Method for manufacturing a circuit board with a through hole.

Priority: 25.07.81 JP 116566/81

Date of publication of application: 09.02.83 Bulletin 83/06

Publication of the grant of the patent: 23.04.86 Bulletin 86/17

Designated Contracting States: DE FR GB

References cited:
BE-A- 648 613
FR-A-1 534 709
FR-A-1 571 240

Proprietor: Kay, Kazuo
28-1 Kuwazu 3-chome
Higashi Sumiyoshi-ku Osaka (JP)

Inventor: Kay, Kazuo
28-1 Kuwazu 3-chome
Higashi Sumiyoshi-ku Osaka (JP)

Representative: Warden, John Christopher et al
R.G.C. Jenkins & Co. 12-15, Fetter Lane
London EC4A 1PL (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The present invention relates to a method for manufacturing a circuit board, and particularly to a method for manufacturing a circuit board provided with a so-called through hole.

Circuit boards used for electronic apparatus nowadays are frequently provided with a through hole in compliance with the demand for high density assembly of electronic parts. In response to such trend, various methods for manufacturing circuit boards, with purpose of improving the reliability in continuity of through holes have been proposed. Of those methods provided, from the viewpoint of the reliability of the through hole, so called the CC-4 method is considered to be highly recommendable as manufacturing method. However, this method cannot necessarily be regarded as preferable in terms of mass production, because of its defect that it takes as long as 20—30 hours for forming the metal layer of about 35μ thick.

Therefore, even now, many circuit boards having through holes are manufactured by methods which are continuations of the conventionally used processes which are called the etched foil process or the subtractive process.

Figure 1, (A) and (B) respectively show processes for manufacturing circuit boards with through holes, by using such methods as mentioned above. In Figure 1, (A) shows an example of manufacturing processes using a copper-clad laminate, while (B) in the same Figure shows an example wherein copper is precipitated and grown on plastic board for manufacturing.

In (A) of Figure 1, (b) shows the state wherein a pierced hole 3 is formed to be used as the through hole, at a desired position in a copper-clad laminate (a) with the specified dimensions. Designated at 1 is a board made of epoxy material or phenol material, and 2 is about 35μ thick copper foil adhered in advance onto the above-mentioned board 1. After providing the through hole 3, its surface is pretreated for surface activation, by means of chemical blocking and palladium solution, etc. Thereafter, electroless plating of copper is performed (c) of Figure 1 (A). Then, by using electropolishing, about 35μ thick copper plate 5 is precipitated and grown over the copper foil 2 as well as over the copper film 4 that is formed by the electroless plating over the surface of the through hole 3 (d) of Figure 1 (A)). Furthermore, the wiring section is masked with plating resist film 6 obtained by a technique of screen printing of epoxy system ink (e) of Figure 1 (A)). Finally, through removing the unmasked portion with etching solution, then by removing the foregoing plating resist film 6, the circuit board having the through hole with desired wiring pattern can be obtained.

In the method shown in (B) of Figure 1, the pierced hole 3 to be used as through hole is formed in the board with a specified size in the processing stages of (a) and (b), then, the copper film 4 is formed over the entire surface of the board, including the surface of the through hole 3, by electroless plating, in the process (c). Thereafter, by taking the respective processing steps of the formation of the plating resist film 6 (d) of Figure 1 (B)), the formation of the plated copper for the wiring section by electroplating (a) of Figure 1 (B)), and the etching (f) of Figure 1 (B)), the circuit board having the through holes with the desired wiring pattern is obtained.

However, such manufacturing methods generally have the following disadvantages.

First, in the manufacturing method shown in (B) of Figure 1, all copper foils necessary for the wiring are obtained by plating, and in such plating, sufficient chemical as well as physical adhesion cannot be expected to occur in the interface between the finished copper foil and board. Consequently, with time laps, so called pattern separation, etc. are caused, making it unfeasible to produce high quality circuit boards.

On the other hand, the manufacturing method with processing stages shown in (A) of Figure 1 uses the two-side copper-clad laminate as the starting material for the board, therefore, it is advantageous in that the defect as mentioned above can be avoided. In other words, because this two-side copper-clad laminate generally has the characteristic of effecting firm adhesion between the board and the copper foil, it is free of problems such as pattern separation. Also, it has the other merit that low price, low cost circuit boards can be manufactured. Nevertheless, as is clearly understood from the Figure, since this manufacturing method uses a wiring pattern designed to have a double layer structure, there are the following disadvantages accompanying it. That is, first, a long time is required for etching, thereby making it unworkable to obtain fine line, high precision patterning. Second, the waste in amount of copper used becomes large, resulting in a hindrance imposed on cost reduction.

