EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification:	13.11.85
Application number:	82302722.2
Date of filing:	26.05.82
Int. Cl.	F 24 F 7/04, F 24 F 3/16, E 04 C 2/52

Modular room construction.

Priority: 26.05.81 GB 8115964

Date of publication of application: 22.12.82 Bulletin 82/51

Publication of the grant of the patent: 13.11.85 Bulletin 85/46

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
- DE-A-1 912 020
- DE-A-2 215 597
- DE-A-2 856 074
- US-A-3 522 724

Proprietor: Roberts, Graham Steed
Turret House 24 Church Street
Camberley Surrey (GB)

Proprietor: Smith, David Trevor
"Rudwicks", Rudwicks Close Felpham
Bognor Regis Sussex (GB)

Proprietor: Woolsey, Brian John
"Sunnyside", Surbiton Golf Course
Woodstock Lane
South Chessington Surrey (GB)

Inventor: Roberts, Graham Steed
Turret House 24 Church Street
Camberley Surrey (GB)

Inventor: Smith, David Trevor
"Rudwicks", Rudwicks Close Felpham
Bognor Regis Sussex (GB)

Inventor: Woolsey, Brian John
"Sunnyside", Surbiton Golf Course
Woodstock Lane
South Chessington Surrey (GB)

Representative: Silverman, Warren et al
HASELTINE LAKE & CO. Hazlitt House 28
Southampton Buildings Chancery Lane
London WC2A 1AT (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

This invention relates to a room construction made up from a modular wall construction system which includes rigid wall panels having a double skin construction.

The building of room constructions from rigid wall panels having a double skin construction, which panels are to be secured together at up-standing marginal regions has been described in a number of documents. Thus German Offenlegungsschrift No. 1,812,020 describes a building element for use in the production of such a construction and which is to act as part of an irradiation, heating, cooling and/or air conditioning arrangement. For this purpose, a sandwich construction may consist of a pair of radiation surface layers with an insulating layer therebetween. Within the body of insulating material there is provided conduction means for heating or cooling fluid or the like whose heating or cooling effect is to be felt at the wall surface. For air conditioning purposes, ducts may pass through the insulating layer and communicate at intervals with vents leading into the room interior. Likewise ducts communicating with the room interior through openings may serve to remove stale air from the room.

In addition German Offenlegungsschrift No. 2,856,074 discloses a double-shell wall element for a bathroom or like steam-subject room, which comprises a forward steam-permeable wall member to be directed towards the room and a rear wall member arranged at a distance from the forward wall member with support members therebetween. These latter are in the form of longitudinally extending ribs or the like which are distributed over the width of the wall element. An opening in a lower region of the rear wall element admits normal, i.e., dry air to circulate in the wall element and keep it dry. The panel members are themselves made of permeable asbestos cement and there is provision for the removal of moisture laden air from the interior of the wall element by means in the upper region of the panels connected to extraction ducts.

Neither such construction is appropriate to the construction of rooms which are to be rendered sterile and dust free and for which a requirement exists for example in the pharmaceutical, electronic, biochemical, chemical, atomic energy, food processing, optics, aerospace, photographic and dairy industry fields, as well as in the medical sphere and in hospitals, for example in operating theatres. It may be mentioned that the wall surfaces of the wall panels disclosed in the citations have no provision for the minimising of dust formation therefrom or for minimising the settling of dust thereon.

Finally U.S. Patent Specification No. 3,115,819 describes a prefabricated enclosure wherein environmentally controlled air is uniformly distributed throughout the enclosure and caused to rise up through air spaces within the walls for recirculation through an air conditioning unit. The enclosure itself is of modular construction for assembly within existing facilities, being made up from wall sections which are attached together. The wall sections are each of multi-component construction comprising an outer portion of insulating material and an inner portion of relatively hard surface material spaced from each other by spacer bars. The wall panels are thus of complicated construction not suited to ease of manufacture. Moreover, the panels require arrays of brackets to secure them to the floor and spacer bars externally positioned over abutment joints between adjacent panels to join the panels, thereby indicating a complicated assembly system for the enclosure.

It is an object of this invention to provide a room construction of modular type which by the construction of its wall panels assists in the attainment and maintenance of sterile and dust free conditions in the room.

According to the present invention, there is provided a room construction comprising a plurality of rigid cast wall panels having an integrally moulded double skin construction with an air space existing between opposite skins thereof, which panels are to be secured together at up-standing marginal regions thereof, the room construction including a ceiling constructed from a plurality of ceiling panels and the wall panels being formed from moulded glass reinforced plastics material and including thereamong a plurality of panels each having in a lower region thereof at least one inlet thereinto from the room interior for communicating the room interior with the interior of the panels and means in an upper region thereof above ceiling level for communicating the interior of the respective panels with extraction ducts, the wall panels of the room construction being coved at their base edges to provide a rounded surface transition from wall to floor within the room.

With such a room construction, it is preferred that adjacent in line pairs of said wall panels are joined by paired in parallel single walled panels coved at their base edges and providing surfaces continuous with those of the panels which they join at substantially all positions over the height thereof at least up to ceiling level, the paired panels providing therebetween service supplies to the room.

