Medical capsule device.

Priority: 01.04.81 JP 49184/81

Date of publication of application: 06.10.82 Bulletin 82/40

Publication of the grant of the patent: 23.07.86 Bulletin 86/30

Designated Contracting States:
DE FR GB

References cited:
US-A-4 239 040

Proprietor: OLYMPUS OPTICAL CO., LTD.
43-2, 2-chome, Hatagaya Shibuya-ku
Tokyo 151 (JP)

Inventor: Kambara, Koji
Olympus Nishihachioji Kohporasu 235
5-16-2, Sanda-cho Hachioji-shi, Tokyo (JP)
Inventor: Misawa, Kazuo
4-22-13, Owada-machi Hachioji-shi
Tokyo (JP)
Inventor: Honda, Mikio
1-13-19, Nakamura Nerima-ku
Tokyo (JP)
Inventor: Matsui, Koichi
2-13-3-350, Wakagi Itabashi-ku
Tokyo (JP)
Inventor: Kohri, Kitiyuro c/o Tetsuya KIMURA
236-108 Tamadaia Danchi 3-1-1 Tamadaia
Tokyo (JP)

Representative: Kinzebach, Werner, Dr.
Patentanwälte Reitsätter, Kinzebach und
Partner Postfach 780
D-8000 München 43 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

The present invention relates to an improvement of medical capsule device used to spread a medical liquid or to sample data such as body liquid in the body cavity.

From US—A—4 239 040 a medical capsule device is known which includes a chamber arranged in a capsule body so as to receive medical fluid, data or the like movable member arranged freely reciprocating in the chamber, and a thread for holding the movable member at its liquid-receiving or -pushing position against the action of a spring. When the thread digestive film is cut by a heating element, the movable member is moved by the action of spring to its liquid-pushing or -receiving position to spread medical fluid contained in the chamber outside the capsule body or to sample data in the body cavity into the chamber.

When this conventional medical capsule device having such arrangement as described above is once used, however, the thread for holding the movable member at its liquid-receiving or pushing position is cut, thus making it impossible to re-use the once-used capsule. Since the re-use of once-used capsule needs a troublesome work to disassemble the once-used capsule, exchanges the cut thread with a new one and then re-assembles the capsule, it is difficult to re-use the once-used capsule.

Another conventional medical capsule device shown in US—A—4 239 040 includes a stopper for holding the movable member at its liquid-receiving or -pushing position in the chamber against the action of spring, and a ratchet for engaging with the stopper and turned by vibration applied from outside to release the stopper therefrom. However, this device becomes so complicated in construction as to make it difficult to make the capsule body small-sized. In addition, the re-use of once-used capsule also needs the capsule disassembling work.

From EP—A—61 195 a capsule device is known comprising a capsule body having a chamber formed inside and a communicating path for communicating the chamber with outside; a movable member arranged in the chamber and movable between a liquid-receiving and -pushing position at which the volume of said chamber is made largest and a liquid-pushing end position at which the volume of said chamber is made smallest; and an operating member to move the movable member to liquid-receiving and -pushing positions selectively, whereby said operating member is made of a shape memory alloy whose crystalline structure is transformed to high temperature and martensite phases according to the heat applied, an energy source for heating said operating member, wherein said energy source is a transmitting apparatus for energy waves which is situated separately from said capsule device. When using a medical capsule device as described in EP—A—61 195 with or without internal battery then the above object is also met by a process which is characterized in that said operating member is heated by energy waves from an energy transmitting apparatus which is located outside of said body.

This invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

Figs. 1 through 3 show one embodiment of medical capsule device according to the present invention, in which Fig. 1 schematically shows the state under which the medical capsule device is used,

Fig. 2 is a longitudinally-sectioned view showing a movable member held at its liquid-receiving position, and Fig. 3 is a longitudinally-sectioned view showing the movable member held at its liquid-pushing position; and

Figs. 4 and 5 show another embodiment of medical capsule device according to the present invention, in which Fig. 4 is a longitudinally-sectioned view showing the movable member held at its liquid-receiving position, and

Fig. 5 is a longitudinally-sectioned view showing the movable member held at its liquid-pushing position.

There will now be described a medical capsule device according to one embodiment of the present invention with referring to drawings.

Figs. 1 through 3 show an embodiment of the present invention, in which numeral 1 represents a capsule body having a bottomed cylinder 1a

capsule device has two main drawbacks: the miniaturization is delimited by the size of the battery and the telemetric circuit and it is dangerous to bring a battery in a body cavity because of its poisonous content which possible could flow out of the battery housing and into the body cavity.

