EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 22.01.86

Application number: 82101339.8

Date of filing: 22.02.82

Int. Cl. 4: C 07 C 43/164,
C 07 C 43/168, C 07 C 43/21,
C 07 C 69/75, C 07 C 69/76,
C 07 C 69/773, C 07 C 121/75,
C 07 D 239/26, C 09 K 19/08,
C 09 K 19/12, C 09 K 19/30

Colorless liquid crystalline compounds.

Priority: 25.02.81 JP 25502/81
10.07.81 JP 107074/81
18.11.81 JP 183763/81
18.11.81 JP 183764/81

Publication of the patent: 22.01.86 Bulletin 86/04
Designated Contracting States:
CH DE FR GB IT LI

References cited:
US-A-3 953 491
CHEMICAL ABSTRACTS, vol. 88, no. 8, 20th February 1978, page 418, no. 56990g,
Columbus, Ohio, USA

Proprietor: Hitachi, Ltd.
5-1, Marunouchi 1-chome
Chiyoda-ku Tokyo 100 (JP)

Proprietor: Kanto Chemical Co., Inc.
7, Nihonbashihoncho-3-chome
Chuo-ku, Tokyo (JP)

Inventor: Hirai, Yoichi
1088-1, Aoyagicho
Soka-shi (JP)
Inventor: Fujii, Tsunenori
3231-7, Aoyagicho
Soka-shi (JP)
Inventor: Koto, Kaoru
3-7, Ashichocho-6-chome
Soka-shi (JP)
Inventor: Suzuki, Kenji
1475-22, Yatsukacho
Soka-shi (JP)
Inventor: Yoshida, Masahiro
7-23, Aza Nakajima, Miyashirocho
Minamisaitama-gun Saitama-ken (JP)
Inventor: Okawa, Hisashi
5-4, Minami-2-chome
Kasukake-shi (JP)
Inventor: Kitamura, Teruo
3600-234, Nakane
Katsuta-shi (JP)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention.)
0 058 981

Inventor: Yokokura, Hisao
10-1, Higashinarusawacho-2-chome
Hitachi-shi (JP)
Inventor: Okabe, Yoshiaki
1-12, Higashicho-2-chome
Hitachi-shi (JP)
Inventor: Hattori, Shintaro
20-3, Ayukawa-cho-6-chome
Hitachi-shi (JP)
Inventor: Mukoh, Akio
498-21, Kasahara-cho
Mito-shi (JP)
Inventor: Sato, Mikio
967, Ishinazakacho
Hitachi-shi (JP)

Representative: von Füner, Alexander, Dr. et al
Patentanwälte v. Füner, Ebbinghaus, Finck
Mariahilfplatz 2 & 3
D-8000 München 90 (DE)
Description

This invention relates to colorless liquid crystalline compounds.

In the present specification, the term "colorless liquid crystalline compounds" means liquid crystalline compounds which do not absorb visible light. The liquid crystalline compounds include not only liquid crystals but also compounds which are useful as constituents of liquid crystal compositions even if they themselves have no liquid crystal phase at room temperature.

In order to obtain a liquid crystal display element which is excellent in response properties not only at room temperature but also under the circumstances of low temperatures, it is necessary that the mesomorphic range should be extended to a low temperature range. This becomes possible if the reduction of the viscosity of liquid crystal compositions is realized.

Conventional representative liquid crystalline compounds:

\[
\begin{align*}
\text{C}_m\text{H}_{2m+1} & \quad \text{H} \quad \text{OC}_n\text{H}_{2n+1} \\
\end{align*}
\]

wherein \(m \) and \(n \) are individually an integer, are too highly viscous for the above-mentioned purpose. On the other hand, compounds of the similar general formula:

\[
\begin{align*}
\text{C}_m\text{H}_{2m+1} & \quad \text{H} \quad \text{C}_n\text{H}_{2n+1} \\
\end{align*}
\]

have a low viscosity but do not have a liquid crystal phase. From the difference between the compounds of each of the two formulas, the present inventors reached the following conclusion. In the case of compounds like the former compounds in which an oxygen atom is directly linked to

\[
\begin{align*}
\text{C}_m\text{H}_{2m+1} & \quad \text{H} \quad \text{C}_n\text{H}_{2n+1} \\
\end{align*}
\]

and unshared electrons of the oxygen are conjugated and change places with each other, so that the dielectric constant becomes high, resulting in a high viscosity. On the other hand, the latter compounds have a low dielectric constant and hence have a low viscosity, however, since they have no polar atom or group such as an oxygen atom, the polarity of the whole molecule is small, so that they can have no liquid crystal phase. Accordingly, the present inventors have done further researches and accomplished this invention in the course of research on a molecular structure capable of giving properties which are intermediate between those of the former and latter compounds.