In addition to separating one room or area from another, the wall panels of a room construction embodying the invention enable, as a result of their double skin construction, air to be extracted from within the room to air extraction ducting above ceiling level allowing for possible recirculation to the room in a closed system incorporating appropriate filters. The room construction will include one or more panels or uprights having provision for the fitting of doors whose frames can optionally be entirely above the coving level so that the smooth wall to floor transition is maintained at all points around the room. Some of the wall panels can be of modified construction, similar to window constructions, to enable knock-
out emergency exit panels to be fitted therein.

In practice, it will be the majority if not all of the panels not provided with such fittings as doors or knock-out panels which will provide the aforementioned air circulation facility. For this purpose, they will usually have an air intake duct at floor level for extraction of air and dust in the room at the position where dust concentration is likely to be most intense. The air extraction duct from above the ceiling can optionally be coupled to a common air conditioning or heating and ventilating duct or can be linked to independent air conditioning or heating and ventilation plants for each of the rooms created by the panelling.

The type of air flow achievable with a room construction embodying the invention may be of one of three types:

1. Conventional air flow where air is fed into the room through a filter in the ceiling thereof and removed from the room at air extract ducts as aforesaid positioned at floor level.

2. Horizontal air flow, where air passes unidirectionally across the room via a bank of filters in one wall to a wall face on the opposite side of the room made up of perforated wall panels.

3. Vertical air flow wherein air is admitted through a ceiling filter bank. A perforated false floor with a coved transition occurring between it and the wall panels is positioned in the room space above floor level. Air entering the room passes downwardly through the perforations in the false floor into a sub-floor area to enter air intake ducts at sub-floor level and to pass up through the double skinned wall panels to above ceiling level to be returned to a fan.

The individual wall units may either be bolted directly to one another or supported by a combination of vertical posts fixed to the floor on a grid spacing with support brackets rigidly fixing panel unit to adjacent panel unit. Such vertical posts are hidden behind service panels which are likewise coved at their transition to the floor and ceiling. The service panels provide the service of connecting the profiles of the main panels either side and allow mechanical/electrical services to be brought down (or up) to the room.

Although all of the wall panels with the exception of those which have provision for doors or knock-out panels may include air intake ducts, these will generally be provided at only one skin. The panels can accordingly be handed which allows a single wall panel thickness of wall to be provided between adjacent rooms in a multi-room construction with the facility for air extraction being provided in each room to individual or common duct systems by hanging of the panels so that for example alternate main wall panels provide extraction facility from one room with the intermediate panels facing the other way providing a like facility in the adjacent room.

For a better understanding of the invention and to show how the same can be carried into effect, reference will now be made, by way of example only, to the accompanying drawings wherein:

FIGURES 1A, 1B and 1C respectively show in elevation, vertical cross-section and plan view one form of wall panel incorporating a floor level air extracting duct for use in forming a room construction embodying the invention:

FIGURES 2A and 2B are an elevation with parts cut away and a vertical cross section through a modification of the panel of Figure 1, provided with a security filter;

FIGURES 3A and 3B are an elevation of and a vertical cross-section through a third form of panel having provision for horizontal unidirectional air flow extraction.

FIGURES 4A, 4B and 4C are respectively an elevation, a vertical cross-section through and a plan view of a panel of the type shown in Figures 3A and 3B incorporating additionally a security filter;

FIGURES 5A, 5B and 5C are respectively an elevation, a vertical cross-section through and a plan view of a blank wall panel which can optionally include piped and cable services;

FIGURES 6A and 6B are respectively an elevation of and a vertical cross-section through a wall panel embodying the invention incorporating an emergency exit from the room of which the panel forms a wall part and

FIGURES 6C and 6D are details to a large scale of features shown in Figure 6B;

FIGURE 7A is an elevation of a panel incorporating a viewing window and FIGURE 7B shows in vertical cross-section, the viewing window;

FIGURES 8A and 8B are respectively an elevation of and a vertical cross-section through an alternative form of window construction to that shown in Figure 7B;

FIGURES 9 and 10 are perspective views of alternative forms of corner panels which enable between them most forms of room shape to be accommodated;

FIGURES 11A and 11B are respectively an elevation of and a vertical cross-section through a services panel which links one main panel face to another;

FIGURE 12 is a plan view of a corner region of a room construction embodying the invention and showing standard dimensioned wall panels used in the room construction;

FIGURES 13A, 13B, and FIGURES 13C and 13D show in elevation and transverse cross-section typical door constructions for inclusion in a room construction embodying the invention;

FIGURE 14 shows in perspective view from above ceiling elements of the room construction;

FIGURES 15A and 15B are vertical sections at right angles to one another through the ceiling panels at their position of connection to roof girders of a building in which the room construction is set up;

FIGURE 16 is a perspective view of a triple room construction embodying the invention in a corner region common to the three rooms;

FIGURE 17 is a perspective view of a multi-room construction embodying the invention; and

FIGURES 18A, 18B and 18C show schematically
respectively conventional air flow, horizontal air flow and vertical air flow achieved in room constructions embodying this invention.