Therefore it is the object of the present invention to improve a medical capsule device according to EP—A—61 195 such that the device can be miniaturized without becoming unsafe.

The above object is met by a medical device for spreading or sampling a liquid within a cavity of a body comprising a capsule device having a capsule body having a chamber formed inside and a communicating path for communicating the chamber with outside; a movable member arranged in the chamber and movable between a liquid-receiving and -pushing position at which the volume of said chamber is made largest and a liquid-pushing end position at which the volume of said chamber is made smallest; and an operating member to move the movable member to liquid-receiving and -pushing positions selectively, wherein said operating member is made of a shape memory alloy whose crystalline structure is transformed to high temperature and martensite phases according to the heat applied, an energy source for heating said operating member, wherein said energy source is a transmitting apparatus for energy waves which is situated separately from said capsule device. When using a medical capsule device as described in EP—A—61 195 with or without internal battery then the above object is also met by a process which is characterized in that said operating member is heated by energy waves from an energy transmitting apparatus which is located outside of said body.
whose upper end is opened and bottom end is hemispherical. Numeral 3 indicates a cover threaded into the opening of cylindrical portion 1a to close the opening. A chamber 4 is formed inside the capsule body 1 and a circular through-hole (or communicating path) 5 is formed in the center of bottom 2 to communicate the chamber 4 with outside. The through-hole 5 has such dimensions (for example, 0.1 mm diameter) that it prevents medical fluid or the like contained in the chamber from easily leaking outside. A convexed circular portion 3a is projected from the center of foremost end face of cover 3.

A movable member 6 having same outer diameter as the inner one of capsule body 1 is arranged inside the chamber 4 in the capsule body 1. The movable member 6 is a bottomed cylinder provided with a bottom 7 having substantially same hemispherical outer face as the inner wall face of bottom 2 of capsule body 1, and moves axially in the chamber 4 from its liquid-receiving position, at which the volume of chamber 4 is made largest as shown in Fig. 2, to its liquid-pushing position, at which the volume of chamber 4 is made smallest as shown in Fig. 3, thus changing the volume of chamber 4. A coiled operating member 8 is housed in a circular recess 6a in the movable member 6, with its one end attached to the bottom of circular recess 6a and its other end attached to the convexed circular portion 3a of cover 3. The operating member 8 is made of an alloy in the group of Cu-Zn-Al of 73%-20%-7%, for example, which is of shape memory type capable of achieving form memory effect when its crystalline structure carries out reverse transformation from martensite to mother phase. When the crystalline structure of shape memory alloy is under mother phase (or high temperature phase), for example, the operating member 8 is deformed to have its coil-extended form as shown in Fig. 3 while when under martensite phase (or low temperature phase), it is deformed to have its coil-contraction form as shown in Fig. 2. When the crystalline structure of shape memory alloy, of which the operating member 8 is made, is under martensite phase, therefore, the movable member 6 is held by the operating member 8 at its liquid-receiving position as shown in Fig. 2, at which the circular recess 6a is fitted onto the convexed circular portion 3a of cover 3 to make the volume of chamber 4 largest, while when the operating member 8 is heated by ultrasonic wave applied from an ultrasonic heating means 9 arranged outside to reversely transform its crystalline structure to mother phase, the movable member 6 is moved by the operating member 8 to its liquid-pushing position as shown in Fig. 3, at which its bottom 7 is urged onto the inner bottom face of capsule body 1 to make the volume of chamber 4 smallest. The shape memory alloy of which the operating member 8 is made starts to effect reverse transformation from martensite to mother phase at a temperature (As) higher than body temperature. Numeral 10 denotes an O-ring arranged around the outer circumference of movable member 6.