The compounds disclosed in Japanese Patent Appln Kokai (Laid-Open) No. 68,881/71 and represented by the general formula

\[
\begin{align*}
\text{RO} & \quad \text{CH} = \text{N} \quad \text{OC}(\text{CH}_2)_3 \text{OCH}_3 \\
\end{align*}
\]

wherein \(R \) is \(\text{CH}_3, \text{C}_2\text{H}_5, \text{n-C}_3\text{H}_7 \) or \(\text{n-C}_4\text{H}_9 \) are liquid crystalline compounds having a low viscosity, and can extend the mesomorphic range. However, these compounds are colored Schiff's base liquid crystalline compounds.

In the US—A—3 953 491 there are no disclosed compounds having a substituent of the formula \(-\text{OH})_m \text{OC}_m\text{H}_{2m+1}\). Therefore, the compounds disclosed therein are irrelevant to the present application.

Objects of this invention are to provide colorless liquid crystalline compounds and colorless liquid crystal compositions capable of extending the mesomorphic range to a low temperature range, and provide liquid crystal display elements excellent in response properties by mainly utilizing such a property of the colorless liquid crystal compositions.

The colorless liquid crystalline compounds of this invention are characterized by the formula

\[
\begin{align*}
\text{R}^1 & = \text{A—B—R}^2 \quad \text{(I), or R}^1 = \text{A—X—B—R}^2 \quad \text{(II)} \\
\end{align*}
\]

wherein \(R^1 \) in the formula (I) or (II) is

\[
\begin{align*}
-(\text{OH})_n \text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2)_n \text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2)_n \text{OC}_m\text{H}_{2m+1} \quad \text{or} \quad -(\text{CH}_2)_n \text{OC}_m\text{H}_{2m+1}, \\
\end{align*}
\]

wherein \(n \) and \(l \) are independently an integer of 1 to 8; and \(m \) is an integer of 1 to 12; and wherein \(R^2 \) in the formula (I) or (II) is a cyano group, a nitro group, a halogen group or a non-cyclic group represented by the formula.
wherein n and l are independently an integer of 1 to 8; and m is an integer of 1 to 12; A and B are independently a 6-membered ring of the formula:

and X is a group of the formula —COO—, —OCO—, —CH=CH—, —C≡C—, —CH₂CH₂— or —CH₃—. Preferred are compounds of the formula

wherein R⁴ and R⁵ are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms; X is —COO— or —OCO—; and p is an integer of 1 to 8. Furthermore, preferred are compounds of the formula

wherein R⁴ and R⁵ are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms; A′ is

In addition, preferred are compounds of the formula

R⁵OCH₆—A″—COO—B″—R⁴
wherein R^4 and R^5 are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms; A'' is

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \\
\text{H} \\
\text{O} \\
\text{O} \\
\text{H} \\
\text{H}
\end{array}
\]

or

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{O} \\
\text{H}
\end{array}
\]; and B'' is

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

or

\[
\begin{array}{c}
\text{H}
\end{array}
\]

Finally, preferred are compounds of the formula

\[
\begin{array}{c}
\text{R}^4 \\
\text{COO} \\
\text{O} \\
\text{O} \\
\text{(CH}_2}_p\text{PO}_5
\end{array}
\]

wherein R^4 and R^5 are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms and p is an integer of 1 to 6.

Colored azo, azoxy or the like liquid crystalline compounds, to say nothing of colored Schiff's base liquid crystalline compounds such as the above-mentioned conventional examples, are not the object of this invention.

In the attached drawings, all of Figs. 1 to 17 are infrared absorption spectra of various colorless liquid crystalline compounds of this invention.

This invention is further explained below in detail referred to Examples. In the following explanation, R^4 and R^5 in the general formulas mentioned below individually represent an alkyl group preferably having 1 to 12 carbon atoms. R^4 and R^5 may have the same number of or different numbers of carbon atoms and may be straight-chain or branched group. The values of the phase transition temperatures and the melting points change a little depending upon the purities of the compounds. The letter S denotes a smectic phase, the letter N a nematic phase and the letter I an isotropic phase. For example, the crystal-to-nematic transition is symbolized by (C—N) transition, and the nematic-to-isotropic transition by (N—I) transition. The unit of the phase transition temperatures is °C. In explanation of the phase transition temperatures, the numerical values in the parentheses indicate the transition temperatures of the monotropic transition in which phase transition does not take place in the course of heating and it takes place to show a liquid crystal phase only in the course of cooling.