In various of the foregoing figures, vertical sections shown in B figures are taken through the corresponding A figures at A-A.

Referring to Figures 1A to 1C of the drawings, there is shown what may be termed a basic wall panel 1 for a room construction embodying the invention. In order that a modular system should be built up incorporating such wall panels, all elements of the room construction will have dimensions which are the same, a whole number multiple or a fraction thereof. Thus it is envisaged that the wall panel of Figures 1A to 1C will have a width of 1000 mm. The wall panel is of double skin construction and is preferably moulded from glass reinforced polyester which has the advantageous qualities for the aforementioned uses of lightness, strength, durability, chemical resistance and reproducible finish. The panel has opposed skins 1a and 1b (see Figure 1B). The wall panel is a closed element but for the provision of an air duct inlet 2 at floor level and an air extract spigot 3 above ceiling level. The main wall surfaces 1a and 1b are coved at their transition to a base 4 of greater width than the thickness of the panel. The coves are stepped at 5 above the base floor to enable a floor screed to finish flush with the horizontal face of the cove allowing sheet, painted or tile floor finishes to be accommodated. The walls are stepped forward from the vertical face of the cove at 6 to allow a flooring material such as sheet, trowelled or painted flooring to be applied continuously up the curved surfaces to the wall step to finish flush with the wall face of the panel. Lugs 7 (see Figures 1A and 1C) are formed integrally with the side skins of the panel to provide means for the fixing of the panels to support posts or to adjacent panels as will be described hereinafter. Coves 8 are moulded at ceiling level into the main skins of the panels to provide a smooth transition from wall to ceiling. The wall panel air outlet spigot 3 is moulded into one main panel skin (the choice is immaterial) above ceiling level.

Referring to Figures 2A and 2B in which like reference numerals represent like parts in Figures 1A to 1C, a panel of fundamentally like construction to that shown in Figures 1A to 1C incorporates in addition in the interior thereof just above the wall panel air duct inlet 2 a filter frame 9 carrying a security filter 10. The filter is accessed for renewal via the air duct opening 2 and is held and sealed against the filter frame mechanically (not shown).

Referring next to Figures 3A and 3B in which again like reference numerals represent like parts in Figures 1A to 1C, a wall panel 100 for use in a room construction embodying the invention but which is to be employed in a unidirectional horizontal air flow system through the room comprises one main skin 11 which is formed with a plurality of perforations over its surface area. These perforations may also be included in a skin 12 which lies across the air intake duct inlet 2. With such a construction, air can be drawn from the room into the wall panel duct evenly over the whole face of the perforated skin. As an alternative to forming the perforated skin integral with the remainder of the panel, it may be convenient for the panel to be formed without such skin and for a separately formed element to be connected as a second main skin to the remainder of the panel by adhesive bonding or the like.

Figures 4A and 4B show an alternative position for accommodating a security filter to that shown in Figures 2A and 2B, the security filter here being an element 13 provided on flange element 14 attached to the air extract spigot 3 above ceiling level. Such a position of air security filter is applicable to the panel constructions of Figures 1A to 1C and 3A and 3B and is of particular value with the panel construction of Figures 3A and 3B because of the provision of the perforated skin section at the position of the security filter of Figure 2.

It is not essential for all of the standard size wall panels of the room construction embodying the invention to include provision for air circulation therethrough. Thus referring to Figure 5, there is shown a wall panel 200 which apart from the absence of an air extraction spigot is dimensioned overall similarly to a panel of the preceding figures. However an air intake duct is absent from a lower region so that an opposed pair of completely coved base portions 15 is provided. To provide a measure of heat insulation, for temperature controlled rooms and other specific applications, the interior of the panel is filled or lined with suitable insulation material 16.

In order to comply with statutory regulations concerning fire and for other hazards personal escape routes using emergency exits within such rooms are required. Figures 6A and 6B show a personal emergency exit “knock out” panel 17 built into one of the wall panel skins 1a of a panel 300. The other wall panel skin 1b incorporates a cutaway section 18 to provide clear access once the knock out panel has been removed. The emergency exit “knock out” panel is held and sealed into the wall panel skin 1a with a rubber gromet 19 (Figure 6C). The rubber gromet overlaps the joint seal on each side of the panel at a handle position 20 (Figure 6A) so creating a tab handle 21 on one or either side of the “knock out” panel 17 (see the enlarged scale view 56 tab handle 21 in Figure 6D) on which a handle 22 is affixed. Access through the panel can be achieved in an emergency from either side by pulling the tab handle 21 on the appropriate side so stripping the gromet from the wall panel and “knock out” panel 17 thereby allowing the emergency exit panel to be pushed out. The provision of the tab handles on both sides and the provision of see-through windows of which the panel 17 may be one make it possible for either the person working in the room to escape or for rescuing personnel to reach him.

