and because the unique apparatus developed to practice the present combustion process is intended to replace devices generally referred to as burners, the term “burner” as applied herein should be construed broadly in reference to such apparatus.

Referring again to Fig. 4, fuel is introduced into the burner assembly 10 through an inlet 12. The present invention is applicable to a wide variety of sulfur-containing combustible fuels which produce gaseous sulfur compounds during combustion. Thus, the present invention is applicable to the various liquid sulfur-containing fuels, petroleum products and by-products such as the so-called bunker fuel oils and shale油, as well as crude petroleum, petroleum residua, and various other petroleum by-products which may contain varying amounts of sulfur. In addition, the present invention also is applicable to normally solid fuels including asphalt, coal, coal chars, lignite, and even combustible municipal or organic waste. Such fuels, particularly coal, are ordinarily pulverized and fed to the burner in suspension in a carrier gas, generally air. Any air present in the carrier gas will be included as a part of the stoichiometric air requirements for combustion of the fuel. The exemplary apparatus shown in Figs. 3 and 4 is considered appropriate for the combustion of solid fuels such as coal.

Also introduced into the burner assembly is an inorganic alkaline absorbent for reaction with the gaseous sulfur compounds. In the preferred embodiment depicted, the inorganic alkaline absorbent is admixed with the coal and ground prior to introduction into the burner via inlet 12. Any inorganic alkaline absorbent which will react with the acidic sulfur compounds present in the fuel or formed during the initial stages of combustion may be utilized. The preferred inorganic alkaline absorbents, based on their availability and cost, are the oxides, hydroxides, and carbonates of magnesium, calcium, and sodium. These may be used either singly or in combination. Particularly preferred inorganic alkaline absorbents are the carbonates of calcium and sodium which may be obtained as a naturally occurring mineral in the form of limestone and soda ash, respectively. Limestone, for example, is introduced in an amount to provide a total molar ratio, including the inorganic calcium contained in the ash constituents of the fuel, within the range of from about 1 to 3 moles of calcium per mole of sulfur, and preferably within the range of from about 1.8 to 2.5 moles of calcium per mole of sulfur. It will be appreciated that many of the solid carbonate fuels contain significant amounts of an inorganic alkaline absorbent such as limestone in their ash constituents. It is an advantage of the present invention that the alkaline absorbent contained in the fuel will also react with the gaseous sulfur constituents. Accordingly, when the term “mole ratio” of absorbent to sulfur is referred to, it includes the inorganic alkaline portion of the fuel as well as any additional absorbent which may be introduced.

Also introduced into burner assembly 10 via an inlet 14 is a source of oxygen such as air, pure elemental oxygen, oxygen-enriched air, and the like. Generally, air is preferred in the interest of economy. The air, inorganic alkaline absorbent, and fuel are mixed with one another and reacted in a first combustion zone 16. It is, of course, an essential element of the present invention that the air and fuel be introduced in amounts to provide from about 25% to 40%, and preferably from 32% to 37%, of the stoichiometric amount of air (excluding any carrier air required for complete oxidation of the fuel).

The temperature of the combustion products formed in combustion zone 16 must be sufficiently high to ensure gasification of the fuel and the fuel sulfur constituents. The upper temperature limit is dictated by economics and materials of construction and the necessity of avoiding such high temperatures as would result in decomposition of the solid sulfur compounds formed by the reaction between the gaseous sulfur compounds and the alkaline absorbent. Generally, the temperature is maintained within a range of from about 1000° to 1800°K, and preferably within a range of from about 1200° to 1300°K. Even within these particularly suitable and preferred temperature ranges, it may be necessary to provide protection for the walls of combustion zone 16 such as by providing a ceramic coating or lining 18, suitably of alumina or silicon carbide.

In accordance with the particularly preferred embodiment, the air introduced through inlet 14 preferably is preheated to a temperature of from about 500° to 800°K to maintain the desired temperature in combustion zone 16. This preheated air is passed in heat exchange relationship with combustion zone 16 prior to entering the combustion zone. Thereby, this preheated air also serves to insulate the outer surfaces of burner assembly 10 from the high temperatures present in zone 16. However, numerous equivalent methods for providing heat to zone 16 will be readily apparent to those versed in the art. For purposes of
Combustion zone 16 has a length A to provide the desired residence time for the products in that zone. The precise length will, of course, be a function of the residence time selected and the velocity of the flowing combustion products. The residence time required for efficient capture of the sulfur contained in solid or liquid fuels is largely governed by the time required to gasify a sufficient amount of the fuel to ensure gasification of substantially all of the sulfur in the fuel, and to ensure that the desired fuel-rich, gas-phase stoichiometry is provided. Depending upon the composition of the fuel and the sulfur within the fuel, the fuel’s physical size and state, and the combustion conditions, the total residence time required to adequately gasify the fuel and provide sulfur capture can range from as low as 50 to as high as 600 milliseconds. For pulverized coal fired under the above conditions, stoichiometry, and reactive temperatures, residence times of 200 to 800 milliseconds generally are preferred. With liquid fuels, shorter residence times of from about 50 to 200 milliseconds generally are adequate. The particle size of the fuel affects the residence time required for gasification, coarser particle sizes increasing the required time. Conversely, finer particle sizes can substantially reduce the required time for gasification.

In accordance with the particularly preferred embodiment depicted, the combustion products leaving combustion zone 16 are introduced into a second combustion zone 20 for the destruction of nitrogenous compounds. As taught in the aforesaid US-A-4427362, for effective destruction of nitrogenous compounds formed during combustion of the fuel, it is essential that the air and fuel be introduced in amounts to provide from 45% to 75%, and preferably from 50% to 65%, of the stoichiometric amount of oxygen required for complete combustion. However, unless the solid sulfur compounds have been removed, in accordance with the present invention it is preferred that the stoichiometry in this combustion zone be maintained at less than that above which thermodynamics indicates oxidation of the solid sulfur compounds formed in the sulfur capture zone will occur. For a typical bituminous coal, the air introduced into this zone should be maintained to supply less than about 60% of the amount of oxygen required for complete oxidation of the fuel. Under these conditions, the temperatures necessary for rapid destruction of the nitrogenous compounds can be maintained throughout this zone without appreciable oxidation of the desired solid, sulfur compounds. As depicted in Fig. 4, the air for combustion zone 20 also is introduced through inlet 14 and through a plurality of openings 22.