Example 1
(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{array}{c}
\text{R}^4 \\
\text{H} \\
\text{C} \\
\text{O} \\
\text{CH}_2\text{OR}^5
\end{array}
\]

and its physical properties)

In a flask were placed 31.2 g of lithium aluminium hydride (Li[AlH₄]) and 200 ml of tetrahydrofuran hereinafter referred to as THF to obtain a suspension. One liter of a solution of 180 g of

\[
\begin{array}{c}
\text{C}_9\text{H}_{11} \\
\text{H} \\
\text{C} \\
\text{O} \\
\text{COOH}
\end{array}
\]

in THF was added dropwise to the suspension with stirring under ice-cooling, and after completion of the addition, the resulting solution was further stirred at room temperature continuously for 2 hours. Subsequently, the reaction solution was poured into 3 liters of dilute hydrochloric acid, and the thus obtained mixture was stirred, after which the organic layer was separated, and the solvent was distilled off to obtain
In 40 g of thionyl chloride (SOCl₂) was dissolved 39 g of

and the resulting solution was refluxed for 4 hours, after which the reaction solution was poured into 500 ml of ice water, and then extracted with benzene

The benzene was distilled off to obtain

In another flask was placed 100 ml of n-propyl alcohol (C₃H₇OH), and 0.4 g of metallic sodium (Na) was added thereto, after which the thus obtained mixture was heated to completely dissolve the latter in the former. To the resulting solution was added 5 g of

and the resulting solution was heated and refluxed for 4 hours. This reaction solution was poured into 300 ml of water and the thus obtained mixture was extracted with diethyl ether ((C₂H₅)₂O), after which the (C₂H₅)₂O was distilled off and the residue was recrystallized to obtain a colorless liquid crystalline compound:

The values of elementary analysis (C 83.4%, H 11.30%) of the sample 1 were in good agreement with the values calculated from the molecular weight (C 83.38%, H 11.30%) for C₂H₅O. In addition, the infrared absorption spectrum of the sample 1 was as shown in Fig. 1, and an absorption due to the ether linkage appeared at 1100 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 1 was identified as the liquid crystalline compound of the above formula.

There are shown in Table 1 the phase transition temperatures of the sample 1 and other samples obtained by a production process according to that of the sample 1.
<table>
<thead>
<tr>
<th>Sample</th>
<th>R<sup>4</sup></th>
<th>R<sup>5</sup></th>
<th>C—I</th>
<th>N—I</th>
<th>Sample</th>
<th>R<sup>4</sup></th>
<th>R<sup>5</sup></th>
<th>C—I</th>
<th>N—I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>2.5</td>
<td>(-38)</td>
<td>9</td>
<td>C<sub>2</sub>H<sub>15</sub></td>
<td>C<sub>4</sub>H<sub>9</sub></td>
<td>2</td>
<td>(-21)</td>
</tr>
<tr>
<td>2</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>3</td>
<td>(-42)</td>
<td>10</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>C<sub>6</sub>H<sub>17</sub></td>
<td>12</td>
<td>(-45)</td>
</tr>
<tr>
<td>3</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>C<sub>8</sub>H<sub>17</sub></td>
<td>16</td>
<td>(-30)</td>
<td>11</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>C<sub>6</sub>H<sub>13</sub></td>
<td>1</td>
<td>(-30)</td>
</tr>
<tr>
<td>4</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>19</td>
<td>(-40)</td>
<td>12</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>C<sub>4</sub>H<sub>9</sub></td>
<td>-10</td>
<td>(-27)</td>
</tr>
<tr>
<td>5</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>CH<sub>3</sub></td>
<td>9.5</td>
<td>(-10)</td>
<td>13</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>-4</td>
<td>(-47)</td>
</tr>
<tr>
<td>6</td>
<td>C<sub>7</sub>H<sub>15</sub></td>
<td>CH<sub>3</sub></td>
<td>18</td>
<td>(7.0)</td>
<td>14</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>CH<sub>3</sub></td>
<td>7.5</td>
<td>(-21)</td>
</tr>
<tr>
<td>7</td>
<td>C<sub>7</sub>H<sub>15</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>9.5</td>
<td>(-10)</td>
<td>15</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>-10</td>
<td>(-37)</td>
</tr>
<tr>
<td>8</td>
<td>C<sub>7</sub>H<sub>15</sub></td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>5</td>
<td>(-18)</td>
<td>16</td>
<td>CH<sub>3</sub></td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>-19</td>
<td>(-40)</td>
</tr>
</tbody>
</table>
Example 2

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{array}{c}
R^4 \quad O \quad H \quad CH_2OR^5 \\
\end{array}
\]

and its physical properties)

In a flask were placed 31.2 g of Li[AlH₄] and 200 mg of THF to obtain a suspension. A solution of 180 g of

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad COOH \\
\end{array}
\]

in 1 liter of THF was added dropwise to the suspension with stirring under ice-cooling, and after completion of the addition, the resulting solution was further stirred at room temperature continuously for 6 hours. Subsequently, the reaction solution was poured into dilute hydrochloric acid, and the thus obtained mixture was stirred, after which the organic layer was separated, and the solvent was distilled off to obtain