A viewing facility into the room can be provided
in ways additional to those envisaged in connection with Figure 6A. For example a conventional panel, that is having air flow therethrough may nevertheless have a viewing window to enable occupants outside a room to view activities in the room. Thus referring to Figure 7A, a panel 400 of the like format to that shown in Figures 1A to 1C has additionally a glazed portion 23 in each of the main skins in direct line across the panel cavity. Referring specifically to Figure 7B which is a section through Figure 7A at B—B, the glazed panels 23 can be seen to be held into the wall panel with rubber gromets 24. As an alternative to this holding arrangement, in Figure 8A and Figure 8B (a section through Figure 8A at C—C, glazing panels 23 are held in rebates 25 moulded into each of the panel skins by means of adhesive 26 applied to the rebates.

As previously indicated, the integral lugs 7 on all wall panels of a room construction embodying the invention play a part in enabling a room construction to be formed utilizing the wall panels. Thus referring to Figure 9, a vertical internal corner piece 500 enables two wall panels at right angles to each other to be connected and at the same time provides a smooth transition around the corner both at floor and wall level. The corner piece 500 comprises two main walls 27 and 28 at right angles to each other which nestle into the right angle formed between the lugs 7 and the wall skins of the panels from which they project. The corner piece has a similar profile to the wall skins for which it is to provide a continuous surface, including concave rounding in the region where the walls 27 and 28 come together (coving 29) and coving 30 in a base region for providing the aforementioned smooth transition both from wall to wall and from wall to floor. Integrrally moulded with the corner piece in an upper region thereof are sections of corner cove 31. The corner piece is bonded and sealed to the wall units.

The corner unit of Figure 9 provides a neat finish within a room. If a corner position is common to two or more rooms then an appropriate number of corner pieces 500 will be employed, one corner piece being employed between each two wall skins at right angles to each other. Where wall skins are external to a plurality of room constructions embodying the invention, then two types of filler elements are proposed for providing a neat appearance on the exterior of the room assembly. Thus Figure 10 shows an external corner piece which is to be employed where only two wall panels embodying the invention come together and are given a smooth connection within the room by a corner piece 500 of Figure 9. The corner piece 500 of Figure 10 maintains an identical profile to the wall panels and utilises the lugs 7 on the sides of the wall panel for its location. A cove 33 is moulded into an upper region of the panel to be continuous with coving 8 on the outside of the exterior skin 1a of the wall panel and coving 34 is provided around the two sides 35 of the corner piece. The corner piece is bonded and sealed into the wall panel unit.

Where there is a T-junction between walls of adjacent rooms, then use will be made of two corner sections of the type shown in Figure 9 within the room and a flat service panel 700, generally 200 mm wide as shown in Figures 11A and 11B. This maintains the basic profile of the panels, although extending up to ceiling level only, and includes a coved portion 36 at the base thereof and a cove 37 which are intended to be continuous with coves of adjacent wall panels. These service panels can also be employed to box in support posts (see Figure 16) to be positioned between panels assembled in a straight line. The service panels 700 are fixed in place with simple mechanical locators and subsequently the joint is sealed.

Service supplies to the room can be fed behind the service panels to terminate within the rooms for onward connection to equipment used within the rooms. The service panels are split at the base so that the main part 700 may be removed conveniently during the life of the room to allow additional services to be installed as required.

Referring next to Figure 12 there is shown in plan view a typical assembly of panels embodying the invention, together with appropriate corner pieces and service panels. The panels shown can be of the type shown in Figure 1 and there are shown in combination corner pieces 500 and 800 of Figures 9 and 10 respectively with additional support being provided by a corner post 38 to which the lugs 7 of the panels are bolted. Service panels 700 of Figure 11 are shown at two positions. Firstly they are shown at a position at which adjacent panels are connected together at upstanding slotted members 39 into the slots of which the lugs 7 of the panels engage. These fixing elements are an alternative to the fixing posts to be described hereinafter with reference to Figure 15. The alternative use of the service panels 700 is in the formation of a door jamb 40 (see hereinafter with reference to Figures 13A to 13D).

Figure 12 is also useful in showing how a single wall formed of panels embodying the invention may be used in the extraction of air from adjacent rooms. This is made possible merely by the alternate handing of panels in a run thereof.

Referring next to Figures 13A and 13B, a single door 42 is shown to be incorporated into a main panel 800, typically a panel of the type shown in Figure 5.

A subframe 41 is incorporated inside the panel 800 allowing the door hinges 43 to be secured through the panel door jamb. Most door and hinge types can be accommodated (including rebated door jambs) in this manner. The base of the door jamb is coved at 45 in a similar fashion to the coving 5 of the main panel 800.

Figures 13C and 13D illustrate how a double door arrangement 44 is accommodated by the combination of two modified main panels 900 and a shortened service panel 1000. Analogous constructional features to those shown associated with door 42, in particular, hinges 43 and
subframe 41 (see Figure 13A) are incorporated in the double door of Figures 13C and D.