As a result, the latter manufacturing method is defective in that it cannot satisfactorily meet the need for forming the high density, high precision wiring pattern that is in specific demand today, and also that it is insufficient in capability to achieve low costs and resources savings.

Therefore, an object of the present invention is to provide a method for manufacturing a circuit board that is completely clear of the defects of the prior art described above, while at the same time, maintaining the merits (high adhesiveness and low cost if the two-side copper-clad laminate).

In keeping with the principles of the present invention, the object is accomplished by a method for manufacturing a circuit board with a through hole, using the processes including: a selective etching of two-side copper-clad laminate in order to form the desired wiring pattern; boring a hole to be used as the through hole, at a specified location; masking of the board surface except the through hole surface, with a conductive layer and with an acidproof or alkaliproof layer, formation of conductive film over the through hole surface, by electroless plating:
formation of metal foil with appropriate thickness over the conductive film, through electroplating, by using the conductive layer as electrode at one end, and the removal of the conductive and the acidproof or alkali-proof layer.

The above-mentioned features and objects of the present invention will become more apparent by reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals and symbols indicate like elements, and in which:

FIGURE 1 (A) and (B) respectively show conventional methods for manufacturing circuit boards with through holes, in the order of the processing steps; and

FIGURE 2 shows a method for manufacturing a circuit board with a through hole, according to the present invention, in the order of the processing sequence.

Detailed description will hereunder be given of the embodiment of the present invention with reference to the drawings.

Figure 2 shows the method for manufacturing a circuit board according to the present invention, in the order of its processing sequence. The same marks are used for the portions equal to or correspond to, with respect to the structure, those in Figure 1.

The process shown in (b) of Figure 2 is that for masking the wiring section with the resist film 6 obtained by the technique of screen printing of the epoxy system ink, and by the etching the wiring pattern shown in (c) of Figure 2 is obtained. Thereafter, the pierced hole 3 to be used as the through hole is provided (113) of Figure 2). Next, the whole wiring section except the through hole portion is masked through printing with conductive ink 7 as a conductive layer over the board surface excluding the through hole surface, then, by further printing with pH-resistant ink 8 as a pH-resistant layer, i.e., the acid-resistant or the alkali-resistant ink 8 is printed over the surface printed with the conductive ink 7, by using a screen printing technique (113) of Figure 2). In this case, as the ink, waterproof ink is used so that it does not flow out during the washing that is carried out if necessary. As the conductive ink used in such case, for example, those obtained by mixing denatured phenol, epoxy, carbon powder, resin system resin, thinner system or alcohol system solvent, pigment, etc. may be used. Also, needless to say, the pH-resistant ink 8 that is laminated over the conductive ink 7 is selected depending on the pH of the plating solution.

After the masking with ink, the process is proceeded to the electroless plating of the through hole 3. The plating solution used in this process is obtained, for example, by using copper sulfate as metallic salt, while using formalin as reducing agent. After the completion of this process, a several micron thick copper film 4 is obtained as the substrate metal. In addition, in this process, it goes without saying that surface activation is performed as a pretreatment, by using a palladium solution, etc. Following this process, the electroplating process is started, by using the conductive ink 7 printed in the process (e), as the electrode at one end. As should be clearly understood, in this stage of the processing, because the conductive ink 7 is covering the surface of the board except the surface of the through hole 3, the copper film 4 at every through hole is in the state of continuity with such conductive ink 7. Consequently, through applying the electroplating for the appropriate duration, the plated copper 5 of the specified thickness (generally, about 35μ) is formed only on the portions other than the board surface masked with the acidproof or the alkaliproof ink 8, that is, only over the copper film 4 formed by the electroless plating (113) of Figure 2). After completing the through hole that is processed to be in continuity by the treatments mentioned above, through removing the conductive ink 7 and the acidproof or the alkaliproof ink 8 laminated in the process (113) of Figure 2), the circuit board with finished through holes having the specified distribution pattern can be obtained.

In the manufacturing method described above, what is completely different from the conventional methods is that, in the processing stage of the electroplating of the through hole, the medium composing the electrode is formed of the conductive layer of a film or an ink layer that can be removed later quite easily.

Different from the foregoing method, because the manufacturing method according to the present invention uses the conductive layer of a film or an ink layer as the electrode in the processing stage of the electroplating as mentioned above, the wiring section is not formed into the double layered structure. Accordingly, the etching time can be cut short, and the high precision can be achieved for its distribution pattern, besides, the quantity of the copper used can be minimised.

As has been described above, according to the present invention, the amount of the copper used that affects greatly on the manufacturing cost can be minimised, and also the etching time can be reduced. Therefore, high precision and high density patterning can be implemented. In addition, through the reduction in etching time, the power consumption can be substantially cut down, thereby contributing also in terms of the energy economisation.