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad CH_2OH \\
\end{array}
\]

In another flask was placed 35.7 g of SOCl₂, 1.4 g of pyridine

\[
\begin{array}{c}
(\quad N \quad)
\end{array}
\]

and 100 ml of benzene, and the resulting mixture was refluxed and stirred. To the mixture was added 39 g of

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad CH_2OH_1 \\
\end{array}
\]

and the thus obtained solution was refluxed and stirred for 4 hours. This reaction solution was poured into water, and then extracted with benzene, after which the benzene was distilled off to obtain

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad CH_2Cl \\
\end{array}
\]

In further another flask was placed 100 ml of C₆H₅OH and 0.4 g of Na was added thereto, after which the resulting mixture was heated to reflux temperature. To the solution was added 5 g of the

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad CH_2Cl_1 \\
\end{array}
\]

and the resulting solution was refluxed for 3 to 4 hours. This reaction solution was concentrated, poured into water, and then extracted with (C₆H₅)₂O, after which the (C₆H₅)₂O was distilled off and the residue was recrystallized to obtain a colorless liquid crystalline compound:

\[
\begin{array}{c}
C_5H_{11} \quad O \quad H \quad CH_2OC₃H₇ \\
\end{array}
\] (Sample 17).

The values of elementary analysis (C 83.30%, H 11.42%) of the sample 17 were in good agreement with the values calculated from the molecular weight for C₁₇H₂₁₆O. In addition, the infrared absorption spectrum of the sample 17 was as shown in Fig. 2, and an absorption due to the ether linkage appeared at 1110 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 17 was identified as the liquid crystalline compound of the above formula.
There are shown the phase transition temperatures of the sample 17 and other samples obtained by a production process according to that of the sample 17.
<table>
<thead>
<tr>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>C–I</th>
<th>N–I</th>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>C–I</th>
<th>N–I</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>C_5H_{11}</td>
<td>C_3H_7</td>
<td>3</td>
<td>(−53)</td>
<td>22</td>
<td>C_3H_7</td>
<td>C_5H_{11}</td>
<td>−13</td>
<td>(−42)</td>
</tr>
<tr>
<td>18</td>
<td>C_5H_{11}</td>
<td>C_4H_9</td>
<td>−11</td>
<td>(−39)</td>
<td>23</td>
<td>C_3H_7</td>
<td>C_3H_7</td>
<td>−19</td>
<td>(−40)</td>
</tr>
<tr>
<td>19</td>
<td>C_5H_{11}</td>
<td>C_5H_{11}</td>
<td>5</td>
<td>(−21)</td>
<td>24</td>
<td>C_3H_7</td>
<td>C_2H_5</td>
<td>−1</td>
<td>(−43)</td>
</tr>
<tr>
<td>20</td>
<td>C_5H_{11}</td>
<td>C_2H_5</td>
<td>−8</td>
<td>(−44)</td>
<td>25</td>
<td>C_2H_5</td>
<td>C_5H_{11}</td>
<td>−7</td>
<td>(−70)</td>
</tr>
<tr>
<td>21</td>
<td>C_5H_{11}</td>
<td>CH$_3$</td>
<td>0</td>
<td>(−17)</td>
<td>26</td>
<td>C_2H_5</td>
<td>C_3H_7</td>
<td>−16</td>
<td>(−70)</td>
</tr>
</tbody>
</table>
Example 3

(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)

In a flask were placed 158 g of

and 600 ml of C₂H₆OH, and the resulting mixture was stirred under ice-cooling. Thereafter, 17.1 g of sodium boron hydride (Na[BH₄]) was gradually added, and the thus obtained mixture was stirred at room temperature for 2 hours. Subsequently, the reaction solution was poured into water, and then extracted with (C₂H₅)₂O, and the (C₂H₅)₂O was distilled off to obtain

Next, 35.7 g of SOCl₂ was placed in another flask and refluxed and stirred, and 32 g of the

was added thereto, after which the resulting solution was refluxed and stirred for 4 hours. This reaction solution was poured into water, and the organic layer was separated and the benzene was distilled off to obtain

In further another flask were placed 100 ml of C₂H₆OH and 0.4 g of Na, and the resulting mixture was heated to reflux temperature, after which 4.2 g of the above

was added thereto, and the thus obtained solution was stirred for 3 to 4 hours. This reaction solution was poured into water and extracted with (C₂H₅)₂O and the (C₂H₅)₂O was distilled off. The residue was crystallized to obtain a colorless liquid crystalline compound:

The values of elementary analysis (C 79.13%, H 8.89%, N 5.31%) of the sample 27 were in good agreement with the values calculated from the molecular weight (C 79.33%, H 9.01%, N 5.44%) for C₁₇H₂₃NO. In addition, the infrared absorption spectrum of the sample 27 was as shown in Fig. 3, and an absorption band of the cyan group appeared at 2220 cm⁻¹ and that of the ether linkage at 1115 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 27 was identified as the liquid crystalline compound of the above formula.