Referring to Figure 14, a ceiling construction for rooms constructed according to the invention may be made up from a plurality of ceiling units 46 having for example the standard module dimension of 1200 mm of the panels and extending wall to wall. The panels 46 are channel shaped in cross-section, having flanges 47 providing surfaces for connecting one panel to another with mechanical fixings, adhesive or sealant 48 (Figure 15B). As can be seen particularly well from Figures 15A and 15B, the flanges 47 also act as brackets for the support of the ceiling below a permanent feature of the building in which the room construction is formed. For example roofing girders 49 of the type shown in Figure 14 may be formed with flanges 50 through bores in which pass hook bolts 51 entering appropriate openings in the flanges 47 of the panels. At wall junctions, the ceiling panels are bonded and sealed to the ceiling coves. Light fittings and filter housings may be fitted to and bonded into the ceiling panels 46 in appropriate manner (not shown).

A fuller overall appreciation of the manner in which multiple room structures can be built up embodying the invention from panels as aforesaid will be best appreciated by reference to Figures 16 and 17 in which like reference numerals denote like parts in the preceding Figures.

For the purposes of simplicity, it may be assumed in Figure 16 that the wall panels given the letters H to R are all of the type shown in Figures 1A to 1C, the panels being supported on posts 53 clad in service panels 700. Each panel is provided with a floor level air duct opening 2 with adjacent panels being oppositely handed so that overall provision is made along the length of one wall for air to be extracted therethrough from the two rooms which it separates. A proprietary floor finish such as vinyl sheeting 52 lies on the floor above screeching and enters into and around the openings to the openings 2. Depicted in Figure 16 are three rooms A, B and C divided by the walls made up of panels H to R. Air is extracted from room A via floor level openings 2 to respective outlet ducts at spigots 3 from which it is connected into the main heating and ventilating or air conditioning duct work. Ducts in panels P, Q and R serve room A. Air from room B is extracted in independent duct panels L, M and N and air from room C is extracted in independent duct panels H, J and K. In the interests of clarity the ceiling panels are not shown, although the ceiling coves 32 are shown.

Figure 17 shows a multi-room construction in which wall panels as aforesaid are employed to construct six rooms A to F arranged with rooms A to C on one side of a corridor 54 and the rooms D to F on the other side. The corridor is divided up by double doors, 44 of the type shown in Figures 13C and 13D at the position of room dividing walls 55 and 56. A door 42 of standard unit width communicates rooms A and B. Room A is shown to have provision for unidirectional horizontal air flow therewithin, incorporating panels of the type shown in Figures 3A and 3B. Room E shows the arrangement of ceiling panels 46 and a roof gird construction 58 can be seen to be extending above ceiling level through room D. Viewing windows 23 are shown in some of the wall panels of room E.

Referring finally to Figures 18A, 18B and 18C, the diagrammatic air flow through rooms constructed according to the invention can be seen. In each case a fan 59 is shown. This will not normally be placed above the room but at a central position to which extend duct work from individual panels and rooms and from which extends duct work back to the room. Filters 60 are provided at ceiling level (Figure 18A or Figure 18C) or as a wall (Figure 18B). Arrows denote the direction of air flow in each case. In Figure 18A air flow is through ceiling mounted filters 60 into the room and out thereof through air ducts openings 2 at floor level, up through the wall panels and back to the fan 59. In Figure 18B, opposite walls 60 and 61 are provided for horizontal air flow therethrough. Entry walls 60 are filter banks. Finally in Figure 18C, above the lower floor 62 of the room is provided an intermediate false floor 63 formed with small openings (not shown). This is the operative floor of the room above which all normal activity will take place. Air enters the room through a filter bank 64 occupying the entire ceiling area, but passes vertically downwards through an intermediate floor grill to a sub-floor space from which it is drawn into the interior of the panels through air duct openings. The smooth floor to wall transition of Figures 1 and 2 maintained by the provision of coving between the upstanding wall surfaces 65 and the false floor 63. From the foregoing, it will be apparent that room constructions can be provided embodying the invention which may be of the sealed pressure type with smooth, crevice and ledge-free room surfaces. The room construction is primarily intended to serve the needs of industries, research and medicine where cleanliness and/or sterility or an intrinsic requirement for the operations to be performed within the rooms. The room constructions embodying the invention are nevertheless also suitable for use as temporary or semi-permanent rooms within buildings which may be employed where a high density of people is anticipated, such as theatre foyers, lecture theatres, conference rooms, dance halls, discotheques, where the ready provision of air flow ducting arrangement without the need for unsightly ducts to be visible can be provided quickly and relatively inexpensively.

Claims

1. A room construction comprising a plurality of rigid cast wall panels having an integrally moulded double skin construction with an air space existing between opposite skins (1a, 1b) thereof, which panels are to be secured together

...
at upstanding marginal regions thereof, the room construction being characterised by including a ceiling constructed from a plurality of ceiling panels and by the wall panels being formed of moulded glass reinforced plastic material and including thereon a plurality of panels each having in a lower region thereof at least one duct inlet (2) thereto from the room interior for communicating the room interior with the interior of the panels and means (3) in an upper region thereof above ceiling level for communicating the interior of the respective panels with extraction ducts, the wall panels of said room construction being coved at their base edges to provide a rounded surface transition from wall to floor within the room.