In the case where the medical capsule device having such arrangement as described above is used to spread medical fluid, medical fluid is previously injected into the chamber 4 in the capsule body 1, holding the movable member 6 at its liquid-receiving position as shown in Fig. 2. The capsule body 1 thus prepared is swallowed by a patient 11, to whom is attached an oscillator 12 of ultrasonic heating means 9. When the capsule body 1 reaches a predetermined position in the body cavity, the ultrasonic heating means 9 is operated focusing ultrasonic wave supplied from its oscillator 12 onto the capsule body 1. When ultrasonic wave applied from the oscillator 12 hits on the capsule body 1, the operating member 8 is ultrasonically oscillated and heated quickly. When the temperature of operating member 8 becomes higher than a temperature (As), the crystalline structure of shape memory alloy of which the operating member 8 is made starts to return from martensite to mother phase. When the temperature of operating member 8 reaches a temperature (Af), reverse transformation is finished and the operating member 8 is deformed from its coil-contraction form to its coil-extended form. The temperature of operating member 8 can be appropriately adjusted in this case by adjusting ultrasonic output applied from the ultrasonic heating means 9. The movable member 6 is moved by this deformation of operating member 8 from its liquid-receiving position (Fig. 2) to its liquid-pushing position (Fig. 3), thus enabling medical fluid contained in the chamber 4 to be spread outside in the body cavity through the through-hole 5 as the movable member 6 moves

Since the medical capsule device enables the movable member 6 to be moved from its liquid-receiving position to its liquid-pushing position by the operating member 8 deformed according to the change of temperature, the re-use of once-used capsule can be achieved only by deforming the operating member 8 again to have its coil-contraction form when the crystalline structure of shape memory alloy of which the operating member 8 is made is under martensite phase, thus making unnecessary the conventional troublesome work of exchanging the cut thread or solved digestive film with a new one. In addition, the movement of movable member 6 can be attained without using such conventional complicated arrangement in which the ratchet and the like are employed, thus allowing the medical capsule device to be made simpler in arrangement and smaller in size.

Another embodiment of the present invention will be described referring to Figs. 4 and 5, in which numeral 21 denotes a capsule body having a bottomed cylindrical portion 21a, 22 a cover threaded into the opening of cylindrical portion 21a, 23 a movable member movable from its liquid-receiving position shown in Fig. 4 to its liquid-pushing position shown in Fig. 5 in the capsule body 21 along the inner circumferential face thereof, and 24 a coiled operating member deformed according to the change of temperature.
to move the movable member 23. A pipe-like projection 25 is projected from the substantially center portion of inner bottom face of capsule body 21 and provided with a hole (or path) 26 formed coaxially therein to communicate with outside. A circular recess 27 is formed in the outer surface of cover 22 at a position off the center thereof, and a circular hole 28 is further formed communicating with the recess 27 and having a diameter smaller than that of recess 27. The inside of capsule body 21 is communicated with outside through the through-hole 28 and recess 27. A cap 29 is threaded to the upper portion of recess 27 and comprises a ring-shaped holder 30 and a disc-shaped closing member 31 supported by the holder 30 through arms (not shown). The closing member 31 is arranged opposite to and spaced with a predetermined distance from the shown in Fig. 4, while when under control of the outer side of the bottom of recess 27. The movable member 23 comprises a disc-like piston portion 32, a through-hole formed in the center of piston portion 32 and through which the projection 25 of capsule body 21 is fluid-tightly passed, a pipe-like projection 35 projected from the piston portion 32 toward the cover 22, passed fluid-tightly through the through-hole 28 in the cover 22, and provided with a through-hole 34 formed therein, and a closing plate 36 projected from the outer periphery projection 35. When the movable member 23 is at its liquid-receiving position as shown in Fig. 4, the foremost end face of projection 35 is urged onto the closing member 31, so that its through-hole 34 is closed by the closing member 31 and a large chamber 34 is formed between the inner bottom face of capsule body 21 and piston portion 32. When the movable member 23 is at its liquid-pushing position as shown in Fig. 5, the closing plate 36 is forced onto the foremost end face of projection 25 to close the through-hole 28 thereof, while the foremost end face of projection 35 is separated from the closing member 31 to communicate the through-hole 34 thereof with outside through the space under the cap 29.

The operating member 24 is made of shape memory alloy of one way memory type, with its one end attached to the cover 22 and with its other end attached to the piston portion 32 of movable member 23. When the crystalline structure of shape memory alloy is under mother phase, for example, the operating member 24 is deformed to have its coil-extended form as shown in Fig. 1, while when under the heat treatment of martensite phase, it is deformed to have its coil-contracted form as shown in Fig. 4. Therefore, when the shape memory alloy of which the operating member 24 is made is under martensite phase, the movable member 23 is held by this deformed operating member 24 at its liquid-receiving position to make the volume of chamber 37 greatest as shown in Fig. 4, while when the operating member 24 is heated by ultrasonic wave applied from the external ultrasonic heating means 9 (Fig. 1) to reversely transform its crystalline structure to mother phase, the movable member 23 is moved by this deformed operating member 24 to its liquid-pushing position at which the piston portion 32 is forced close to the inner bottom face of capsule body 21 to make the volume of chamber 37 smallest as shown in Fig. 5. The operating member 24 is made of such shape memory alloy that starts to effect reverse transformation from martensite to mother phase at the temperature (As) higher than body temperature.

