EUROPEAN PATENT SPECIFICATION

Solar radiation heat influx sensor for an automotive vehicle.

Priority: 12.03.81 JP 34535/81
18.03.81 JP 39184/81

Date of publication of application:
22.09.82 Bulletin 82/38

Publication of the grant of the patent:
19.06.85 Bulletin 85/25

Designated Contracting States:
DE FR GB

References cited:
EP-A-0 007 775
EP-A-0 021 353
GB-A-1 157 210
GB-A-1 248 230

INSTRUCTION MANUAL Reci A/S, Glostrup

Proprietor: NISSAN MOTOR COMPANY, LIMITED
No.2, Takara-cho, Kanagawa-ku
Yokohama-shi Kanagawa-ken 221 (JP)

Inventor: Takeuchi, Yasuhisa
20-224, Kugo-cho 6-chome Yokosuka-shi
Kanagawa-ken (JP)

Representative: Patentanwälte Grünecker, Dr.
Kinkeldey, Dr. Stockmair, Dr. Schumann, Jakob,
Dr. Bezold, Meister, Hilgers, Dr. Meyer-Plath
Maximilianstrasse 58
D-8000 München 22 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

Background of the invention

The present invention relates to a solar radiation heat influx sensor for an automotive vehicle, which can accurately detect solar radiation heat influx due to rays of sunlight falling on the vehicle body, in order to adjust an air-conditioning system for controlling passenger compartment air temperature.

Description of the prior art

Conventionally, there exists a solar radiation heat influx sensor for an automotive vehicle such that one temperature T_1 at one position within a passenger compartment where solar radiation is directly applied and the other temperature T_2 at the other position within the passenger compartment where no solar radiation is directly applied are detected separately, and the solar radiation heat influx is obtained by multiplying the difference in temperature between T_1 and T_2 by a predetermined correction factor. (Japan, Published unexamined patent application No. SS5—72410).

In the above-mentioned prior-art solar radiation heat influx sensor, the sensor detecting the temperature T_1 is disposed at positions subject to insolation, for instance, on the top of an instrument panel or on a rear parcel shelf; the other sensor detecting the temperature T_2 is disposed at positions not subject to insolation, for instance, under the instrument panel.

In general, when a vehicle is travelling, however, the position subject to solar energy within a passenger compartment varies according to the direction in which the vehicle is travelling or to the time at which the vehicle is travelling. For example, even if a solar radiation heat influx sensor is disposed on top of an instrument panel so as to receive solar energy through the front windshield glass, it will cool to normal passenger compartment temperature when the vehicle is not travelling toward the sun. It is practically impossible for a single sensor to receive solar energy at all times and, therefore, impossible to accurately detect solar radiation heat influx by this method.

Further, the flow of air within the passenger compartment varies according to the operating conditions of the air-conditioning system. When the flow of air varies, the correction factor, multiplied by the difference in temperature between T_1 and T_2 to obtain solar radiation heat influx, itself varies. Therefore, since the correction factor for the above-mentioned sensor must be predetermined under average conditions, it is impossible to accurately detect solar radiation heat influx as conditions change.

Summary of the invention

With these problems in mind, therefore, it is the primary object of the present invention to provide a solar radiation heat influx sensor in which solar radiation heat influx is measured by way of the difference in temperature between the air inlet position and an air outlet position of a small chamber disposed in the vehicle, upon which sunlight is allowed to fall and through which air is flowing.

To achieve the above-mentioned objects, the solar radiation heat influx sensor for an automotive vehicle according to the present invention comprises a sensor body having an air inlet portion and an air outlet portion at either end, a window, upon which rays of sunlight are allowed to fall in the middle portion of the sensor body, a blower for driving air through the sensor body, an outside-air temperature sensor disposed in the inlet portion of the sensor body, a warmed-air temperature sensor disposed in the outlet portion of the sensor body, and a calculating unit for calculating solar radiation heat influx in response to outside-air temperature and warmed-air temperature detected by the sensors, respectively, in accordance with a predetermined equation.

Brief description of the drawings

The features and advantages of the solar radiation heat influx sensor for an automotive vehicle according to the present invention will be more clearly appreciated from the following description taken in conjunction with the accompanying drawings in which like reference numerals designates corresponding elements and in which:

Fig. 1 is a diagrammatical illustration of a first embodiment of the solar radiation heat influx sensor according to the present invention;

Fig. 2 is a combined pictorial and a schematic diagram of an air-conditioning system for controlling passenger compartment air temperature in accordance with values detected by the solar radiation heat influx sensor according to the present invention;

Fig. 3 is a graphical representation showing the relationship between air-mix door opening percentage X and output duct air temperature $6c$ in the air-conditioning system shown in Fig. 2;