In the description given above, copper is applied as the metal used, but the other metals, such as nickel, may be also used. Furthermore, when using the through hole for connecting a lead wire, it is naturally acceptable to modify the printing of the inks 7 and 8, so that the upper and lower portions of the plated copper mask the edge portion of the copper foil 2. Instead of the ink layer as stated above, the conductive layer may be a conductive film. Similarly, as the acid-proof layer and the alkali-proof layer, instead of the ink layer as stated above, it may be a pH-resistant film. Such a film can be formed as a substrate of polyethylene, polyamide or the like with addition of
conductive agents of carbon or the like or a pH-resistant agent. Using such a film, accuracy can be improved through the use of a photo-etching process.

Claims

1. A method for manufacturing a circuit board with one or more through holes characterised by:
 - forming a wiring pattern by selective etching on a two-side copper-clad laminated body;
 - providing a pierced hole (3) to be used as through hole at a specified location;
 - masking the surface of said board except said pierced hole portion with a conductive layer (7) and a pH-resistant layer (8);
 - forming a conductive film (4) over the surface of said pierced hole portion by electroless plating;
 - forming a metal foil (5) over said conductive film (4), through electroplating, by using said conductive (7) layer as an electrode at one end; and removing said conductive layer as well as pH-resistant layer.

2. A method according to claim 1, wherein said pH-resistant layer (8) is formed of acid-proof ink.

3. A method according to claim 1, wherein said pH-resistant layer (8) is formed of alkali-proof ink.

4. A method according to claim 1 wherein the pH-resistant layer (8) is formed of a film.

5. A method according to any preceding claim wherein the conductive layer (7) is formed of an ink or film soluble in thinner or alcoholic solvent.

Revenations

1. Procédé pour fabriquer une plaquette de circuit pourvue d’un ou de plusieurs perçages traversants, caractérisé par les étapes consistant:
 - à former un dessin de câblage, par un découpage sélectif, sur un corps stratifié portant un revêtement de cuivre sur ses deux faces;
 - à réaliser par perçage, en un endroit spécifié, un trou (3) destiné à être utilisé comme perçage traversant;
 - à masquer la surface de ladite plaquette, hormis ladite partie pourvue du trou, à l’aide d’une couche conductrice (7) et d’une couche insensible aux pH (8);
 - à former un film conducteur (4) sur la surface de ladite partie pourvue du trou, par un placage sans électrolyse;
 - à former une feuille métallique (5) sur ledit film conducteur (4), par un placage électrolytique dans lequel on utilise, à une extrémité, ladite couche conductrice (7) comme électrode; et
 - à éliminer ladite couche conductrice ainsi que la couche insensible aux pH.

2. Procédé selon la revendication 1, dans lequel ladite couche insensible aux pH (8) est constituée par une encre résistante aux acides.

3. Procédé selon la revendication 1, dans lequel ladite couche insensible aux pH (8) est constituée par une encre résistante aux alcalis.

4. Procédé selon la revendication 1, dans lequel la couche insensible aux pH (8) est formée par un film.

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel la couche conductrice (7) est constituée par une encre ou un film soluble dans un diluant ou un solvant alcoolique.

Patentansprüche

1. Verfahren zur Herstellung einer Schaltungsplatte mit einem oder mehreren Durchgangslochern, gekennzeichnet durch folgende Verfahrensschritte:
 - Bilden eines Leitungsmusters auf einem zwei-seitig kupferbeschichteten plattenförmigem Körper durch selektives Ätzen;
 - Vorsehen eines als Durchgangsloch verwendbaren durchgebohrten Loches (3) an einem vorgesehenen Ort;
 - Maskieren der Oberfläche der Platte mit einer leitenden Schicht (7) und einer pH-widerstandsfähigen Schicht (8), mit Ausnahme des Bereichs des durchgebohrten Loches;
 - Bilden eines leitenden Films (4) über der Oberfläche des Bereichs des durchgebohrten Loches durch stromloses Plattieren;
 - Bilden einer Metallfolie (5) über dem leitenden Film (4) durch Elektroplattierung, wobei die leitende Schicht (7) auf einer Seite als Elektrode verwendet wird; und
 - Entfernen der leitenden Schicht und der pH-widerstandsfähigen Schicht.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der pH-widerstandsfähige Schicht (8) aus säurefester Tinte gebildet wird.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die pH-widerstandsfähige Schicht (8) aus alkalfester Tinte gebildet wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die pH-widerstandsfähige Schicht (8) aus einem Film gebildet wird.

5. Verfahren nach einem der vorangegangen Ansprüche, dadurch gekennzeichnet, daß die leitende Schicht (7) aus Tinte oder einem Film gebildet wird, die in einem Verdünnungsmittel oder einem alkoholischen Lösungsmittel löslich sind.