The medical capsule device having such arrangement as described above is used to spread medical fluid and to sample data such as body liquid in the body cavity at the same time. Medical fluid or the like is previously injected into the chamber 37, holding the movable member 23 at its liquid-receiving position as shown in Fig. 4. Namely, after medical fluid or the like is injected into the chamber 37, the through-hole 28 in the cover 22 is sealed by the closing plate 36 inserted into the capsule body 21 and the cover 22 is threaded onto the capsule body 21. The foremost end face of projection 35 of movable member 23 is forced onto the closing member 31 at this time, thus reliably preventing medical fluid or the like injected into the chamber 37 from leaking outside. The capsule body 21 thus prepared is inserted to a predetermined position in the body cavity and ultrasonic wave is then applied from the ultrasonic heating means 9. When ultrasonic wave hits on the capsule body 21, the operating member 24 is ultrasonically oscillated and heated quickly. When the operating member 24 reaches the temperature (As) at which reverse transformation starts, the crystalline structure of shape memory alloy of which the operating member 24 is made starts to return from martensite to mother phase. When the operating member 24 reaches the reverse transformation finishing temperature, reverse transformation is finished and the operating member 24 is deformed from its coil-extended form to its coil-contraction form. The movable member 23 is moved by this deformed operating member 24 from its liquid-receiving position (Fig. 4) to its liquid-pushing position (Fig. 5). As the movable member 23 moves, medical fluid contained in the chamber 37 is pushed by the piston portion 32 of movable member 23 while the foremost end face of its projection 35 is separated from the closing member 31, so that medical fluid or the like can spread outside in the body cavity through the through-hole 28 of cover 22, recess 27 and the space between the cap holder 30 and closing member 31 in this order. The volume of sampling chamber or space 38 formed between the piston portion 32 and cover 22 becomes larger and pressure in the space 38 becomes lower at the same time, as the movable member 23 moves, so that data such as body liquid can be sampled into the space 38 through the through-hole 26 of capsule body 21. These liquid-pushing and data-sampling operations continue until the foremost end face of
projection 25 hits against the closing plate 36 to stop the movable member 23. The through-hole 26 is closed by the closing plate 36 at this stopped position or liquid-pushing position of movable member 23, thus preventing data sampled in the space 38 from leaking outside.

Similarly to the first embodiment shown in Figs. 1 through 3, this second embodiment enables the once-used capsule to be re-used only by deforming the operating member 24 again to have its coil-contracted form when the crystalline structure of shape memory alloy of which the operating member 24 is made is under martensite phase. Therefore, the second embodiment can also achieve same effects as those attained by the first embodiment shown in Figs. 1 through 3.

It should be understood that the present invention is not limited to above-described embodiments. The means for heating the operating member 8 or 24 may be operated outside the human body. Then, it is not limited to the one employed in above-described embodiments but may be a microwave oscillator, for example. The shape memory alloy of which the operating member 8 or 24 is made may be those in the group of Ni-Ti of 50%-50%. The crystalline structure of shape memory alloy of which the operating member 8 or 24 is made may be transformed to mother phase at body temperature (36°C—38°C, for example) and to martensite phase at room temperature (18°C, for example). When the crystalline structure of shape memory alloy of which the operating member 8 or 24 is made is under mother phase, the operating member 8 or 24 may be deformed to have its coil-extended form, while when under martensite phase, it may be deformed to have its coil-contracted form. The shape memory alloy of which the operating member 8 is made in the embodiment shown in Figs. 1 through 3 may be of two-way memory type, which can achieve shape memory effect reversely in such a way that its crystalline structure effects martensite transformation from mother to martensite phase in addition to reverse transformation from martensite to mother phase. When this shape memory alloy of two-way memory type is employed, the operating member 8 becomes lower and lower in temperature thanks to its natural irradiation by rendering the ultrasonic heating means 9 inoperative to stop the emission of ultrasonic wave after the operation of spreading medical fluid in the body cavity is finished. When the operating member 8 reaches the temperature at which martensite transformation is finished, it is deformed from its coil-extended form (Fig. 3) to its coil-contracted form (Fig. 2). The movable member 6 is moved by this deformation of operating member 8 from its liquid-pushing position to its liquid-receiving position, thus enabling data such as body liquid in the body cavity to be sampled into the chamber 4 through the through-hole 5.