2. A room construction according to claim 1, wherein said panels are joined by single walled panels (700) coved at their base edges and providing surfaces continuous with those of the panels which they join at substantially all positions over the height thereof at least up to ceiling level, the panels providing therebehind service supplies to the room.

3. A room construction according to claim 1 or 2, wherein each of said plurality of wall panels comprises a floor level air duct inlet (2).

4. A room construction according to any one of claims 1 to 3, wherein said panels are stepped (5) at their coves above the base floor to enable a floor scree to finish flush with the horizontal face of the cove and are stepped forward (6) from the vertical faces of the cove to allow a flooring system to be applied continuously up the coved surfaces to end flush with the wall face of the panels.

5. A room construction according to any one of the preceding claims, including panels of double construction which have one upstanding wall surface (11) formed with a plurality of apertures disposed thereover for enabling horizontal air flow into the panels to take place across the room construction.

6. A room construction according to any one of claims 1 to 4, which comprises a lower floor (62) at which are positioned floor level air duct inlets (2) of said wall panels and which contains above said lower floor (62) a perforated false floor (63), with interposition of coving to provide a rounded transition thereto from the wall panels (65), whereby vertical air flow from ceiling to floor is able to take place within the room constructions.

7. A room construction according to any one of the preceding claims, wherein the wall panels incorporate therein a security filter (10, 13).

8. A room construction according to claim 7, wherein the security filter (13) is positioned within the duct inlet (2) of each said panel having a duct inlet.

9. A room construction according to claim 7, wherein the security filter is housed in an air outlet of the panel for communicating the panel interior with an extraction duct spigot (3) at an upper region.

10. A room construction according to any one of the preceding claims, including at least one panel of double skin construction, being a panel modified to have a portion of one skin (1b) cut away and being provided in the opposite skin (1a) with an emergency knock out panel (17) held and sealed into the panel with means which permit the rapid removal of the panel (17) in an emergency.

11. A room construction according to claim 10, wherein, for achieving ready removal of the knock out panel (17), a rubber grommet (19) which seals the knock out panel in its skin of the panel in which it is held overlaps a joint seal on either side of the panel to create a tab handle (21) which on pulling causes the grommet (20) to be stripped from the wall panel and enable the knock out panel (17) to be removed.

12. A room construction according to any one of the preceding claims, including at least one panel of double skin construction, being a panel (400) having a viewing window (23) sealingly set in each skin thereof.

13. A room construction according to any one of the preceding claims, including at least one panel of double skin construction, being a wall panel modified to exclude the provision of a duct inlet thereinto and completely coved at both laterally extending base edges.

14. A room construction according to claim 13, wherein said at least one wall panel (200) is filled or lined with insulation material (16).

15. A room construction according to any one of the preceding claims, wherein all said panels are formed at the ceiling level thereon with an integral coving extending across each said skin thereof.

16. A room construction according to any one of the preceding claims, further comprising one or more corner pieces (500, 600) for joining adjacent panels at corner positions and shaped to provide a surface continuous with the panels which it joins at substantially all positions over the height thereof at least up to ceiling level.

17. A room construction according to any one of the preceding claims and which additionally includes at one or more panels (800, 900) positions a door (42, 44).

Revendications

1. Construction de chambre comprenant une pluralité de panneaux rigides coulés formant parois dont la construction est à double surface, un matelas d'air étant formé entre les surfaces opposées (1a, 1b) de la construction, les panneaux étant assemblés par leurs parties latérales verticales, cette construction de chambre étant caractérisée en ce qu'elle comprend un plafond constitué d'une pluralité de panneaux de plafond et en ce que les panneaux formant parois sont en matière plastique renforcée de verre mouillé et comprennent une pluralité de panneaux comprenant chacun à sa partie inférieure au moins une entrée (2) de canalisation venant de l'intérieur de la chambre afin de faire communiquer l'inté-
rieur de la chambre avec l'intérieur des panneaux, et un moyen (3) à sa partie supérieure au-dessus du niveau du plafond afin de faire communiquer l'intérieur des panneaux respectifs avec des canalisations d'évacuation, les bords inférieurs des panneaux formant parois de cette construction de chambre étant cintrés afin de former un raccordement à surface arrondie de la paroi avec le plancher, à l'intérieur de la chambre.

2. Construction de chambre suivant la revendication 1, dans laquelle ces panneaux sont assemblés par des panneaux (700) à simple paroi dont les bords inférieurs sont cintrés et qui forment des surfaces continues avec celles des panneaux qu'ils assemblent, sensiblement en tous points de leur hauteur et au moins jusqu'au niveau du plafond, l'arrière des panneaux étant équipé d'alimentations de service vers la chambre.

3. Construction de chambre suivant l'une des revendications 1 ou 2, dans laquelle chacun de ces panneaux formant parois comprend une entrée (2) de canalisation d'air au niveau du plancher.