The second combustion zone 20 has a length B which will generally be less than half that of first combustion zone 16 to provide an adequate residence time for the desired amount of destruction of nitrogenous compounds. When the SO2 capture zone, the subject of this invention, is used in conjunction with an NOx destruction stage, most of the coal gasification is accomplished in the SO2 capture zone. Therefore, residence time in the NOx destruction stage, and the length of that zone, can be very short. For most applications, residence times between about 25 and 100 milliseconds are adequate to achieve nitrogenous compound levels of less than about 50 parts per million.

As further taught in the aforementioned pending application, the presence of particulate materials such as soot, char, coke, and iron compounds have been noted to greatly enhance the rate of destruction of nitrogenous compounds. When these are present in the ash constituents of a fuel such as coal, there is no need to add any additional particulates. However, if the fuel is a low ash fuel, it may be advantageous to add such finely dispersed particulates to reduce the residence time which would otherwise be required. If these particulates are introduced into the burner with the fuel in the SO2 capture stage, then particulates, including the solid sulfur-containing compounds, should not be removed from the gas stream until the desired NOx destruction is achieved. In certain applications, however, the required residence time for NOx destruction may be so short that little practical advantage is obtained if particles are not used to accelerate NOx destruction. In such cases, it may be advantageous to remove the solid, sulfur compounds prior to the addition of any further combustion air to eliminate the possibility of dissociation of the solid, sulfur compounds in subsequent combustion zones.

In the preferred embodiment, the combustion products leave combustion zone 20 and enter at least a third combustion zone 24. As taught in the aforementioned pending application, additional combustion air is supplied to combustion zone 24 via an inlet 26 and openings 28 to complete combustion of the fuel-rich gases. An essential feature of the temperature regime for this final combustion stage is that the temperature be maintained at least below that at which substantial amounts of thermal NOx will be formed. In the preferred embodiment of this invention, the solid sulfur compounds generated in the first sulfur-capture combustion zone, are retained in the combustion gases and, therefore, must pass through this third combustor 24. The temperature in this zone must be low enough to be compatible with rapid completion of combustion of the fuel-rich gases. To both minimize NOx formation and decomposition of the solid, sulfur compounds, and yet complete combustion, the temperature in combustion zone 24 is maintained between 1600° and 2000°K, and preferably between 1800° and 1900°K.

In the example where limestone is the inorganic alkaline absorbent used to capture the sulfur, the solid sulfur-bearing compound will be calcium sulfide, CaS. It is well known that, for stoichiometric mixtures above about 80% of theoretical air, the CaS, in the solid particulate form, will readily oxidize to CaSO4 while remaining a solid. This rapid, highly exothermic reaction is kinetically favored over oxidation to gaseous sulfur oxides. Further oxidation is not possible; thus, at high temperatures, the calcium sulfate
(CaSO₄), unless otherwise inhibited, will begin to decompose to CaO and SO₂, in a slower, highly endothermic reaction. The literature shows that relatively rapid decomposition of pure CaSO₄ begins at temperatures of about 1520°K, well below the 1600° to 2000°K required to complete the combustion of the fuel-rich gases entering zone 24 from zone 20. While this would appear to preclude retention of the sulfur in a solid, easily removable form through zone 24, experiments under controlled conditions show that retentions of from 50 to 90% or more are readily achieved in practice.

The inventor does not know with certainty, and does not wish to be bound by any theoretical explanation of, the underlying mechanisms involved in retention of the solid sulfur compounds through this final combustion zone. However, the following explanation is offered. As an example, the case where limestone is used initially to capture the sulfur in coal will be discussed. The limestone involved in the initial sulfur capture is either already intimately mixed with the coal, as a naturally occurring mineral constituent, or, when added, is preferably mixed with the coal, by grinding or other means. Thus, the initial sulfur capture is thought to occur within, or on the surface of a burning coal particle. Early in the combustion process and at lower temperatures the limestone is decarboxylated, freeing the CO₂ and leaving a highly active, solid CaO. As the fuel sulfur is gasified (primarily to H₂S) at the required low stoichiometry, the sulfur-containing gas rapidly reduces the solid CaO to CaS. Thus, the sulfur is captured, or retained, within and on the surface of, the burning coal particle, where the local stoichiometry is fuel-rich and temperatures are quite low. As the coal particle gasification and burning proceeds, the CaS remains as an intimate mixture within and on the remaining char or fly ash. Oxidation of the CaS to CaSO₄ or to CaO, then, must be accomplished by oxygen or an oxygen-containing species diffusing to the burning particle. Such oxygen is not available in either the sulfur capture or NO₃ destruction zones, particularly in the very fuel-rich local region within and on the surface of the particle; thus, the CaS form is thermodynamically favored. Even when the final combustion air is added in combustion zone 24, residual particle burning must be substantially complete before oxygen can reach the particle surface in appreciable quantities. Thus, it is only in the final stages of particle burnout that oxidation of the CaS to CaSO₄ and subsequent decomposition to gaseous sulfur species can begin. This process is slow, being inhibited by: (1) diffusion of oxygen into the pores of the particle, to contact the CaS fixed within the particle; (2) the presence of some residual carbon, which preferentially reacts with the oxygen; (3) the endothermic nature and slow kinetics of the decomposition reactions; and (4) the tendency of the calcium and magnesium compounds to "dead burn", i.e., to close or plug up the particle pores and to form an impervious layer on the surfaces of the particle.