As described above, the present invention provides the movable member arranged in the chamber formed in the capsule body and communicating with outside through the communicating path, and the operating member deformed according to the change of temperature to move the movable member to its liquid-pushing or -receiving position in the chamber so as to change the volume of chamber, so that any of liquid-pushing and -receiving positions can be selected by adjusting the temperature of operating member from outside. Therefore, the movable member can be moved to its liquid-pushing or -receiving position by adjusting the temperature of operating member to deform it to appropriate forms, thus enabling the once-used capsule to be re-used without exchanging parts with new ones and also the arrangement in the capsule body to be made simpler.

In addition, the shape memory alloy of which the operating member is made allows the shifting amount of movable member to be made relatively larger to enhance the reliability of operation.

Further, the coiled operating member allows the space inside the cylindrical capsule body to be effectively used and its arranging operation into the capsule body to be made easier.

Claims

1. A medical device for spreading or sampling a liquid within a cavity of a live body comprising:
   — a capsule device comprising:
     — a capsule body (1, 21) having a chamber (4, 37) formed inside and a communicating path (6, 34, 28) for communicating the chamber with the outside;
     — a movable member (6, 23) arranged in the chamber and movable between a liquid-receiving end position at which the volume of said chamber is made largest and a liquid-pushing end position at which the volume of said chamber is made smallest; and
     — an operating member (8, 24) to move the movable member to liquid-receiving and -pushing positions selectively,
   wherein said operating member (8, 24) is made of a shape memory alloy whose crystalline structure is transformed to high temperature and martensite phases according to the heat applied,
   — an energy source (9, 12) for heating said operating member (8, 24), wherein said energy source is a transmitting apparatus (9, 12) for energy waves which is situated separately from said capsule device.

2. A medical device according to claim 1 wherein said operating member (8, 24) has a coiled form, which is contracted under martensite phase to move the movable member to the liquid-receiving end position and extended under high temperature phase to move the movable member to the liquid-pushing end position.

3. A medical device according to claim 2 wherein said capsule body (1) includes a cylindrical body (1a) having an opened end and another closed end (2) in which said communicating path
(5) is partially formed, and a cover (3) for closing the opened end, and said operating member (8) is arranged between the cover and movable member.

4. A medical device according to claim 3 wherein said cylindrical body (1a) has a curved inner face, and said movable member has a face curved at same curvature as that of curved inner face of said cylindrical body and arranged opposite to the curved inner face of said cylindrical body.

5. A medical device according to claim 2 wherein said capsule (21) includes a cylindrical body (21a) having an opened end and another closed end, and a cover (22) for closing the opened end of said cylindrical body and provided with the communicating path (28) formed therein, said movable member (23) has a projection (35) projected into the communicating path (28) of said cover and provided with a through-hole (34) for communicating said communicating path with the chamber, and said cover (22) has a member (31) for closing the through-hole in the projection of said movable member not to communicate with outside through the communicating path when the movable member is moved to the liquid-receiving end position, while allowing the through-hole in the projection of said movable member to communicate with outside through the communicating path when the movable member is moved to the liquid-push end position.

6. A medical device according to claim 5 wherein said movable member (23) has a face for defining the chamber (37) together with the closed end of said cylindrical body, another face for defining a data-sampling chamber (38) together with the cover, and a through-hole formed between said two faces, said cylindrical body has a projection (25) projected from its closed end into the through-hole of said movable member and provided with a through-hole (26) therein communicated with the data-sampling chamber (38), and said movable member has a member (36) for closing the through-hole (26) in the projection (25) of said cylindrical body not to communicate with the data-sampling chamber when the movable member is at the liquid-pushing end position, while allowing the through-hole (26) in the projection (25) of said cylindrical body to communicate with the data-sampling chamber when the movable member is moved from the liquid-pushing end position to the liquid-receiving end position.

7. Device according to one of claims 1 to 6 characterised in that said transmitting apparatus (9, 12) transmits microwaves or ultrasonic waves.