4. Construction de chambre suivant l'une quelconque des revendications 1 à 3, dans laquelle tous les panneaux forment un gradin (5) dans leurs parties cintrées au-dessus du plancher, pour qu'une latte de réglage du plancher puisse se trouver au ras de la face horizontale de la partie cintrée, et forment une avancée (6) à partir des faces verticales de la partie cintrée pour qu'un système de planchéage puisse s'appiquer de manière continue jusqu'en haut des surfaces cintrées afin de se trouver au ras de la face de la paroi des panneaux.

5. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant des panneaux à double construction qui comportant une surface verticale (11) de paroi formée d'une pluralité d'ortiques disposés sur cette surface pour permettre qu'une entrée horizontale d'air dans les panneaux puisse se faire à travers la construction de chambre.

6. Construction de chambre suivant l'une quelconque des revendications 1 à 4, comprenant un plancher inférieur (82) au niveau duquel sont placées les entrées (2) de canalisation d'air des panneaux formant parois, et comportant au-dessus de ce plancher inférieur (62) un faux plancher perforé (63), avec interposition d'une partie cintrée afin de former un raccordement arrondi des panneaux (65) formant parois avec le faux plancher, moyennant quoi un écoulement d'air vertical du plafond vers le plancher peut se faire à l'intérieur de la construction de chambre.

7. Construction de chambre suivant l'une quelconque des revendications précédentes, dans laquelle les panneaux formant parois comprennent un filtre (10, 13) de sécurité.

8. Construction de chambre suivant la revendication 7, dans laquelle le filtre (10) de sécurité est placé à l'intérieur de l'entrée (2) de canalisation de chaque panneau comportant une entrée de canalisation.

9. Construction de chambre suivant la revendication 7, dans laquelle le filtre de sécurité est logé dans une sortie d'air du panneau pour faire communiquer l'intérieur du panneau avec la bout mâle (3) d'un tube de canalisation d'extraction placé dans une région supérieure.

10. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant au moins un panneau dont la construction est à double surface, ce panneau étant modifié de telle manière qu'une partie d'une surface (1b) est découpée tandis que la surface opposée (1a) est équipée d'un panneau (17) démontable d'urgence, maintenu et fixé de manière étanche dans le panneau par des moyens qui permettent de déposer rapidement ce panneau (17) en cas d'urgence.

11. Construction de chambre suivant la revendication 10, dans laquelle, pour permettre une dépose rapide du panneau démontable (17), un bourelet (19) en caoutchouc qui fixe de manière étanche le panneau démontable dans la surface du panneau dans lequel il est maintenu, recouvre un joint étanche sur chaque face du panneau, de manière à former une poignée (21) de tirage qui, lorsqu'elle subit une traction, provoque l'arrachement du bourelet (19) du panneau formant paroi et permet la dépose du panneau démontable (17).

12. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant au moins un panneau (400) dont la construction est à double surface et comportant une fenêtre (23) de visualisation fixée de manière étanche dans chacune de ses surfaces.

13. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant au moins un panneau dont la construction est à double surface et qui est un panneau formant paroi, modifié de manière à empêcher la présence d'une entrée de canalisation dans le panneau et dont les deux bords intérieurs latéraux sont complètement cintrés.

14. Construction de chambre suivant la revendication 13, dans laquelle au moins un panneau (200) formant paroi est rempli ou revêtu d'un matériau isolant (16).

15. Construction de chambre suivant l'une quelconque des revendications précédentes, dans laquelle tous les panneaux comportent, au niveau du plafond, une surface cintrée solidaire qui se prolonge d'une surface à l'autre des panneaux.

16. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant en outre une ou plusieurs pièces cornières (600, 600) pour l'assemblage de panneaux contigus dans les angles et profilées pour assurer une surface continue avec les panneaux qu'elles assemblent, sensiblement en tous points de leur hauteur et au moins jusqu'au niveau du plafond.

17. Construction de chambre suivant l'une quelconque des revendications précédentes, comprenant en outre une porte (42, 44) en un ou plusieurs points des panneaux (800, 900).
Patentansprüche

1. Raumkonstruktion, bestehend aus vielen starren Quo-Wandplatten mit integriert geformter Doppelschichtkonstruktion, zwischen deren gegeneinanderliegenden Schichten (1a, 1b) ein Luftraum vorhanden ist, wobei die Platten an ihren aufgerichteten Randbereichen miteinander verbindbar sind, dadurch gekennzeichnet, daß aus vielen Deckenplatten eine Decke zusammengesetzt ist und daß die Wandplatten aus geformtem, glasverstärktem Kunststoffmaterial gebildet sind und viele von ihnen jeweils in ihrem unteren Bereich mit wenigstens einem Kanaleinlaß (2) versehen sind, der vom Rauminneren in das Platteninnere führt, um das Rauminnere mit dem Platteninnern zu verbinden, sowie in ihrem oberen Bereich oberhalb der Deckenebene Mittel (3) zur Verbindung des inneren der jeweiligen Platten mit Auslaßkanälen besitzen, wobei die Wandplatten der Raumkonstruktion an ihren Basisrändern gewölbt ausgebildet sind, um einen abgerundeten Flächenübergang zwischen der Wand und dem Fußboden in dem Raum zu erzielen.