This, the preferred approach utilized in this invention to retain the solid, sulfur compounds throughout the remaining combustion is to: (1) cool the combustion gases leaving the NO₃ destruction zone to about 1600° to 1800°K prior to or simultaneously with the addition of the final combustion air; (2) provide for rapid mixing of this final combustion air with the fuel-rich combustion products coming from the NO₃ destruction stage, prior to complete carbon burnout, to rapidly pass through the maximum combustion temperature associated with stoichiometric mixtures while some residual carbon remains in the particle; and (3) use subsequent continued gas cooling, by the boiler itself, to reduce the gas and particle temperatures finally below the 1520°K CaSO₄ decomposition temperature. The above approach is entirely compatible with the final combustion zone requirements to prevent formation of NOₓ in this final stage and yet complete combustion of the fuel-rich gases from the NO₃ destruction stage, as described in the aforementioned pending patent application. Therefore, the preferred embodiment of this invention, to be used in conjunction with the process described in the aforementioned pending patent application, automatically provides the final combustion zone conditions necessary to optimize retention of the solid, sulfur compounds throughout the fuel combustion.

Cooling of the combustion products leaving the earlier combustion zone prior to the introduction of the additional combustion air for final combustion may be accomplished in various manners known to those versed in the art. For example, the gases may be cooled by passing them in indirect heat exchange relationship with a cooling fluid introduced through an inlet 30 of burner assembly 10. In addition or alternatively, there is a coolant fluid can be introduced directly into the hot gases via nozzles 32. Still further, the combustion air introduced through inlet 26 can be cooled and diluted with an inert gas such as recirculated flue gas to absorb the heat or the like. These and numerous other techniques will be readily apparent to those versed in the art.

Once the hot gaseous combustion products leave the burner and the desired amount of thermal energy has subsequently been extracted from the combustion products, the gases are readily discharged to the atmosphere with substantially reduced pollutant effect. Specifically, in accordance with the present invention, it is possible to burn substantially any sulfur-containing combustible fuel, generally a fossil fuel, and discharge a product of combustion containing less than 10% of the gaseous sulfur compounds which would otherwise be present, and in accordance with a particularly preferred embodiment, containing less than 50 ppm of oxides of nitrogen. It also is a particular advantage of the present invention that it provides a relatively compact burner assembly which is suitable as a retrofit for utility boiler application and other existing facilities wherein sulfur-containing fuels are burned for the principal purpose of producing heat.

The following examples will serve to more fully describe the practice of the present invention. It is to be understood, however, that these examples are not intended to limit the scope of the invention, but rather are presented for illustrative purposes.
EP 0 073 231 B1

The following experiments were performed on an apparatus similar to that shown in Figs. 3 and 4. The coal was ground such that at least 70% of it would pass through a 200-mesh (U.S. standard sieve size) screen. The ground coal was injected in dense phase feed (1.0 lb./cu. ft. [16 kg/m³]) into a combustion chamber having an internal surface to volume ratio of approximately 0.26 cm⁻¹. Heated air (590°C) was simultaneously admitted through an injection and mixing device known as a pented injector. In such an injector, four circumferentially located streams of air impinge on a centrally located stream of pulverized coal at an included angle of about 30 degrees. The combustion pressure was approximately 6 atmospheres. Three different combustor configurations were utilized. One configuration comprised a 1.83 meter (6 ft.) long combustor having a 0.152 meter diameter that provided a residence time of approximately 90 milliseconds. The second configuration had the same diameter and a length of 3.66 meters (12 ft.) to provide an approximate residence time of 180 milliseconds. The third configuration used the second configuration with the addition of a slag separator that added approximately 45 milliseconds of residence time for a total residence time of about 255 milliseconds.

The combustion products were monitored for gaseous sulfur compounds as they exited the end of the combustor. The percent fuel sulfur captured was calculated from the difference between the measured concentration of all gaseous sulfur species in the combustion gases and the gaseous sulfur species concentration that would theoretically be present if none were captured in the solid form.

\[
\text{% capture} = \frac{\text{Theoretical} - \text{measured}}{\text{Theoretical}} \times 100
\]

This method correctly represents sulfur captured provided that a sufficient amount of the coal has been gasified to ensure that essentially all of the sulfur constituents in the coal which are not captured by the absorbent are in the gaseous phase. Extensive data from this, and other ongoing coal treatment programs, indicate that more than 90 percent of the sulfur will be gasified whenever about 75% or more of the carbon content of the coal is gasified.

Compositions of the various coals tested are given in Table 1 below.

TABLE 1

Coals tested
Ultimate analyses (dry)

<table>
<thead>
<tr>
<th></th>
<th>Eastern coal</th>
<th>Western coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois No. 6</td>
<td>Carbon 67.0 wt.%</td>
<td>Carbon 71.1 wt.%</td>
</tr>
<tr>
<td></td>
<td>Hydrogen 5.2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Nitrogen 1.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Sulfur 3.9</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Oxygen 5.0</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>Ash 17.7</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>Heating Value, Btu/Lb. 11,440</td>
<td>Heating Value, Btu/Lb. 12,470</td>
</tr>
<tr>
<td></td>
<td>Calcium/Sulfur Mole Ratio (as received) 0.09</td>
<td>Calcium/Sulfur Mole Ratio (as received) 2.0</td>
</tr>
</tbody>
</table>
Example 1
Sulfur capture using short residence time
Residence time of approximately 90 milliseconds Illinois #6 coal