8. Process for actuating a medical capsule device comprising:
   - a capsule body (1, 21) having a chamber (4, 37) formed inside and a communicating path (5, 34, 28) for communicating the chamber with outside; and
   - a movable member (6, 23) arranged in the chamber and movable between a liquid-receiving and position at which the volume of said chamber is made largest and a liquid-pushing end position at which the volume of said chamber is made smallest; and
   - an operating member (8, 24) to move the movable member to liquid-receiving and -pushing positions selectively, wherein said operating member (8, 24) is made of a shape memory alloy whose crystalline structure is transformed to high temperature and martensite phases according to the heat applied, and wherein said operating member (8, 24) is heated by energy waves from an energy transmitting apparatus which is located outside of said body.

Patentansprüche

1. Medizinische Vorrichtung zum Abgeben oder Aufnehmen einer Flüssigkeit innerhalb einer Kavität in einem lebendigen Körper unmittelbar eingesetzt:
   - eine Kapselanordnung, umfassend:
     - einen Kapselkörper (1, 21) mit einer im Inneren gebildeten Kammer (4, 37) und einem Kommunikationsweg (5, 34, 28) zum Kommunizieren der Kammer mit der Außenseite;
     - ein bewegbares Teil (6, 23), das in der Kammer angeordnet ist und zwischen einer Flüssigkeit-Aufnahmeendposition, in der das Volumen der Kammer am größten ist und einer Flüssigkeit-Ausstoßendposition, in der das Volumen der Kammer am geringsten ist, bewegbar ist; und
     - ein Betätigungsglied (8, 24), um das bewegbare Teil taktweise in die Flüssigkeits-Aufnahme- und die Flüssigkeit-Ausstoßposition zu bewegen,
   - worin das Betätigungsglied (8, 24) aus einer Formgedächtnis-Legierung hergestellt ist, der Kristallstruktur entsprechend der zugeführten Wärme in die Hochemperiode und die Martensidephase überführt wird;
   - eine Energiequelle (9, 12) zum Aufheizen des Betätigungsgliedes (8, 24),
   - worin die Energiequelle eine Ubertragungsvorrichtung (9, 12) für Energiewellen ist, welche separat von der Kapselanordnung angeordnet ist.

2. Medizinische Vorrichtung nach Anspruch 1, worin der Kapselkörper (1) einen zylindrischen Körper (1a) umschließt, der ein offenes Ende und ein anderes geschlossenes Ende (2) aufweist, in dem der Kommunikationsweg (5) teilweise ausgebaut ist und weiterhin einen Deckel (3) zum Verschließen des offenen Endes und wobei das Betätigungsglied (8) zwischen dem Deckel und dem bewegbaren Teil angeordnet ist.

3. Medizinische Vorrichtung nach Anspruch 2, worin der Kapselkörper (1) einen zylindrischen Körper (1a) umschließt, der ein offenes Ende und ein anderes geschlossenes Ende (2) aufweist, in dem der Kommunikationsweg (5) teilweise ausgebaut ist und weiterhin einen Deckel (3) zum Verschließen des offenen Endes und wobei das Betätigungsglied (8) zwischen dem Deckel und dem bewegbaren Teil angeordnet ist.
Fläche aufweist und worin das bewegbare Teil
eine Fläche mit derselben Krümmung aufweist,
die gekrümmte innere Fläche des zylin-
drischen Körpers und gegenüber der gekrümm-
ten inneren Fläche des zylindrischen Körpers
angeordnet ist.

5. Medizinische Vorrichtung nach Anspruch 2,
worin der Kapselkörper (21) einen zylindrischen
Körper (21a) mit einem offenen Ende und einem
anderen geschlossenen Ende und eine Deckel (22)
umschließen, um das offene Ende des zylin-
drischen Körpers zu verschließen, wobei der Dek-
kel (22) mit dem darin ausgebildeten Kommuni-
kationsweg (28) versehen ist, wobei das beweg-
bare Teil (23) einen Fortsatz (35) aufweist, der in
den Kommunikationsweg (28) des Deckels ragt
und mit einem durchgehenden Loch (34) zum Ver-
binden des Kommunikationsweges mit der Kam-
mer versehen ist, wobei der Deckel (22) ein Teil
(31) zum Schließen des durchgehenden Loches
im Fortsatz des bewegbaren Teiles aufweist, so
daß dieses nicht mit der Außenseite durch den
Kommunikationsweg in Verbindung steht, weil
 das bewegbare Teil in die Flüssigkeits-Aufnahme-
endposition bewegt wird, während die durch-
gehende Bohrung im Fortsatz des bewegbaren
Teiles mit der Außenseite über den Kommuni-
kationsweg in Verbindung treten kann, wenn das
bewegbare Teil in die Flüssigkeits-Ausstoßend-
position bewegt wird.