The sample 27 was a monotropic crystal having phase transition temperatures of 21°C for (C—I) transition and -70°C for (N—I) transition.

Example 4

(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)
In a flask was placed 1 liter of C₆H₅OH, after which 10 g of sodium hydroxide (NaOH) and 44 g of

\[
\text{HO} \quad \text{H} \quad \text{COOH}
\]

were added, and the resulting mixture was heated and refluxed for 2 hours to completely dissolve them in the C₆H₅OH. Subsequently, 40 g of n-butyl iodide (C₄H₉I) was added to the resulting solution, and the thus obtained mixture was refluxed with stirring for 6 hours. Thereafter, the ethyl alcohol (C₂H₅OH) was distilled off under reduced pressure, and the residue was dissolved in water, after which hydrochloric acid was added thereto, and the deposited crystal was washed with water to obtain

\[
\text{C₄H₉O} \quad \text{H} \quad \text{COOH}.
\]

Next, 3.2 g of Li[AlH₄] was suspended in 50 ml of THF in another flask, and a solution of 19 g of the

\[
\text{C₄H₉O} \quad \text{H} \quad \text{COOH}
\]

in 100 ml of THF was added thereto dropwise under ice-cooling. The resulting mixture was stirred for 2 hours and then poured into 200 ml of dilute hydrochloric acid, after which the thus obtained mixture was vigorously stirred, and then extracted with benzene. The benzene was distilled off to obtain

\[
\text{C₄H₉O} \quad \text{H} \quad \text{CH₂OH}.
\]

In further another flask was placed 12 g of the

\[
\text{C₄H₉O} \quad \text{H} \quad \text{CH₂OH},
\]

and 30 g of SOCl₂ was added to dissolve it, after which the resulting solution was heated and refluxed for 4 hours. The reaction solution was poured into ice water and extracted with benzene. And then the benzene was distilled off to obtain

\[
\text{C₄H₉O} \quad \text{H} \quad \text{CH₂Cl}.
\]

In still another flask was placed 50 ml of C₆H₅OH and 0.4 g of Na, and the resulting mixture was heated to reflux temperature, after which 5.2 g of the above

\[
\text{C₄H₉O} \quad \text{H} \quad \text{CH₂Cl}
\]

was added and the thus obtained solution was heated and refluxed for 4 hours. Thereafter, this reaction solution was concentrated, and ice water was added thereto, after which the resulting mixture was extracted with (C₆H₅)₂O and the (C₆H₅)₃O was distilled off. The residue was recrystallized to obtain a colorless liquid crystalline compound:

\[
\text{C₄H₉O} \quad \text{H} \quad \text{CH₂OC₃H₇} \quad \text{(Sample 28)}.
\]

The values of elementary analysis (C 78.80%, H 11.07%) of the sample 28 were in good agreement with the values calculated from the molecular weight (C 78.90%, H 10.59%) for C₉₀H₃₂O₂. In addition, the infrared absorption spectrum of the sample 28 was as shown in Fig. 4, and an absorption band of the phenoxy ether appeared at 1250 cm⁻¹ and that of the ether linkage at 1120 cm⁻¹. From the relation between these two facts and the starting compounds, the sample was identified as the liquid crystalline compound of the above formula.
The sample 28 was a monotropic smectic liquid crystal having phase transition temperatures of \(-8^\circ C\) for (C—I) transition and \(-50^\circ C\) for (I—S) transition.

Example 5

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{array}{c}
\text{R}^4 \text{OCH}_2
\end{array}
\]

and its physical properties)

In a flask were placed 62.4 g of Li[AlH₄] and 200 ml of THF and vigorously stirred to obtain a suspension. After the suspension was cooled with ice, a solution of 161 g of

\[
\begin{array}{c}
\text{HOOC}
\end{array}
\]

in 1 liter of THF was added dropwise. Thereafter, the resulting solution was stirred at room temperature for 4 hours, and further poured into 2 liters of dilute hydrochloric acid, after which the resulting mixture was stirred and then extracted with benzene. And then the benzene was distilled off to obtain

\[
\begin{array}{c}
\text{HOCH}_2
\end{array}
\]

A solution consisting of 71.4 g of SOCl₂, 100 ml of benzene and 2.8 g of pyridine was prepared in another flask, and 33 g of the

\[
\begin{array}{c}
\text{HOCH}_2
\end{array}
\]

was added thereto, after which the resulting solution was heated and refluxed. After 4 hours, this reaction solution was poured into ice water and extracted with benzene. And then the benzene was distilled off to obtain

\[
\begin{array}{c}
\text{ClCH}_2
\end{array}
\]