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Calcium/sulfur mole ratio*</th>
<th>Stoichiometric ratio (fraction of theoretical air)</th>
<th>Sulfur capture (%)</th>
<th>Measured combustion gas temp. (°K)</th>
<th>Inlet air temp. (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.40</td>
<td>16.7</td>
<td>1428</td>
<td>593</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>0.48</td>
<td>12.1</td>
<td>1561</td>
<td>593</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
<td>0.55</td>
<td>16.1</td>
<td>1537</td>
<td>593</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
<td>0.28</td>
<td>70.7</td>
<td>1369</td>
<td>596</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>0.28</td>
<td>67.3</td>
<td>1374</td>
<td>597</td>
</tr>
<tr>
<td>6</td>
<td>2.00</td>
<td>0.33</td>
<td>72.9</td>
<td>1595</td>
<td>596</td>
</tr>
<tr>
<td>7</td>
<td>2.00</td>
<td>0.35</td>
<td>70.7</td>
<td>1566</td>
<td>599</td>
</tr>
<tr>
<td>8</td>
<td>2.00</td>
<td>0.39</td>
<td>54.6</td>
<td>—</td>
<td>598</td>
</tr>
<tr>
<td>9</td>
<td>2.00</td>
<td>0.39</td>
<td>51.4</td>
<td>1437</td>
<td>599</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>0.40</td>
<td>53.2</td>
<td>—</td>
<td>597</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>0.46</td>
<td>68.9</td>
<td>1479</td>
<td>450</td>
</tr>
<tr>
<td>12</td>
<td>2.00</td>
<td>0.54</td>
<td>10.3</td>
<td>1564</td>
<td>599</td>
</tr>
<tr>
<td>13</td>
<td>2.00</td>
<td>0.60</td>
<td>50.0</td>
<td>—</td>
<td>452</td>
</tr>
</tbody>
</table>

*Calcium/sulfur mole ratio of 0.09 occurs naturally; adjustment to 2.00 was made by mechanical mixing of powdered CaO (70% through a 200-mesh sieve) into the ground coal.

Extensive data from this and other coal treatment programs indicate that 75% gasification of the carbon content of the coal may not be obtained at air/coal stoichiometric ratios of less than about 0.4 under the conditions shown in Example 1, i.e., residence time, particle size and temperature. Further, no data were obtained in this Example 1 to ascertain the exact amount of gasification obtained; thus, a few of the data points might be questioned. However, it is believed the overall test results can be relied upon to show a general trend toward high sulfur capture within the desired conditions of stoichiometry and temperature even at this short residence time (for coal).
Example 2
Sulfur capture with longer residence time
Residence time of approximately 180 milliseconds Illinois #6 coal

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Calcium/sulfur mole ratio*</th>
<th>Stoichiometric ratio (fraction of theoretical air)</th>
<th>Measured combustion gas temp. (°K)</th>
<th>Measured combustion temp. (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.43</td>
<td>14.6</td>
<td>1437</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>0.47</td>
<td>18.1</td>
<td>1531</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
<td>0.48</td>
<td>14.9</td>
<td>1489</td>
</tr>
<tr>
<td>4</td>
<td>0.09</td>
<td>0.54</td>
<td>4.1</td>
<td>1519</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>0.28</td>
<td>73.5</td>
<td>1373</td>
</tr>
<tr>
<td>6</td>
<td>2.00</td>
<td>0.28</td>
<td>70.7</td>
<td>1372</td>
</tr>
<tr>
<td>7</td>
<td>2.00</td>
<td>0.36</td>
<td>90.0</td>
<td>1411</td>
</tr>
<tr>
<td>8</td>
<td>2.00</td>
<td>0.39</td>
<td>69.9</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>2.00</td>
<td>0.45</td>
<td>50.3</td>
<td>1514</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>0.46</td>
<td>80.4</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>0.52</td>
<td>34.1</td>
<td>1622</td>
</tr>
<tr>
<td>12</td>
<td>2.00</td>
<td>0.66</td>
<td>37.8</td>
<td>—</td>
</tr>
</tbody>
</table>

*Calcium/sulfur ratio of 0.09 occurs naturally; adjustment to 2.00 was made by mechanical mixing of CaO powder into the coal.

This example demonstrates the benefit of a longer residence time within the desired conditions of stoichiometry and temperature. Specifically, referring to Example 1, Test 7, it is seen that for a 90-millisecond residence time and a stoichiometry of 0.35, 70.7% of the sulfur was captured. In this Example 2, Test 7, with substantially the same conditions, except that a longer residence time (180 milliseconds) was used, 90% of the sulfur was captured. In addition, when using the longer residence time, in excess of 75% of the carbon content of the coal was consistently gasified.

Thus, the foregoing Example 2, using a longer residence time, demonstrates that within the claimed range of stoichiometry and preferred temperature range, substantial sulfur capture is consistently obtained. This is in contrast to recently issued US-A-4,285,283 (Lyon et al.) which teaches that, with similar stoichiometries and temperatures, significant sulfur capture can only be obtained by using an organic calcium compound. To further demonstrate the criticality of using organic calcium, rather than physical mixtures of coal and solid inorganic calcium, patentees describe “Comparative Example B” in which a physical mixture of powdered coal and powdered limestone was prepared such that the ratio of calcium to sulfur for the mixture was 3.5. This mixture was burned in two stages by flowing a suspension of the mixture in air at near atmospheric pressure downwardly through an alumina tube in an electric furnace. In the first stage an equivalence ratio of 3 (stoichiometric air/fuel ratio of 0.33) and a reaction time of 1.5 seconds was used. Poor fuel utilization and also poor sulfur retention in the recovered solids were reported. It is noted that patentees utilized a temperature of 1500°C (1773°K), which is higher than that preferred in the practice of the present invention.

The explanation for the results reported by patentees in Comparative Example B is not known. However, it has been reported that in tests performed at 1223°K, limestone and dolomite in relatively large sizes (5—6 mm diameter) effectively stop reacting with H2S after about 60% of its mass has been reacted. This has been assumed to be due to the formation of a relatively non-porous ash on the surface of the particles. (See Squires et al., “Desulfurization of Fuels with Calcined Dolomite. 1. Introduction and First Kinetic Results,” Chem. Eng. Progr. Symp. Series No. 115, Vol. 67, 1971; AIChE, New York.)