Fig. 4 is a cross-sectional view of a second embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within a fender mirror housing of an automotive vehicle;

Fig. 5 is a pictorial view of a vehicle on which the solar radiation heat influx sensor according to the present invention is mounted and upon which sunlight falls;

Fig. 6 is a cross-sectional view of a third embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within a fender mirror of an automotive vehicle, having a window similar to that of a passenger compartment of the vehicle;

Fig. 7 is a cross-sectional view of a fourth embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within the fender mirror, having
model seats similar to the ones disposed within the passenger compartment;

Fig. 8 is a plan view of a fifth embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within the fender mirror having a longitudinal partition within the model window; and

Fig. 9 is a cross-sectional view of a sixth embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within the fender mirror, having a lateral partition within the model window.

Detailed description of the preferred embodiments

With reference to the attached drawings, there is described a solar radiation heat influx sensor according to the present invention with reference to the attached drawings.

Fig. 1 shows a first embodiment according to the present invention. First, follows a description of the structure thereof.

In the figure, the reference numeral 1 denotes a sensor body having a small chamber 4 covered by a window 3 at the center thereof through which rays 2 of sunlight can pass. At one end of the small chamber 4, there is provided an air inlet 5; at the other end of the small chamber 4, there is provided an air outlet 7 at which a small blower 6 is disposed to create a given flow of air through the small chamber to the outside. Within the air inlet 5, there is disposed an outside-air temperature sensor 8 such as a thermistor to detect outside air temperature θ_S; within the air outlet 7, there is disposed a warmed-air temperature sensor 9 to detect temperature θ_A of air heated by sunlight after the air has passed through the small chamber 4. The temperatures θ_S and θ_A detected by the outside-air temperature sensor 8 and the warmed-air temperature sensor 9, respectively, are applied to a solar radiation heat influx calculating unit 10, by which solar radiation heat influx Q_S within a passenger compartment can be calculated by the method described hereinbelow.

The sensor body 1 used for this embodiment according to the present invention is mounted at a position exposed to sunlight on the outside of the vehicle body, for instance, on the roof, front fender, rear fender etc. It may be convenient to use the above-mentioned outside-air temperature sensor 8 in common with another outside-air temperature sensor used with an air-conditioning system for an automotive vehicle.

Next, follows a description of the operation of the solar radiation heat influx sensor according to the present invention. First, the small blower 6 induces air to flow at a rate q (kg/sec) from the air inlet 5 to the air outlet 7. If sunlight falls upon the small chamber 4 at an angle of incidence λ and if the flux of energy through a surface perpendicular to the direction of rays of sunlight 2 is given as L (kcal/sec.m2), solar energy entering the small chamber 4 at an angle of incidence λ can be expressed as $L_S = \frac{\sin \lambda \cdot q \cdot \theta_S - q \cdot \theta_A}{S_1}$, where the symbol S_1 denotes the surface area of the window 3.

On the other hand, the heat quantity inherent in the air flowing from the air inlet 5 into the small chamber 4 within a unit of time can be expressed as $q \cdot C_P \theta_S$ (kcal/sec), where q is the quantity of air (kg/sec) introduced into the small chamber 4, C_P is a gravimetric specific heat $C_P = 0.24$ (kcal/kg/C) and θ_A is the temperature of air flowing through the air inlet 5 (outside-air temperature).

Further, the heat content of the air discharged from the small chamber 4 within a unit of time period can be expressed as $q \cdot C_P \theta_A$ (kcal/sec), where θ_A is the temperature of air flowing through the air outlet 7 (solar radiation temperature).

Therefore, the following heat equilibrium equation can be obtained for the air flowing through the sensor body 1:

$$L = -\frac{q \cdot \theta_S - q \cdot \theta_A}{S_1 \cdot \sin \lambda}$$

Since the angle of incidence λ in the equation (2) is not known, however, it is impossible to directly obtain solar energy L.

In this invention, since solar radiation heat quantity Q_S due to sunlight within a passenger compartment is necessary, now follows a description of relationship between Q_S and λ.

Assumption is made that rays of sunlight fall, at an angle of incidence λ to a horizontal surface, upon a vehicle body having windshields at its front and rear ends and on the right and left sides, respectively, as shown in Fig. 5. Here, if the entire windshield area of a vehicle is assumed to be a single equivalent light-receiving area S_2 obtained when the combined windshield area is projected onto a reference surface parallel to the window 3, the solar radiation heat influx Q_S is as follows:

$$Q_S = L \cdot S_2 \cdot \sin \lambda$$

In the above equation, although S_2 varies as λ varies, it is possible to obtain an average value of the converted windshield area S_2 experimentally. Therefore, by substituting the equation (2) into the equation (3), the following equation can be obtained:

$$Q_S = -\frac{q \cdot \theta_S - q \cdot \theta_A}{S_1 \cdot \sin \lambda}$$

Since S_1, S_2, q, and C_P are all constants, when the outside-air temperature θ_A and warmed-air
temperature θ_s are detected by the embodiment shown in Fig. 1, it is possible to detect solar radiation heat influx Q_s into the passenger compartment irrespective of an angle of incidence λ.