In further another flask were placed 200 ml of C₆H₅OH and 0.8 g of Na, and the Na was dissolved in the C₆H₅OH by heating, after which 4.6 g of the above

\[
\begin{array}{c}
\text{ClCH}_2
\end{array}
\]

was added thereto, and the resulting solution was heated and refluxed for 4 hours. This reaction solution was poured into water, and extracted with (C₆H₅)₂O and the (C₆H₅)₂O was distilled off. The residue was recrystallized to obtain a colorless liquid crystalline compound:

\[
\begin{array}{c}
\text{C}_₆\text{H}_₅\text{OCH}_2
\end{array}
\]

(Sample 29).

The values of elementary analysis (C 78.09%, H 10.66%) of the sample 29 were in good agreement with the values calculated from the molecular weight (C 78.90%, H 10.59%) for C₆H₅O₂. In addition, the infrared absorption spectrum of the sample 29 was as shown in Fig. 5, and an absorption band of the ether linkage appeared at 1100 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 29 was identified as the liquid crystalline compound of the above formula.

The sample 29 was a monotropic liquid crystal having a phase transition temperature of \(-44^\circ C\) for (I—N) transition.
Example 6

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{array}{c}
\text{R}^4
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{CH}_2\text{OH}^5
\end{array}
\]

and its physical properties)

In a flask were placed 189 g of

\[
\begin{array}{c}
\text{OHC}
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}
\end{array}
\]

and 600 ml of C\(_2\)H\(_5\)OH, and cooled with ice and stirred. Thereto was gradually added 17.1 g of Na[BH\(_4\)], after which the resulting mixture was stirred at room temperature continuously for 2 hours. Thereafter, 10 ml of acetic acid (CH\(_3\)COOH) was added, followed by adding thereto 2 liters of water, and the thus obtained mixture was extracted with (C\(_2\)H\(_5\))\(_2\)O, and then the (C\(_2\)H\(_5\))\(_2\)O was distilled off to obtain

\[
\begin{array}{c}
\text{HOCH}_2
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}^-
\end{array}
\]

Next, a solution consisting of 35.7 g of SOCl\(_2\), 1.4 g of pyridine and 100 ml of benzene was prepared in another flask, and 38 g of the

\[
\begin{array}{c}
\text{HOCH}_2
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}
\end{array}
\]

was added thereto, after which the resulting solution was heated and refluxed for 4 hours. This reaction solution was poured into water and extracted with benzene. And then the benzene was distilled off to obtain

\[
\begin{array}{c}
\text{ClCH}_2
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}^-
\end{array}
\]

In further another flask, 0.4 g of Na was dissolved in 100 ml of C\(_2\)H\(_5\)OH, and 4.9 g of the

\[
\begin{array}{c}
\text{ClCH}_2
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}
\end{array}
\]

was added thereto, after which the resulting solution was heated and stirred for 4 hours. This reaction solution was poured into water and extracted with (C\(_2\)H\(_5\))\(_2\)O, and then the residue obtained by distilling off the (C\(_2\)H\(_5\))\(_2\)O was recrystallized to obtain a colorless liquid crystalline compound:

\[
\begin{array}{c}
\text{C}_3\text{H}_7\text{OCH}_2
\end{array}
\begin{array}{c}
\text{O}
\end{array}
\begin{array}{c}
\text{C}_5\text{H}_{11}
\end{array}
\]

(Sample 30).

The values of elementary analysis (C 84.83%, H 9.73%) of the sample 30 were in good agreement with the values calculated from the molecular weight (C 85.08%, H 9.52%) for C\(_2\)H\(_5\)O. In addition, the infrared absorption spectrum of the sample 30 was as shown in Fig. 6, and an absorption band of the ether linkage appeared at 1100 cm\(^{-1}\). From the relation between these two facts and the starting compounds, the sample 30 was identified as the liquid crystalline compound of the above formula.

There are shown in Table 3 the phase transition temperatures of the sample 30 and other samples obtained by a production process according to that of the sample 30.
TABLE 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>C/l</th>
<th>S/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>C_5H_11</td>
<td>C_3H_7</td>
<td>27</td>
<td>(21)</td>
</tr>
<tr>
<td>31</td>
<td>C_5H_11</td>
<td>C_5H_11</td>
<td>16</td>
<td>(10)</td>
</tr>
<tr>
<td>32</td>
<td>C_5H_11</td>
<td>CH_3</td>
<td>48</td>
<td>(47)</td>
</tr>
</tbody>
</table>

Example 7

(Proces for producing a colorless liquid crystalline compound represented by the general formula:

\[
\text{R}^4 \text{N} \equiv \text{N} \text{R}^5 \equiv \text{CH}_2 \text{OR}^5
\]

and its physical properties)