By way of contrast, in the foregoing Example 2 it is seen that with a low calcium to sulfur ratio (0.09) the sulfur capture was correspondingly low. However, when enough inorganic calcium (as lime) was added to
provide a mole ratio of calcium to sulfur of 2.0, greatly enhanced sulfur capture was obtained within the indicated range of stoichiometry and temperature for a residence time of 180 milliseconds. Accordingly, if limestone or dolomite is used as the inorganic alkaline absorbent, it will be used within the preferred temperature range of from about 1200° to 1600°K.

Example 3
Sulfur capture with Western coal
Residence time of approximately 225 milliseconds Kaiparowits coal

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Calcium/sulfur mole ratio</th>
<th>Stoichiometric ratio (fraction of theoretical air)</th>
<th>Sulfur capture (%)</th>
<th>Measured combustion gas temp. (°K)</th>
<th>Inlet air temp. (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>0.533</td>
<td>52.3</td>
<td>*</td>
<td>612</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.673</td>
<td>61.3</td>
<td>*</td>
<td>613</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>0.660</td>
<td>40.0</td>
<td>*</td>
<td>611</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>0.687</td>
<td>53.7</td>
<td>*</td>
<td>617</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>0.687</td>
<td>49.6</td>
<td>*</td>
<td>618</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>0.683</td>
<td>57.9</td>
<td>*</td>
<td>616</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>0.698</td>
<td>38.4</td>
<td>1431</td>
<td>614</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>0.319</td>
<td>97.4</td>
<td>1311</td>
<td>613</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>0.619</td>
<td>41.0</td>
<td>1389</td>
<td>616</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>0.619</td>
<td>59.3</td>
<td>1450</td>
<td>617</td>
</tr>
<tr>
<td>11</td>
<td>2.0</td>
<td>0.625</td>
<td>56.8</td>
<td>1478</td>
<td>609</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>0.629</td>
<td>58.3</td>
<td>*</td>
<td>621</td>
</tr>
<tr>
<td>13</td>
<td>2.0</td>
<td>0.625</td>
<td>52.5</td>
<td>*</td>
<td>617</td>
</tr>
</tbody>
</table>

*No measurement obtained.

It will be noted that only Test No. 8 of the above tests was within the claimed range of stoichiometry. Test No. 8, with 97.4% sulfur capture, was clearly superior to the other test results.

It is believed that the foregoing examples clearly demonstrate the efficacy of the present invention to capture substantial quantities of the sulfur constituents of a fuel, using an inorganic alkaline absorbent within certain limits of stoichiometry, temperature and residence time. It will be noted that certain data points indicate higher sulfur capture than would be expected from the general trend of the results obtained (see Tests 11 and 13 of Example 1 and Tests 10 and 12 of Example 2). It is not understood why these somewhat anomalous results occurred. Nonetheless, the overall data clearly indicate the trend for enhanced sulfur capture within the claimed range of stoichiometry.

The foregoing description illustrates a specific embodiment of the invention and what is now considered to be the best mode of practicing it. While the invention has been described, among other things, with respect to a certain preferred embodiment of an entrained flow combustor utilizing three combustion zones, it will be readily apparent that fewer or more combustion zones could be utilized. Alternatively, any other combustion apparatus could be used, such as a fluidized bed combustor which normally will be operated at the lower end of the temperature range and utilize longer residence times than herein described. In some instances, it may be desirable to remove the solid sulfur compounds formed in the sulfur capture zone prior to the final combustion of the fuel. In addition, the final combustion can be effected in a single zone as herein described. Alternatively, of course, the final combustion air may be added in multiple zones. It is within the scope of the present invention, and indeed a preferred application, that when the solid sulfur compounds are left in the combustion gases, a major portion of the final combustion zone would be, for example, the fire box or fire tubes of a boiler wherein heat is drawn off during final mixing and combustion with the final combustion air.
Claims

1. A method for substantially reducing emission of gaseous sulfur compounds formed during fuel combustion by introducing a sulfur-containing fuel, an alkaline absorbent and an oxygen-containing gas into a fuel sulfur capture zone to form a combustible mixture of fuel and oxygen, reacting said combustion mixture to form combustion products and discharging said mixture having a substantially reduced gaseous sulfur compound content, characterized in that the oxygen content of the combustible mixture corresponds to about 25 to 40% of the total stoichiometric amount required for complete combustion of the fuel and that after combustion the resultant mixture of fuel and combustion products is kept at a temperature of from about 1000° to 1800°K for a time sufficient for a desired amount of the fuel sulfur to react with the alkaline absorbent and form solid sulfur compounds.

2. The method of Claim 1 wherein said alkaline absorbent is selected from the group consisting of the oxides, hydroxides, and carbonates of magnesium, calcium, and sodium, and said temperature is maintained within the range of from about 1200° to 1600°K.

3. The method of Claim 2 wherein said alkaline absorbent is lime.

4. The method of Claim 2 wherein said oxygen is introduced in an amount to provide from about 32% to 37% of said total stoichiometric amount.

5. The method of Claim 1 wherein said temperature is maintained by preheating said oxygen-containing gas.

6. The method of Claim 1 wherein said resultant mixture is maintained at a temperature of from about 1200° to 1600°K for a time of from about 50 to 600 milliseconds.

7. The method of Claim 1 wherein said fuel is a solid carbonaceous fuel selected from the group consisting of asphalt, coal, coal tars, lignite, and petroleum by-products which are solid at ambient temperatures.

8. The method of Claim 7 wherein said resultant mixture is maintained in said first zone for a time of from about 200 to 600 milliseconds.

9. The method of Claim 1 wherein said fuel is selected from the group consisting of crude petroleum, petroleum residus, and petroleum by-products and said fuel is introduced as a liquid.

10. The method of Claim 9 wherein said resultant mixture is maintained in said first zone for a time of from about 50 to 200 milliseconds.

11. The method of Claim 1 wherein said alkaline absorbent is present in an amount to provide a molar ratio of alkaline absorbent to sulfur compounds within the range of from 1.5:1 to 3.0:1.