Fig. 2 shows an air-conditioning system in which the solar radiation heat influx sensor of the embodiment shown in Fig. 1 is used.

First, the air-conditioning unit (mechanical assembly of the air-conditioning system) comprises an intake door 11 for switching air introduction modes from outside-air introduction mode via an outside-air introduction duct 12 to inside-air recirculation mode via an inside-air recirculation duct 13 or vice versa. The air drawn in by a blower fan 14 driven by a blower motor 14a is cooled and dehumidified by an evaporator 15. Part of the cooled and dehumidified air is next reheated by passing through a heater core 16 through which engine coolant is circulated. The ratio of reheated air to unheated air, i.e., the percentage of air passing through the heater core 16, is determined by the opening percentage of the air mix door 17. The reheated and unheated portions of the air then remix and are outputted into the passenger compartment through an output air duct (not shown). The opening percentage of the air mix door 17 is actuated by a vacuum actuator 18 via a link and rod. To the vacuum actuator 18, there is applied a vacuum output signal from an a voltage-to-pressure transducer 19 in order to adjust the actuation vacuum pressure from a vacuum source in accordance with an opening percentage command signal X, so that the air mix door 17 is actuated to a position according to the opening percentage command signal X. In this case, air mix door opening percentage (%) is proportional to output duct air temperature θ_c as shown in Fig. 3.

Now follows a description of the control block. In Fig. 2, the reference numeral 8 denotes the outside-air temperature sensor provided within the sensor body 1 shown in Fig. 1, the reference numeral 9 denotes the warmed-air temperature sensor also provided within the sensor body 1 shown in Fig. 1. The reference numeral 20 denotes a temperature presetting device for presetting a passenger compartment target air temperature θ_p, the numeral 21 denotes a passenger compartment air temperature sensor for detecting passenger compartment air temperature θ_p, the numeral 22 denotes an opening percentage sensor for detecting the opening percentage of the air mix door 17, and the numeral 23 denotes a ventilation sensor provided in the outside-air introduction duct 12 to detect fresh air intake quantity Q_v. The reference numeral 24 denotes a multiplexer for sequentially conducting various signals including the air volume signal Q_a outputted by the blower motor 14a, the respective sensors and the passenger compartment air temperature presetting device. In addition the numeral 25 denotes an A-D converter and the numeral 26 denotes a calculating unit for producing an opening percentage command signal X to open the air mix door 17 after executing predetermined calculations, during which the solar radiation heat influx Q_s determined by the abovementioned equation (4) is also calculated.

Next will be described the control calculation for obtaining an opening percentage command signal X for the air-conditioning system shown in Fig. 2.

First, temperature variation within a passenger compartment with respect to time can be given by the following equation:

$$\frac{d\theta_p}{dt} = C \frac{Q_c + Q_t + Q_v + Q_s + Q_m + Q_e}{Q}$$ \hspace{1cm} (5)$$

where Q_c is the heat influx due to the air conditioning system, Q_t is the heat influx conducted through surfaces such as roof, doors, or window shields, Q_v is the ventilation heat influx, Q_s is the heat influx due to solar radiation, Q_m is the heat quantity generated by passengers, and Q_e is the heat quantity generated by equipment such as a car radio mounted on a vehicle, and C is the heat capacity of the passenger compartment.

The above-mentioned Q_c, Q_t and Q_v can be expressed as follows, respectively:

$$Q_c = G a C_p (\theta_c - \theta_p)$$ \hspace{1cm} (6)$$

$$Q_t = K (\theta_a - \theta_p)$$ \hspace{1cm} (7)$$

$$Q_v = G v C_p (\theta_a - \theta_p)$$ \hspace{1cm} (8)$$

where θ_c is the output duct air temperature, and K is the thermal conductivity of the walls of a passenger compartment (approximately $K = 0.01$ kcal/C°C/sec).

Now, when the equations (6), (7), and (8) are all substituted into the equation (5),

$$\frac{d\theta_p}{dt} = G a C_p (\theta_c - \theta_p) + K (\theta_a - \theta_p)$$

$$\hspace{1cm} + G v C_p (\theta_a - \theta_p) + Q_s + Q_m + Q_e$$ \hspace{1cm} (9)$$

where Q_m and Q_e are easily-obtainable constants.