2. Raumkonstruktion nach Anspruch 1, bei der die Platten durch einwandige Platten (700) verbunden sind, die an ihren Basisrändern gewölbt sind und die mit den Oberflächen der durch sie verbundenen Platten im wesentlichen an allen Stellen über ihre Höhe wenigstens bis zur Deckenebene durchgehende Oberflächen bilden, wobei hinter den Platten Versorgungsanschlüsse zu dem Raum vorhanden sind.

3. Raumkonstruktion nach Anspruch 1 oder 2, bei der jede der vielen Wandplatten auf Fußbodenniveau einen Luftkanaleinlaß (2) aufweist.

4. Raumkonstruktion nach einem der Ansprüche 1 bis 3, bei der alle Platten auf ihren Wölbungen über der Fußbodenbasis abgestuft (5) sind, damit eine Fußbodenleiste mit der waagerechten Fläche der Wölbung bündig abschließt kann und von den senkrechten Flächen der Wölbung nach vorne (6) abgestuft sind, damit ein Fußbodensystem kontinuierlich an die gewölbten Oberflächen so ansetzbar ist, daß es mit der Wandfläche der Platten bündig endet.

5. Raumkonstruktion nach einem der vorangehenden Ansprüche, die Platten in Doppelschichtkonstruktion umfaßt, bei denen in einer aufgerichteten Wandfläche (11) viele über diese verteilte löcher ausgebildet sind, die durch die Raumkonstruktion hindurchtretenden waagerechten Luftkanaleinlässe (2) der Wandplatten angeordnet sind und die oberhalb des Unterbodens (62) einen perforierten Zwischenboden (63) aufweist, wobei eine zwischengefütte Wölbung einen gerundeten Übergang von den Wandplatten (65) zu dem Zwischenboden (63) vermittelt, so daß in den Raumkonstruktionen senkrechte Luftströmungen von der Decke zum Fußboden stattfinden können.

7. Raumkonstruktion nach einem der vorangehenden Ansprüche, bei der in die Wandplatten ein Sicherheitsfilter (10, 13) eingebaut ist.

8. Raumkonstruktion nach Anspruch 7, bei der der Sicherheitsfilter (13) in den Kanaleinläß (2) jeder mit einem Kanaleinlaß ausgerüsteten Platte eingesetzt ist.

9. Raumkonstruktion nach Anspruch 7, bei der der Sicherheitsfilter in einem Luftauslaß der Platte untergebracht ist, der das Platteninnere mit einem Auslaßkanalstützen (3) in einem oberen Bereich verbindet.

10. Raumkonstruktion nach einem der vorangehenden Ansprüche mit wenigstens einer Platte in Doppelschichtkonstruktion, die so abgewandelt ist, daß ein Teil der einen Schicht (1b) ausgeschnitten ist und in der gegenüberliegenden Schicht (1a) ein herausstößbares Notausgangspanel (17) angeordnet ist, das in der Platte durch Mittel gehalten und abgedichtet ist, die im Notfall eine rasche Entfernung des Panels (17) erlauben.

11. Raumkonstruktion nach Anspruch 10, bei der zur raschen Entfernung des herausstößbaren Panels (17) ein Gummiaugenring (19) dient, der das herausstößbare Panel in der Plattenschicht, in die es eingesetzt ist, abdichtet und auf jeder Seite des Panels eine Fuge verschließt überlappt, um eine Grifflasche (21) zu bilden, die bei Zugausübung den Augenring (20) von der Wandplatte abstreift und eine Herausnahme des herausstößbaren Panels (17) ermöglicht.

12. Raumkonstruktion nach einem der vorangehenden Ansprüche mit wenigstens einer Platte (400) in Doppelschichtkonstruktion, die mit einem Sichtfenster (23) ausgestattet ist, das in jede Schicht abgedichtet eingesetzt ist.

13. Raumkonstruktion nach einem der vorangehenden Ansprüchen mit wenigstens einer Platte in Doppelschichtkonstruktion, die als Wandplatte ohne Kanaleinlaß ausgebildet ist und die an den beiden seitwärts gerichteten Basisrändern vollständig gewölbt ist.

14. Raumkonstruktion nach Anspruch 13, bei der die wenigstens eine Wandplatte (200) mit Isolationsmaterial (16) gefüllt oder ausgekleidet ist.

15. Raumkonstruktion nach einem der vorangehenden Ansprüche, bei der alle Platten auf Deckenebene mit einer integrierten Wölbung ausgestattet sind, die sich über jede Plattenschicht erstreckt.

16. Raumkonstruktion nach einem der vorangehenden Ansprüche mit einem oder mehreren Eckstücken (500, 600) zur Verbindung benachbarter Platten an Eckpositionen, wobei die Eckstücke so gestaltet sind, daß sie mit den von ihnen verbundenen Platten an im wesentlichen allen Stellen über ihre Höhe wenigstens bis zur Deckenebene eine kontinuierliche Oberfläche bilden.

17. Raumkonstruktion nach einem der vorangehenden Ansprüche, die zusätzlich an einer oder mehreren Platten (800, 900) eine Tür (42, 44) aufweist.