12. The method of Claim 1 wherein in excess of 70% of said fuel sulfur compounds in said first reaction zone reacts with the alkaline absorbent to form solid sulfur compounds.

13. A method for substantially reducing emissions of gaseous sulfur compounds and nitrogen oxides formed when burning a sulfur-and nitrogen-containing fuel, the improvement comprising:
 providing at least first and second combustion zones (16, 20);
 introducing the fuel into said first combustion zone (16);
 introducing air into said first combustion zone (16) to mix with the fuel and react therewith to form combustion products including gaseous sulfur compounds and nitrogenous compounds, said air being introduced in an amount to provide from about 25% to 40% of the total stoichiometric air required for complete combustion of the fuel;
 introducing a particulate alkaline absorbent into said first combustion zone (16);
 maintaining the resultant mixture of fuel, alkaline absorbent, and combustion products at a temperature of from 1000° to 1800°K in said first combustion zone (16) for a time sufficient for the alkaline absorbent to react with the gaseous sulfur compounds and form solid sulfur compounds;
 passing said mixture into at least a second combustion zone (20);
 maintaining said temperature of said mixture within said second combustion zone (20) in the range of 1800° to 2500°K while introducing additional air in an amount to provide about 45% to 75% of the total stoichiometric air required for complete combustion of the fuel and maintaining said mixture at said temperature for a time sufficient to reduce said nitrogenous compound content to a desired level; and
 discharging said mixture having a substantially reduced gaseous sulfur compound and nitrogen oxide content.

14. The method of Claim 13 wherein the solid sulfur compounds are removed from the gas stream between said first and second combustion zones.

15. The method of Claim 13 wherein said alkaline absorbent is selected from the group consisting of the oxides, hydroxides, and carbonates of magnesium, calcium, and sodium.

16. The method of Claim 13 wherein said temperature is maintained in said first and second combustion zones by the introduction thereto of preheated air.

17. The method of Claim 13 further including introducing the combustion products from said second combustion zone (20) into at least a third combustion zone (24) and maintaining said products at a temperature of from about 1600° to 2000°K while completing the combustion by the introduction of additional air in an amount to provide from about 100% to about 120% of the total stoichiometric requirements for complete combustion of the fuel.
18. An apparatus for burning a mixture of air and a sulfur-containing fuel with substantially reduced emissions of gaseous sulfur compounds comprising:
a burner assembly (10) including at least first and second combustion zones (16, 20) in flow communication with one another, said first combustion zone (16) having a length sufficient to provide a desired residence time for said mixture in said first combustion zone;
an inlet (12) for the introduction of fuel into said first combustion zone;
an inlet (14) for the introduction of air into said first zone (18) said fuel and air inlets being arranged to provide for mixing of said fuel and air upon their introduction into said first combustion zone (16);
means for regulating the introduction of air to provide from about 25% to 40% of the total stoichiometric air into said first combustion zone (16);
means for introducing an alkaline absorbent in intimate contact with the fuel introduced into said first combustion zone (16);
means for maintaining the temperature in said first combustion zone (16) within the range of from about 1000° to 1800°K;
an inlet (14) for introducing air into said second combustion zone (20);
means for maintaining the temperature in said second combustion zone (20) within the range of from about 1800° to 2500°K during the addition of air into said second combustion zone; and
means for discharging combustion products having a substantively reduced gaseous sulfur compound content.

20 Patente Ansprüche

2. Verfahren gemäß Anspruch 1, wobei das alkalische Absorptionsmittel ausgewählt ist der Gruppe bestehend aus den Oxiden, Hydroxiden und Carbonaten von Magnesium, Calcium und Natrium, und daß die Temperatur im Bereich von etwa 1200 bis 1600°K gehalten wird.

3. Verfahren gemäß Anspruch 2, wobei das alkalische Absorptionsmittel Kalk ist.

4. Verfahren gemäß Anspruch 2, wobei der Sauerstoff in einer Menge zur Schaffung von etwa 32 bis 37% der gesamten stöchiometrischen Menge eingespeist wird.

5. Verfahren gemäß Anspruch 1, wobei die Temperatur aufrechterhalten wird, indem man das sauerstoffhaltige Gas vorheizt.

6. Verfahren gemäß Anspruch 1, wobei das resultierende Gemisch bei einer Temperatur von etwa 1200° bis 1600°K während einer Zeitspanne von etwa 50 bis 600 Millisekunden gehalten wird.

7. Verfahren gemäß Anspruch 1, wobei der Brennstoff ein fester kohlenstoffhaltiger Brennstoff ist, ausgewählt aus der Gruppe bestehend aus Asphalt, Kohle, Kohleteere, Lignit und Petroleummenenprodukte, welche bei Umgebungstemperaturen fest sind.

8. Verfahren gemäß Anspruch 7, wobei das resultierende Gemisch in der ersten Zone während einer Zeitspanne von etwa 200 bis 600 Millisekunden gehalten wird.

9. Verfahren gemäß Anspruch 1, wobei der Brennstoff ausgewählt ist aus der Gruppe bestehend aus Rohölprodukten, Petroleumrückständen und Petroleummenenprodukten und der Brennstoff als eine Flüssigkeit eingespeist wird.

10. Verfahren gemäß Anspruch 9, wobei das resultierende Gemisch in der ersten Zone während einer Zeitspanne von etwa 50 bis 200 Millisekunden gehalten wird.

11. Verfahren gemäß Anspruch 1, wobei das alkalische Absorptionsmittel in einer Menge vorliegt zur Schaffung eines Molverhältnisses von alkalischem Absorptionsmittel zu Schwefelverbindungen in dem Bereich von 1,5:1 bis 3,0:1.

12. Verfahren gemäß Anspruch 1, wobei über 70% der Brennstoffschwefelverbindungen in der ersten Reaktionszone mit dem alkalischen Absorptionsmittel unter Bildung von feste Schwefelverbindungen reagieren.