In the equation (9), if passenger compartment air temperature θ_p is equal to preset passenger compartment air temperature θ_p, that is, heat equilibrium has been achieved, then passenger compartment temperature θ_p will be held substantially constant, i.e.,

$$\frac{d\theta_p}{dt} = 0$$ \hspace{1cm} (10)$$

Therefore, output duct air temperature θ_c' is as follows:
\[\theta_c' = \frac{(K+(Ga+Gv)Cp)8ps}{GaCp} - \frac{(K+GvCp)8a-Qs-Qm-Qe}{100} \]
\[X = \frac{-\theta_c - 4}{76} \]

Equation (15), which is obtained from equations (13) and (14), at a predetermined time after the data have been received, and outputs a signal corresponding to the resulting opening percentage \(X + \Delta X \) to the voltage-to-pressure transducer 19.

Further, since solar radiation heat influx \(Qs \) in the above equation (15) can be obtained on the basis of the equation (4) from the sensor according to the present invention, the calculating unit 26 calculates and outputs opening percentage command signal \(X + \Delta X \) on the basis of the following equation:

\[X + \Delta X = \frac{100(K+(Ga+Gv)Cp)}{76GaCp} + \frac{e[8ps]}{76GaCp} \]

\[\frac{100(100Qm+Qe)}{76GaCp} + \frac{1000(Qm+Qe)}{76GaCp} + \frac{100Qs}{76QaCp} \]

Equation (16), which is obtained from equations (13) and (14), at a predetermined time after the data have been received, and outputs a signal corresponding to the resulting opening percentage \(X + \Delta X \) to the voltage-to-pressure transducer 19.

Additionally, the above-mentioned opening percentage is calculated on the basis of proportional control with a proportionality constant \(e \); however, it is possible to calculate opening percentage on the basis of proportional integral control with an integral coefficient \(\xi \) in order to calculate \(x + \Delta X \) by the following equation (17) instead of the equation (14):

\[X = X' + e(8ps-8p) + \xi \int (8ps-8p) dt \]

Fig. 4 shows a second embodiment according to the present invention, in which the sensor body is provided within a fender mirror housing for an automotive vehicle.

Therefore, the calculating unit 26 receives the data necessary to calculate the opening percentage \(X \) on the basis of the equations (13) and (14) from the multiplexer 24 and the A-D converter 25, calculates air-mix door opening percentage \(X + \Delta X \) on the basis of the following
5a guides air driven by the blower 6 from a gap between the bottom of the mirror 28 and the housing 27 to the air inlet 5. The air passes through the chamber 4 and out through another gap between the top of the mirror 28 and the housing 27. An outside-air temperature sensor 8 is mounted in the air inlet 5, and a warmed-air temperature sensor 8 is mounted in the air outlet 7.

In the case where the sensor body according to the present invention is installed within the fender mirror housing, since rays of sunlight incident upon the sensor are not shaded by other portions of the vehicle, whenever sunlight falls upon the mirror housing, with the result that it is possible to more reliably detect solar radiation heat influx.

Additionally, since the mirror housing also serves to protect and cover the sensor body, there is no problems from the standpoint of appearance or strength.

In this embodiment it is also desirable that the small chamber 4 be painted to match as closely as possible the color of the vehicle interior in order to more accurately simulate the solar heating characteristics of the passenger compartment and thus more accurately measure solar heat influx.

Fig. 6 shows a third embodiment of the solar radiation heat influx sensor according to the present invention, which is disposed within a fender mirror housing for an automotive vehicle and has a window structure modeled after the windows and windshields of the passenger compartment of the vehicle.

In both the first and second embodiments according to the present invention, the solar radiation heat influx into a passenger compartment Qs is calculated on the basis of an equivalent light-receiving area S2 which is the mean value of the effective light-receiving area of the vehicle over all values of the angle λ of incidence of sunlight 7.

Therefore, incidence angle of sunlight varies, for instance, when sunlight falls upon only the front windshield 102 of the vehicle 100 or upon only the rear windshield 101, as shown in Fig. 5, both the respective effective light-receiving area and the intensity of sunlight passing through the windows vary, with the result that there exists an error range of about 50 percent. Furthermore, since the angle of inclination of the front and rear windshields differ, the calculated solar radiation heat influx Qs may not correspond to the actual solar radiation heat influx into the passenger compartment; that is, it is impossible to accurately control passenger compartment air temperature under all conditions.

In Fig. 6, a fender mirror housing 27 is provided with a small glass window including a model front windshield 113, model side windows 114 and 115, a model rear window 116, a model roof 117 which is opaque, a model pillar 118, etc., which are all similar in shape to the real windows of the vehicle 100. That is, a small model of the passenger compartment of a vehicle is mounted on the fender mirror housing 27, so that the configuration of the small chamber 4 is similar to that of the rear passenger compartment.