6. Medizinische Vorrichtung nach Anspruch 5,
worin das bewegbare Teil (23) eine Fläche zum
Umschreiben der Kammer (37) zusammen mit
dem geschlossenen Ende des zylindrischen Kör-
ners und eine andere Fläche zum Umschreiben
einer Datenaufnahmekammer (38) zusammen mit
dem Deckel umfaßt, wobei ein durchgehendes
Loch zwischen den beiden Flächen gebildet ist,
wobei der zylindrische Körper einen Fortsatz (25)
aufweist, der von seinem geschlossenen Ende in
das durchgehende Loch des bewegbaren Teiles
hereinragt und mit einem durchgehenden Loch
(26) darin versehen ist, das mit der Datenauf-
nehmekammer (38) in Verbindung steht, wobei
das bewegbare Teil ein Teil (36) zum Schließen
des durchgehenden Loches (26) im Fortsatz (25)
des zylindrischen Körpers aufweist, so daß dieses
mit der Datenaufnahmekammer in Verbin-
dung steht, wenn das bewegbare Teil in der
Flüssigkeits-Ausstoßendposition ist, während
das durchgehende Loch (26) im Fortsatz (25) deszylin-
drischen Körners mit der Datenaufnahmekammer
kommunizieren kann, wenn das bewegbare Teil
aus seiner Flüssigkeits-Ausstoßendposition in die
Flüssigkeits-Aufnahmenposition bewegt wird.

7. Vorrichtung nach einem der Ansprüche 1 bis
6, dadurch gekennzeichnet, daß die Übertra-
gungsvorrichtung (9, 12) Mikrowellen oder Ultra-
schallwellen überträgt.

8. Verfahren zur Betätigung einer medizi-
nischen Kapselvordnung, umfassend:
einen Kapselkörper (1, 21) mit einer Kammer
(4, 37) in ihrem Inneren und mit einem Kommuni-
kationsweg (5, 34, 28) zur Verbindung der Kam-
mer mit der Außenseite; und

— ein bewegbares Teil (6, 23), das in der Kam-
mer angeordnet und zwischen einer Flüssigkeits-
Ausnahmenposition, in der das Volumen der
Kammer am größten ist und einer Flüssigkeits-
Ausstoßendposition, in der das Volumen der
Kammer am geringsten ist, bewegbar ist; und

— ein Betätigungsglied (8, 24), um das beweg-
bare Teil wahlweise in die Flüssigkeits-Auf-
nahme- und in die Flüssigkeits-Ausstoßposition
zu bewegen, worin das Betätigungsglied (8, 24)
aus einer Formgedächtnis-Legierung gefertigt ist,
deren Kristallstruktur entsprechend der zuge-
führten Wärme in die Hochtemperatur- und die
Martensitphase überführt wird, und

worin das Betätigungsglied (8, 24) durch die
Energiewellen aus einer Energieübertragungsvor-
richtung aufgeheizt wird, die außerhalb des Kör-
ers angeordnet ist.

Revendications

1. Dispositif médical pour diffuser ou échan-
tillonner un liquide dans une cavité du corps
humain comprenant:
— un dispositif de capsule comprenant;
— un corps de capsule (1, 21) comportant une
chambre (4, 37) formée intérieurement et un
passage de communication (5, 34, 28) destiné à
faire communiquer la chambre avec l’extérieur;
— un élément mobile (6, 23) disposé dans la
chambre et pouvant être déplacé entre une posi-
tion extrême de réception de liquide où le volume
de ladite chambre est le plus grand et une posi-
tion extrême de refoulement de liquide où le
volume de ladite chambre est le plus petit; et
— un élément d’actionnement (8, 24) pour dé-
placer l’élément mobile sélectivement jusqu’aux
positions de réception de liquide et de refoule-
ment de liquide,
— ledit élément d’actionnement (8, 24) étant
formé d’un alliage à mémoire de forme dont la
structure cristalline se transforme en phases
haute température et martensitique selon la cha-
leur appliquée,
— une source d’énergie (9, 12) pour chauffer
ledit élément d’actionnement (8, 24),
— ladite source d’énergie étant un appareil (9, 12)
edémisssion d’ondes d’énergie qui est disposé
da une façon séparée du dispositif de capsule
précédé.