13. Verfahren zur wesentlichen Verringerung der Emissionen von gasförmigen Schwefelverbindungen und Stickstoffoxiden, die beim Verbrennen eines schwefel- und stickstoffhaltigen Brennstoffes gebildet wurden, wobei die Verbesserung folgende Maßnahmen umfaßt: Schaffung von mindestens ersten und zweiten Verbrennungszonen (16, 20); Einspeisen des Brennstoffes in die erste Verbrennungszone (16);
Einspeisen von Luft in die erste Verbrennungszone (16) zur Vermischung mit dem Brennstoff und Umsetzung mit demselben zur Bildung von Verbrennungsprodukten einschließlich gasförmiger Schwefelverbindungen und stickstoffhaltige Verbindungen, wobei die Luft in einer Menge eingespeist wird zur Schaffung von etwa 25 bis 40% der gesamten stöchiometrischen Luftmenge, die für die vollständige Verbrennung des Brennstoffs erforderlich ist;

10 Halten der resultierenden Mischung von Brennstoff, alkalischem Absorptionsmittel und Verbrennungsprodukten bei einer Temperatur von 1000 bis 1800°K in der ersten Verbrennungszone (16) während einer ausreichenden Zeitspanne für die Umsetzung des alkalischen Absorptionsmittels mit den gasförmigen Schwefelverbindungen und Bildung von festen Schwefelverbindungen;

Weiterleiten der Mischung in mindestens eine zweite Verbrennungszone (20);

15 Halten der Temperatur der Mischung in der zweiten Verbrennungszone (20) in dem Bereich von 1800 bis 2500°K, während zusätzliche Luft in einer Menge eingespeist wird zur Schaffung von etwa 45 bis 75% der gesamten stöchiometrischen Luftmenge, die für die vollständige Verbrennung des Brennstoffs erforderlich ist, und Halten der Mischung bei dieser Temperatur während einer ausreichenden Zeit, um den Gehalt an stickstoffhaltigen Verbindungen auf ein gewünschtes Niveau zu reduzieren; und

20 Ablassen der Mischung mit einem wesentlich verringerteren Gehalt an gasförmigen Schwefelverbindungen und Stickstoffoxiden.

Verfahren gemäß Anspruch 13, wobei die festen Schwefelverbindungen zwischen der ersten und der zweiten Reaktionszone aus dem Gasstrom entfernt werden.

Verfahren gemäß Anspruch 13, wobei das alkalische Absorptionsmittel ausgewählt ist aus der Gruppe bestehend aus den Oxiden, Hydroxiden und Carbonaten von Magnesium, Calcium und Natrium.

Verfahren gemäß Anspruch 13, wobei die Temperatur in der ersten und in der zweiten Reaktionszone durch Einspeisung von vorgeheizter Luft aufrechterhalten wird.

Verfahren gemäß Anspruch 13, umfassend als weitere Maßnahme das Einspeisen der Verbrennungsprodukte aus der zweiten Verbrennungszone (20) in mindestens eine dritte Verbrennungszone (24) und Halten der Produkte bei einer Temperatur von etwa 1600 bis 2000°K, während die Verbrennung vervollständigt wird durch die Einspeisung von zusätzlicher Luft in einer Menge zur Schaffung von etwa 100 bis etwa 120% der gesamten stöchiometrischen Menge, die für eine vollständige Verbrennung des Brennstoffs erforderlich ist.

Vorräting zum Verbrennen einer Mischung von Luft und einem schwefelhaltigen Brennstoff mit wesentlich verringerter Emission von gasförmigen Schwefelverbindungen, umfassend:

eine Brennereinrichtung (10) umfassend mindestens erste und zweite Verbrennungszonen (16, 20) in Strömungsverbindung miteinander, wobei die erste Verbrennungszone (16) eine Länge aufweist, die ausreicht, um für die Mischung eine gewünschte Verweizelt in der ersten Verbrennungszone zu schaffen;

einen Einlaß (12) für die Einspeisung von Brennstoff in die erste Verbrennungszone;

einen Einlaß (14) für die Einspeisung von Luft in die erste Verbrennungszone (16), wobei die Brennstoff- und Luftperteilzahl so angeordnet sind, daß sie für ein Vermischen des Brennstoffs und der Luft bei deren Einführung in die erste Verbrennungszone (16) sorgen;

Einrichtungen zur Einstellung der in die erste Verbrennungszone (16) eingespeisten Luftmenge zur Schaffung von etwa 25 bis 40% der gesamten stöchiometrischen Luftmenge;

Einrichtungen zum Einspeisen eines alkalischen Absorptionsmittels in innigem Kontakt mit dem in die erste Verbrennungszone (16) eingespeisten Brennstoff;

Einrichtungen zum Halten der Temperatur in der ersten Verbrennungszone (16) in dem Bereich von etwa 1000 bis 1800°K;

Einrichtungen zum Ablassen von Verbrennungsprodukten mit einem wesentlich verringerteren Gehalt an gasförmigen Schwefelverbindungen.

Revendications

1. Un procédé pour diminuer dans une mesure importante l'émission de composés gazeux du soufre formés lors de la combustion d'un combustible par introduction d'un combustible contenant du soufre, d'un agent absorbant alcalin et d'un gaz contenant de l'oxygène dans une zone de captation du soufre du combustible pour formation d'un mélange combustible du combustible et de l'oxygène, réaction de ce mélange de combustion avec formation de produits de combustion et évacuation de ce mélange à teneur nettement résulte en composés gazeux du soufre, caractérisé en ce que le teneur en oxygène du mélange combustible correspond à environ 25 à 40% de la quantité stoechiométrique totale nécessaire pour une combustion complète du combustible et en ce que, après combustion, le mélange de combustible et de produits de combustion obtenu est maintenu à une température d'environ 1 000 à 1 800°K pendant une durée suffisante pour que la proportion voulue du soufre du combustible réagisse avec l'agent absorbant alcalin avec formation de composés solides du soufre.