As described already, solar radiation heat influx Qs can be derived from equation (4) as follows:

\[
Q_s = \frac{S_2}{S_1} \cdot qCp(\theta_s - \theta_a)
\]

where S1 is the light-receiving area of the small chamber 4 provided within the fender mirror housing 27, and S2 is a surface equivalent to the light-receiving area of the vehicle 100.

Although the light-receiving area S1 of the small chamber 4 and the light-receiving area S2 of the vehicle vary according to the angle λ of incidence of sunlight 2, the small window model provided on the fender mirror housing 27 is similar to that of the vehicle 100, and thus the ratio of S2 to S1 is constant regardless of the angle λ of incidence. Therefore, since it is possible to accurately calculate solar radiation heat influx Qs by inputting the respective temperatures θa and θs detected by the outside-air temperature sensor 8 and the warmed-air temperature sensor 9, it is possible to accurately control passenger compartment air temperature.

Fig. 7 shows a fourth embodiment according to the present invention, which includes model seats similar to ones disposed within the real passenger compartment.

As will be well understood in Fig. 7, it is even more realistic to dispose small model seats 119 and 120 (it is desirable to match the model seats to the real seats of the vehicle 100 in shape, color, and material), a small model instrument dashboard 123, etc. within the small chamber 4 and to match the model windows 113, 114, 115 and 116 and the model roof 117 to the real ones of the vehicle in heat conductivity and in light transmittivity.

Fig. 8 shows a fifth embodiment according to the present invention.

In this embodiment, there is provided a first partition 130 made of a transparent material dividing the small model vehicle within the small chamber 4 into two sections (right and left side) longitudinally. Inlets 124 and 125 and outlets 126 and 127 are disposed at the longitudinal ends of the halves 4a and 4b of the small chamber 4, respectively. One outside-air temperature sensor 8 is positioned in a passageway common to the two inlet ducts 124 and 125 and two warmed-air temperature sensors 9 are positioned in the respective outlets 126 and 127.

Fig. 9 shows a sixth embodiment according to the present invention. In this embodiment, there is provided a second partition 131 made of a transparent material dividing the small model vehicle within the small chamber 4 into two sections (front 4c and rear 4d) laterally. Two outlets 71 and 72 are disposed at opposite longitudinal ends of the small chamber 4 with a
warmed-air temperature sensor 9 at each outlet. Description of the other elements is omitted here since they are the same as in the previously described embodiments.

In the above-mentioned fifth and sixth embodiments, since two warmed-air temperature sensors 9 are used for detecting respective warmed-air temperatures before or behind, or on the right or left side of the small chamber 4 divided by the partition 130 or 131, even if sunlight is more intense on one side (front or back, or right or left) of the vehicle 100, it is possible to reliably control the passenger compartment air temperature, according to solar radiation conditions, by separately controlling the temperature of the air outputted from the front or back or the right or left side of the air-conditioning system of the vehicle 100.

As described above, in the solar radiation heat influx sensor according to the present invention, since solar radiation heat influx can be detected on the basis of the difference in temperature between inbound and outbound air flowing through the small chamber upon which rays of sunlight fall, it is possible to easily and reliably obtain the solar radiation heat influx into the passenger compartment. As a result, it is possible to reliably control air conditioning within the passenger compartment regardless of variations in solar radiation.

Further, in the third-to-sixth embodiments according to the present invention, since there is provided a small model vehicle on the outside of a vehicle, and since the difference in air temperature between an inlet and an outlet for air forcedly passed through the model is detected, it is possible to reliably control passenger compartment air temperature under all solar radiation conditions. Furthermore, by dividing the small chamber with the partition, it is possible to more accurately adjust the air temperature control parameters.

Claims

1. A solar radiation heat influx sensor mounted on an automotive vehicle (100) having a fender mirror housing (27), for detecting heat influx into a passenger compartment due to sunlight, which comprises, in combination:
 (a) a sensor body (1) having an air inlet portion (5) and an air outlet portion (7) at opposite ends thereof and a window (3), upon which rays of sunlight fall, between said inlet and outlet portions;
 (b) means (6) for driving air through said sensor body from the inlet portion to the outlet portion;
 (c) an outside-air temperature sensor (18) disposed in the inlet portion (5) of said sensor body for detecting the temperature of air flowing into said sensor body (1);
 (d) a warmed-air temperature sensor (9) disposed in the outlet portion of said sensor body for detecting the temperature of air flowing out of said sensor body; and
 (e) a calculating unit (10) connected to said outside-air temperature sensor and said warmed-air temperature sensor for calculating heat influx into the passenger compartment due to sunlight on the basis of the signals generated from said outside-air temperature sensor and said warmed-air temperature sensor and a predetermined equation, and for outputting a signal corresponding thereto.