A solution of 180 g of

\[
\text{C}_5\text{H}_{11} \equiv \text{N} \equiv \text{N} \equiv \text{CH}_2 \equiv \text{CHO}
\]

in 600 ml of C_6H_6OH was prepared in a flask, and 17.1 g of Na[BH_4] was gradually added with stirring under ice-cooling. Thereafter, the resulting mixture was stirred continuously for 3 hours, after which 15 ml of acetic acid and 2 liters of water were added thereto, and the thus obtained mixture was extracted with (C_6H_6)_2O, and then the (C_6H_6)_2O was distilled off to obtain

\[
\text{C}_5\text{H}_{11} \equiv \text{N} \equiv \text{N} \equiv \text{CH}_2 \equiv \text{OH}
\]

Next, a solution consisting of 35.7 g of SOCl_2, 1.4 g of pyridine and 100 ml of benzene was prepared in another flask, and 38 g of the

\[
\text{C}_5\text{H}_{11} \equiv \text{N} \equiv \text{N} \equiv \text{CH}_2 \equiv \text{OH}
\]

was added thereto, after which the resulting solution was heated and stirred for 5 hours. The reaction solution was poured into water and extracted with benzene. And then the benzene was distilled off to obtain

\[
\text{C}_5\text{H}_{11} \equiv \text{N} \equiv \text{N} \equiv \text{CH}_2 \equiv \text{Cl}
\]

In further another flask, 0.4 g of Na was dissolved in 100 ml of C_6H_6OH, and 4.9 g of the

\[
\text{C}_5\text{H}_{11} \equiv \text{N} \equiv \text{N} \equiv \text{CH}_2 \equiv \text{Cl}
\]

was added thereto, after which the resulting mixture was heated and refluxed. After 4 hours, this reaction solution was allowed to cool, poured into water, and then extracted with (C_6H_6)_2O. Then the residue obtained by distilling off the (C_6H_6)_2O was recrystallized to obtain a colorless liquid crystalline compound
The values of elementary analysis (C 76.05%, H 8.85%, N 9.45%) of the sample 33 were in good agreement with the values calculated from the molecular weight (C 76.47%, H 8.78%, N 9.58%) for $C_9H_{12}N_2O$. In addition, the infrared absorption spectrum of the sample 33 was as shown in Fig. 7, and an absorption band of the ether linkage appeared at 1100 cm$^{-1}$. From the relation between these two facts and the starting compounds, the sample 33 was identified as the liquid crystalline compound of the above formula.

The phase transition temperature of the sample 33 was 21°C for (C—I) transition. The phase transition temperature of

produced by a production process according to that of the sample 33 was 51°C for (C—I) transition.

Example 8
(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)

A solution of 67 g of

in 500 ml of C_2H_5OH was prepared in a flask, and 11.4 g of Na[BH$_4$] was gradually added with stirring under icecooling. Thereafter, the resulting mixture was stirred continuously for 3 hours, after which 30 ml of CH_3COOH was added thereto, and the thus obtained mixture was poured into water and extracted with $(C_2H_5)_2O$, and then the $(C_2H_5)_2O$ was distilled off to obtain

Next, 30 g of the

was added to 150 ml of SOCl$_2$, and the resulting solution was refluxed for 6 hours and then poured into ice water. Subsequently, the precipitate was collected by filtration and washed with water to obtain

In further another flask, 0.4 g of Na was dissolved in 30 ml of C_2H_5OH, and a solution of 30 g of the

in 150 ml of N,N-dimethyformamide ((CH$_3$)$_2$NCHO) was added thereto, after which the resulting solution was heated and stirred for 5 hours. Thereafter, this reaction solution was poured into water, and the precipitate was collected by filtration and recrystallized to obtain a colorless liquid crystalline compound:
The values of elementary analysis (C 85.19%, H 10.23%) of the sample 35 were in good agreement with the values calculated from the molecular weight (C 85.66%, H 10.12%) for C₂₉H₄₆O. In addition, the infrared absorption spectrum of the sample 35 was as shown in Fig. 8, and an absorption band of the ether linkage appeared at 1100 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 35 was identified as the liquid crystalline compound of the above formula.

The phase transition temperatures of the sample 35 were 152°C for (C—N) transition and 175°C for (N—I) transition. The phase transition temperatures of

produced by a production process according to that of the sample 35 were 158°C for (C—N) transition and 177°C for (N—I) transition.

Example 9

(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)

By use of

as a starting material,

was obtained by a production process according to that of the sample 35.