2. Dispositif médical selon la revendication 1,
dans lequel ledit élément d’actionnement (8, 24) a
une forme hétéroïdale qui se contracte lors de
l’apparition de la phase martensitique de manière
da déplacer l’élément mobile jusqu’à la position
extrême de réception de liquide et s’allonge lors de
l’apparition de la phase de haute température de
manière à déplacer l’élément mobile jusqu’à la
position extrême de refoulement de liquide.

3. Dispositif médical selon la revendication 2,
dans lequel ledit corps de capsule (1) comprend
un corps cylindrique (1a) comportant une extré-
mité ouverte et une autre extrémité fermée (2)
da laquelle ledit passage de communication (5)
est formé partiellement, et un couvercle (3) pour
fermer l’extrémité ouverte, et ledit élément d’actionnement (8) est disposé entre le couvercle et l’élément mobile.

4. Dispositif médical selon la revendication 3, dans lequel l’extrémité fermée (2) dudit corps cylindrique (1a) comporte une face intérieure courbée, et ledit élément mobile comporte une face courbée présentant la même courbure que celle de la face intérieure courbée dudit corps cylindrique.

5. Dispositif médical selon la revendication 2, dans lequel ledit corps de capsule (21) comprend un corps cylindrique (21a) comportant une extrémité ouverte et une autre extrémité fermée, et un couvercle (22) destiné à fermer l’extrémité ouverte dudit corps cylindrique et pourvu du passage de communication (28) qui y est formé, ledit élément mobile (23) comporte une saillie (35) s’étendant vers le passage de communication (28) dudit couvercle et pourvue d’un trou traversant (34) destiné à faire communiquer ledit trajet de communication avec la chambre, et le couvercle (22) comporte un élément (31) destiné à fermer le trou traversant de la saillie dudit élément mobile pour interrompre la communication avec l’extérieur par l’intermédiaire du passage de communication lorsque l’élément mobile est déplacé jusqu’à la position extrême de réception de liquide tout en permettant le trou traversant de la saillie, dudit élément mobile de communiquer avec l’extérieur par l’intermédiaire du passage de communication lorsque l’élément mobile est déplacé jusqu’à la position extrême de refoulement de liquide.

6. Dispositif médical selon la revendication 5, dans lequel ledit élément mobile (23) comporte une face destinée à délimiter la chambre (37) conjointement avec l’extrémité fermée dudit corps cylindrique, une autre face destinée à délimiter une chambre (38) d’échantillonnage de données conjointement avec le couvercle, et un trou traversant formé entre les deux faces précitées, ledit corps cylindrique comporte une saillie (25) s’étendant depuis son extrémité fermée jusque dans le trou traversant dudit élément mobile et pourvue d’un trou traversant (26) communicant avec la chambre (38) d’échantillonnage de données, et ledit élément mobile comporte un élément (36) destiné à fermer le trou traversant (26) de la saillie (25) dudit corps cylindrique pour interrompre la communication avec la chambre d’échantillonnage de données lorsque l’élément mobile se trouve dans la position extrême de refoulement de liquide tout en permettant le trou traversant (26) de la saillie (25) dudit corps cylindrique de communiquer avec la chambre d’échantillonnage de données lorsque l’élément mobile est déplacé de la position extrême de refoulement de liquide jusqu’à la position extrême de réception de liquide.

7. Dispositif médical selon l’une des revendications 1 à 6, caractérisé en ce que ledit appareil d’émission (9, 12) émet des micro-ondes ou des ondes ou des ondes ultrasonores.

8. Procédé pour actionner un dispositif de capsule médicale comprenant:
— un corps de capsule (1, 21) comportant une chambre (4, 37) formée à l’intérieur et un passage de communication (5, 34, 28) pour faire communiquer la chambre avec l’extérieur; et
— un élément mobile (6, 23) disposé dans la chambre et pouvant être déplacé entre une position extrême de réception de liquide où le volume de ladite chambre est le plus grand et une position extrême de refoulement de liquide où le volume de ladite chambre est le plus petit; et
— un élément d’actionnement (8, 24) destiné à déplacer sélectivement l’élément mobile jusqu’aux positions de réception et de refoulement de liquide,
ledit élément d’actionnement (8, 24) étant formé d’un alliage à mémoire de forme dont la structure cristalline se transforme en phases haute température et martensitique selon la chaîne appliquée, et
ledit élément d’actionnement (8, 24) étant chauffé à l’aide d’ondes d’énergie provenant d’un appareil d’émission d’énergie qui est placé à l’extérieur dudit corps.