2. A solar radiation heat influx sensor as set forth in claim 1, wherein said sensor body (1), said means (6) for driving air through said sensor body, said outside-air temperature sensor (8), and said warmed-air temperature sensor (9) are disposed within the fender mirror housing of the automotive vehicle.

3. A solar radiation heat influx sensor as set forth in claim 1, wherein the predetermined equation is

$$S_2 = \frac{q}{c_p} \times \left(8s - 9a \right)$$

where q is the volumetric flow rate of air from the inlet portion (5) to the outlet portion (7), c_p is the gravimetric specific heat of air, $8s$ is the temperature detected by said warmed-air temperature sensor (9), $9a$ is the temperature detected by said outside-air temperature sensor (8), S_1 is the surface area of the opening, and S_2 is the equivalent mean light-receiving area of the vehicle.

4. A solar radiation heat influx sensor as set forth in either of claims 1 and 2, which further comprises a model window similar in shape to the passenger compartment of the vehicle, said model window being disposed between the inlet and outlet portions of said sensor body to receive rays of sunlight.

5. A solar radiation heat influx sensor as set forth in claim 4, wherein said model window comprises a model front windshield (113), a model rear window (116), two model side windows (114, 115), a model roof (117), and two model pillars (118), which are all similar in shape to the ones used for the vehicle.

6. A solar radiation heat influx sensor as set forth in claim 5, wherein said model windshield, roof, windows, and pillars are roughly the same in heat conductivity and light transmittivity as the ones used for the vehicle.

7. A solar radiation heat influx sensor as set forth in claim 4, which further comprises model passenger seats (119, 120), and a model instrument dashboard (123).

8. A solar radiation heat influx sensor as set forth in claim 7, wherein said model passenger seats and model instrument dashboard are roughly the same in shape, color, and material as the one used for the vehicle.

9. A solar radiation heat influx sensor as set forth in claim 4, which further comprises:
 (a) a partition (131) made of a transparent material for dividing said model window into a
10. A solar radiation heat influx sensor as set forth in claim 4, which further comprises:
(a) a partition (131) made of a transparent material for dividing said model window into a front side section (4c) having front side inlet portion (71) and a rear side section (4d) having a rear side inlet portion (72), the front and rear side inlets being connected to each other, said outside-air temperature sensor being disposed at a position common to the front and rear inlet side portions; and
(b) a pair of warmed-air temperature sensors (9) one disposed in each of the right and left side outlet portions.

Revendications

1. Capteur de flux de chaleur et de rayonnement solaire monté dans une voiture automobile (100) ayant un logement protecteur de rétroviseur (27) pour détecter le flux de chaleur dans une compartiment passagers du fait de la lumière du soleil, que comprend, en combinaión:
(a) un corps de capteur (1) ayant une partie d’entrée d’air (5) et une partie de sortie d’air (7) à ses extrémités opposées et une fenêtre (3) sur laquelle tombent les rayons de soleil, entre lesdites parties d’entrée et de sortie;
(b) un moyen (6) pour entraîner de l’air à travers ledit corps du capteur de la partie d’entrée à la partie de sortie;
(c) un capteur (18) de la température de l’air extérieur disposé dans la partie d’entrée (5) dudit corps de capteur pour détecter la température de l’air s’écoutant dans ledit corps de capteur (1);
(d) un capteur (9) de la température de l’air chauffé disposé dans la partie de sortie dudit corps de capteur pour détecter la température de l’air sortant dudit corps de capteur; et
(e) une unité de calcul (10) connectée audit capteur de la température de l’air extérieur et audit capteur de la température de l’air chauffé pour calculer le flux de chaleur dans le compartiment passagers du fait de la lumière du soleil sur la base des signaux produits par ledit capteur de la température de l’air extérieur et ledit capteur de la température de l’air chaud et une équation prédéterminée, et pour émettre un signal qui leur correspond.

2. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 1, où ledit corps de capteur (1), ledit moyen (6) pour entraîner l’air à travers ledit corps de capteur, ledit capteur (8) de la température de l’air extérieur et ledit capteur (9) de la température de l’air chauffé sont disposés dans le logement protecteur de rétroviseur de la voiture automobile.

3. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 1, où l’équation prédéterminée est

\[Q_s = \frac{S_2}{S_1} q C_p (\theta_s - \theta_a) \]

5

dans laquelle \(q \) est le débit volumétrique de l’air de la partie d’entrée (5) à la partie de sortie (7), \(C_p \) est la chaleur spécifique gravimétrique de l’air, \(\theta_s \) est la température détectée par ledit capteur (9) de la température de l’air chauffé, \(\theta_a \) est la température détectée par ledit capteur (8) de la température de l’air extérieur, \(S_1 \) est la surface de l’ouverture et \(S_2 \) est la surface équivalente moyenne de réception de la lumière de la voiture.