2. Le procédé de la revendication 1 dans lequel l'agent absorbant alcalin est choisi dans le groupe 15
consistant en les oxydes, hydroxides et carbonates du magnésium, du calcium et du sodium, et en ce que la température est maintenue dans l'intervalle d'environ 1 200 à 1 600 °K.

3. Le procédé de la revendication 2, dans lequel l'agent absorbant alcalin est la chaux.
4. Le procédé de la revendication 2, dans lequel l'oxygène est introduit en quantité représentant d'environ 32 à 37% de la quantité stochiométrique totale.
5. Le procédé de la revendication 1 dans lequel ladite température est maintenue par réchauffage du gaz contenant de l'oxygène.
6. Le procédé de la revendication 1, dans lequel le mélange formé est maintenu à une température d'environ 1 200 à 1 600 °K pendant une durée d'environ 50 à 600 millisecondes.
7. Le procédé de la revendication 1 dans lequel le combustible est un combustible carboné solide choisi dans le groupe consistant en l'asphalte, la houille, les goudrons de houille, le lignite et les sous-produits pétroliers solides à température ambiante.
8. Le procédé de la revendication 7, dans lequel le mélange obtenu est maintenu dans la première zone pendant une durée d'environ 200 à 600 millisecondes.
9. Le procédé de la revendication 1 dans lequel le combustible est choisi dans le groupe consistant en le pétrole brut, les résidus de pétrole et les sous-produits pétroliers et en ce que ce combustible est introduit à l'état liquide.
10. Le procédé de la revendication 9, dans lequel le mélange obtenu est maintenu dans la première zone pendant une durée d'environ 50 à 200 millisecondes.

11. Le procédé de la revendication 1 dans lequel l'agent absorbant alcalin est présent en quantité correspondant à un rapport molaire de 1,5:1 à 3,0:1 entre l'agent absorbant alcalin et les composés du soufre.
12. Le procédé de la revendication 1, dans lequel plus de 70% des composés sulfurés du combustible réagissent dans la première zone de réaction avec l'agent absorbant alcalin, avec formation de composés solides du soufre.
13. Un procédé pour diminuer dans une mesure importante les émissions de composés gazeux du soufre et d'oxydes de l'azote formés à la combustion d'un combustible contenant du soufre et de l'azote, le perfectionnement comprenant:
14. l'introduction d'au moins une première et une seconde zone de combustion (16, 20):
15. le maintien du mélange formé de combustible, d'agent absorbant alcalin et de produits de combustion à une température de 1 000 à 1 800 °K dans la première zone de combustion (16) pendant une durée suffisante pour que l'agent absorbant alcalin réagisse avec les composés gazeux du soufre avec formation de composés solides du soufre;
16. le passage dudit mélange dans au moins une seconde zone de combustion (20);
17. le maintien du mélange dans la seconde zone de combustion (20) à une température dans l'intervalle de 1 800 à 2 500 °K et l'introduction de compléments d'air en quantité représentant environ 45 à 75% de l'air stochiométrique total nécessaire pour une combustion complète du combustible et le maintien dudit mélange à ladite température pendant une durée suffisante pour abaisser la teneur en composés azotés jusqu'au niveau voulu; et
18. l'évacuation dudit mélange à teneur nettement réduite en composés gazeux du soufre et oxydes de l'azote.
19. Le procédé de la revendication 13, dans lequel les composés solides du soufre sont séparés du courant gazeux entre la première et la seconde zone de combustion.
20. Le procédé de la revendication 13 dans lequel l'agent absorbant alcalin est choisi dans le groupe consistant en les oxydes, les hydroxides et les carbonates du magnésium, du calcium et du sodium.
21. Le procédé de la revendication 13 dans lequel ladite température est maintenue dans la première et la seconde zone de combustion par introduction dans ces zones d'air préchauffé.
22. Le procédé de la revendication 13, comprenant en outre l'introduction des produits de combustion sortant de la seconde zone de combustion (20) dans au moins une troisième zone de combustion (24) et le maintien de ces produits à une température d'environ 1 600 à 2 000 °K, avec achatèvement de la combustion par introduction de compléments d'air représentant environ 100 à 120% des exigences stochiométriques totales nécessaires pour une combustion complète du combustible.
23. Un appareillage pour brûler un mélange d'air et d'un combustible contenant du soufre avec des émissions considérablement réduites de composés gazeux du soufre, qui comprend:
24. un assemblage de brûleur (10) comprenant au moins une première et une seconde zone de combustion (16, 20) en communication entre elles par écoulement, ladite première zone de combustion (16) ayant une longueur suffisante pour assurer la durée de passage voulue pour le mélange dans ladite zone;
EP 0 073 231 B1

une tubulure d’introduction (12) pour l’introduction du combustible dans la première zone de combustion;
une tubulure d’introduction (14) pour l’introduction d’air dans la première zone (16), ces tubulures d’introduction de combustible et d’air étant disposées de manière à assurer le mélange du combustible et de l’air lors de leur introduction dans la première zone de combustion (16);
un dispositif permettant de régler l’introduction d’air à un niveau d’environ 25 à 40% de l’air stoechiométrique total dans la première zone de combustion (16);
un dispositif pour l’introduction d’un agent absorbant alcalin en contact intime avec le combustible introduit dans la première zone de combustion (16);

un dispositif permettant de maintenir dans la première zone de combustion (16) une température dans l’intervalle d’environ 1 000 à 1 800°K;
une tubulure (14) pour introduction de l’air dans la seconde zone de combustion (20);
un dispositif permettant de maintenir dans la seconde zone de combustion (20) la température dans l’intervalle d’environ 1 800 à 2 500°K au cours de l’addition d’air dans cette deuxième zone de combustion;
et
un dispositif pour évacuer les produits de combustion à teneur considérablement réduite en composés gazeux du soufre.