4. Capteur de flux de chaleur et de rayonnement solaire selon l’une des revendications 1 et 2 caractérisé en ce qu’il comprend de plus une fenêtre miniature semblable, par sa forme, au compartiment passagers du véhicule, ladite fenêtre miniature étant disposée entre les parties d’entrée et de sortie dudit corps de capteur pour recevoir les rayons de soleil.

5. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 4 où ledit fenêtre miniature comprend un pare-brise avant miniaturisé (113), une fenêtre arrière miniaturisée (116), deux fenêtres latérales miniatures (114, 115), un toit miniaturisé (117) et deux montants miniatures (118) qui sont tous semblables, par leur forme, à ceux utilisés pour le véhicule.

6. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 5 où ledits pare-brises, toit, fenêtres et montants miniatures sont grossièrement les mêmes, par leur conductivité thermique et leur transmissibilité de la lumière, que ceux utilisés pour le véhicule.

7. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 4, qui comprend de plus des sièges miniatures de passagers (119, 120) et un panneau de bord miniaturisé (123).

8. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 7, où ledits sièges miniatures de passagers et ledit tableau de bord miniature sont grossièrement les mêmes par leur forme, leur couleur et leur matériau que celui utilisé pour le véhicule.

9. Capteur de flux de chaleur et de rayonnement solaire selon la revendication 4, qui comprend de plus:
(a) une séparation (131) faite en un matériau transparent pour diviser ladite fenêtre miniature en une section côté droit (4a) ayant une partie d’entrée côté droit (124) et une partie de sortie (126) côté droit et une section côté gauche (4b) ayant une partie d’entrée côté gauche (125) et une partie de sortie côté gauche (127), les entrées côté droit et gauche étant connectées l’une à l’autre, ledit capteur de la température de l’air.
extérieur (8) étant disposé en une position commune aux parties d’entrée droite et gauche; et
(b) deux capteurs (9) de la température de l’air chauffé, un disposé dans chacune des parties de sortie côtés droit et gauche.

10. Câbleur de flux de chaleur et de rayonnement solaire selon la revendication 4 qui comprend de plus:
(a) une séparation (131) faite en un matériau transparent pour diviser ledit fenêtre miniature en une section côté avant (4c) ayant une partie d’entrée côté avant et une partie de sortie côté arrière (71) et une section côté arrière (4d) ayant une partie d’entrée côté arrière et une partie de sortie côté arrière (72), les entrées côtes avant et arrière étant connectées l’une à l’autre, ledit capteur de la température de l’air extérieur étant disposé en une position commune aux parties côtés entrée avant et arrière; et
(b) une paire de capteurs de la température de l’air chauffé, un disposé dans chacune des parties de sortie côtés avant et arrière.

Patentansprüche

1. Sonnenstrahlungswärmeineinflussensor, der auf einem selbstbeweglichen Fahrzeug (100) angeordnet ist, welches ein Schutzspiegelgehäuse (27) aufweist, um den in die Fahrgastzelle einfallenden Sonnenlichtwärmeumstrom nachzuweisen, welcher in Kombination umfaßt:
a) einen Sensorkörper (1) mit einem Luftteinlaßabschnitt (5) und einem Luftraumabschnitt (7) an gegenüberliegenden Enden und mit einem zwischen dem Einlaß- und dem Auslaßbereich angeordneten Fenster (3), auf welches Sonnenlichtstrahlen fallen;
b) eine Einrichtung (6) um Luft durch den Sensorkörper vom Einlaßbereich zum Auslaßbereich hin zu treiben;
c) einen Außenlufttemperatursensor (18), der am Einlaßbereich (5) des Sensorkörpers angeordnet ist, um die Temperatur der Luft zu erfassen, die in den Sensorkörper (1) eintritt;
d) einen Warmlauftemperatursensor (9), der am Ausgangsbereich des Sensorkörpers angeordnet ist, um die Temperatur der Luft, die aus dem Sensorkörper herausströmmt, zu erfassen, und
e) eine Recheneinheit (10), die mit dem Außenseitenlufttemperatursensor und dem Warmlauftemperatursensor verbunden ist, um den durch Sonnenstrahlung verursachten Wärmezufluß in die Fahrgastzelle auf der Basis der Stunde, die von dem Außenseitenlufttemperatursensor und dem Warmlauftemperatursensor erzeugt werden und einer vorbestimmten Gleichung zu errechnen und um ein Signal auszuleiten, welches diesem entspricht.

2. Sonnenstrahlungswärmeineinflussensor nach Anspruch 1, wobei der Sensorkörper (1), die Einrichtung (6) zum Hindurchtreten von Luft durch dens Sensorkörper, der außenseitige Lufttemperatursensor (8) und der Warmlauftemperatursensor (9) innerhalb des Schutzspiegelgehäuses eines selbstbeweglichen Fahrzeuges angeordnet sind.

3. Sonnenstrahlungswärmeineinflussensor nach Anspruch 1, wobei die vorgegebene Gleichung die folgende ist:
\[
S_2 = \frac{Q_s}{C_p (\theta_8 - \theta_a)}
\]

wobei q die volumenmäßige Luftdurchflußrate vom Einlaßbereich (5) zum Auslaßbereich (7) ist,
\(C_p\) die gravimetrische spezifische Wärme von Luft,
\(\theta_8\) die Temperatur, die von dem Warmlauftemperatursensor (9) erfaßt wird,
\(\theta_a\) die Temperatur, die von dem außenseitigen Lufttemperatursensor (8) erfaßt wird,
\(S_1\) die Öffnungsfläche und
\(S_2\) die äquivalente Hauptlichtempfangsfäche des Fahrzeuges bedeutet.

4. Sonnenstrahlungswärmeineinflussensor nach Anspruch 1 oder 2, der weiterhin ein Modellfenster, welches in seiner Form der Form der Fahrgastzelle des Fahrzeuges entspricht, umfaßt, wobei das Modellfenster zwischen dem Einlaß- und dem Auslaßbereich des Sensorkörpers angeordnet ist, um Sonnenlichtstrahlen zu empfangen.

5. Sonnenstrahlungswärmeineinflussensor nach Anspruch 4, wobei das Modellfenster einen vorderen Modellwindschutz (13) ein hinteres Modellfenster (116), zwei Seitenmodellfenster (114, 115), ein Modelldach (117) und zwei Modellstreben (118), die in ihrer Form alle ähnlich derjenigen sind, welche bei Krafträdereen verwendet werden, umfaßt.

6. Sonnenstrahlungswärmeineinflussensor nach Anspruch 5, wobei der Modellwindschutz, das Dach, die Fenster und die Streben ungefähr dieselbe Wärmeleitfähigkeit und Lichtdurchlässigkeit aufweisen wie diejenigen, die bei Fahrzeugen verwendet werden.

7. Sonnenstrahlungswärmeineinflussensor nach Anspruch 4, der weiterhin Modellfahrwassergestelle (119, 120) und eine Modellinstrumententafel (123) umfaßt.

8. Sonnenstrahlungswärmeineinflussensor nach Anspruch 7, wobei die Modellfahrwassergestelle und die Modellinstrumententafel ungefähr dieselbe Form, Farbe und dasselbe Material aufweisen, wie diejenigen, die in Fahrzeugen verwendet werden.

9. Sonnenstrahlungswärmeineinflussensor nach Anspruch 4, der weiterhin umfaßt:
a) eine Unterteilung (131), die aus durchlässigem Material besteht, um das Modellfenster in einen linksseitigen Abschnitt (4a) mit einem linksseitigen Einlaßbereich (124) und einem rechtsseitigen Einlaßbereich (125) und einem rechtsseitigen Auslaßbereich (126) und in einen linksseitigen Abschnitt (46) mit einem linksseitigen Einlaßbereich (125) und einem linksseitigen Auslaßbereich (127) zu unterteilen, wobei
die rechtsseitigen und linksseitigen Einlässe miteinander verbunden sind, und wobei der Außenseitenlufttemperatursensor (8) an einer dem rechtsseitigen und dem linksseitigen Einlaßbereich gemeinsamen Stelle angeordnet ist; und
b) ein Warmlufttemperatursensorpaar (9), mit jeweils einem in dem rechten und linken Auslaßbereich angeordneten Sensor.
10. Sonnenstrahlungswärmeeinfallssensor nach Anspruch 4, der weiterhin umfaßt:
a) eine Unterteilung (131), die aus einem durchlässigen Material hergestellt ist, um das Modellfenster in einen vorderen Seitenabschnitt (4c) mit einem vorderen Seiteneinlaßbereich und einem vorderen Seitenaußebrauch (71) und in einen hinteren Seitenbereich (4d) mit einem hinteren Seiteneinlaßbereich und einem hinteren Seitenaußebrauch (72) zu unterteilen, wobei die vorderen und hinteren Seiteneinlässe miteinander verbunden sind, und wobei der außenseitige Lufttemperatursensor an einer dem vorderen und dem hinteren Einlaßseitenbereich gemeinsamen Stelle angeordnet ist und
b) ein Warmlufttemperatursensorpaar, mit jeweils einem in dem vorderen und in dem hinteren Seitenaußebrauch angeordneten Sensor.