The values of elementary analysis (C 87.25%, H 8.43%) of the sample 37 were in good agreement with the values calculated from the molecular weight (C 87.16%, H 8.19%) for C₂₉H₄₆O. In addition, the infrared absorption spectrum of the sample 37 was as shown in Fig. 9, and an absorption band of the ether linkage appeared at 1100 cm⁻¹. From the relation between these two facts and the starting compounds, the sample 37 was identified as the liquid crystalline compound of the above formula.

The phase transition temperatures of the sample 37 were 233°C for (C—S) transition, 240°C for (S—N) transition, and 245°C for (N—I) transition.

Example 10

(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)

In a flask were placed 50 ml of CH₃O(CH₂)₂OH and 0.4 g of Na, and the latter was dissolved in the former. Thereto was added 5 g of the intermediate

produced in Example 1, and the resulting solution was stirred at 80°C for 4 hours. Thereafter, the reaction solution was poured into water and extracted with (C₂H₅)₂O and then (C₂H₅)₂O was distilled off and the residue was recrystallized to obtain a colorless liquid crystalline compound:
The values of elementary analysis (C 79.31%, H 10.62%) of the sample 38 were in good agreement with the values calculated from the molecular weight (C 79.16%, H 10.76%) for C₂₅H₄₄O₂. In addition, the infrared absorption spectrum of said compound almost agreed with that shown in Fig. 1. From the relation between these two facts and the starting compounds, the sample 38 was identified as the liquid crystalline compound of the above formula.

The phase transition temperature of the sample 38 was 95°C for (C—I) transition.

Example 11

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[\text{R}^4 \text{H} \text{C}_6 \text{H}_{13} \quad \text{O} \quad \text{R}^5 \text{(CH}_{2}\text{O}) \text{R}^5 \text{H} \text{C}_6 \text{H}_{13} \]

In a flask were placed 300 ml of anhydrous methylene dichloride (CH₂Cl₂), 133 g of aluminum chloride and 105 g of

\[\text{C}_6 \text{H}_{13} \text{H} \text{H} \text{C}_6 \text{H}_{13} \]

and were stirred. Thereunto was added dropwise 51 g of glutaric anhydride

\[\text{CO} \quad \text{(CH}_2\text{)}_3 \quad \text{CO} \]

at room temperature, after which the resulting solution was allowed to reaction at the same temperature for 7 hours. Thereafter, the reaction solution was poured into dilute hydrochloric acid. The CH₂Cl₂ layer was washed with water by decantation, and then dried. The CH₂Cl₂ was distilled off, and the residue was recrystallized to obtain

\[\text{C}_6 \text{H}_{13} \text{H} \quad \text{CO} \quad \text{CO} \quad \text{CO} \quad \text{CO} \quad \text{CO} \]

In another flask was placed 104 g of the reaction product, followed by adding thereto 300 ml of diethylene glycol (HO(CH₂O)(CH₂OH), 44 g of 80% hydrazine hydrate (NH₂—NH₂·H₂O) and 40 g of a 50% aqueous potassium hydroxide (KOH) solution. The resulting solution was stirred at 120°C to 130°C for 3 hours, and then at 220°C for 2 hours. After being cooled, the reaction solution was poured into water, and the thus obtained mixture was made acid with hydrochloric acid. The mixture was extracted with benzene, and the extract was washed with water and then dried. After the benzene was distilled off, the residue was recrystallized to obtain a white crystal of

\[\text{C}_6 \text{H}_{13} \text{H} \quad \text{CO} \quad \text{CO} \quad \text{CO} \quad \text{CO} \]

In another flask was placed 100 ml of THF, and 6.5 g of Li[AlH₄] was added thereto, after which the resulting mixture was stirred. A solution of 52 g of the

\[\text{C}_6 \text{H}_{13} \text{H} \quad \text{CO} \quad \text{CO} \quad \text{CO} \quad \text{CO} \]

in 150 ml of THF was added dropwise to the mixture at room temperature. The thus obtained solution was stirred at room temperature for 3 hours, after which the reaction solution was poured into ice water and extracted with C₂H₅₂O. After the extract was washed with water and then dried, the C₂H₅₂O was distilled off, and the residue was recrystallized to obtain
In 150 ml of benzene was dissolved the reaction product, and 31 g of SOCl₂ was then added thereto, after which the resulting mixture was refluxed for 5 hours and the surplus SOCl₂ was distilled off. The residue was poured into water and extracted with benzene. After the extract was washed with water and then dried, the benzene was distilled off, and the residue was recrystallized to obtain

\[
\text{C}_6\text{H}_{13} - \text{H} - \text{O} - (\text{CH}_2)_5\text{OH}.
\]

In further another flask was placed 150 ml of nonanol \((\text{C}_9\text{H}_{19}\text{OH})\), and 4.6 g of Na was completely dissolved therein. Thereafter a solution of 45 g of the

\[
\text{C}_6\text{H}_{13} - \text{H} - \text{Cl} - (\text{CH}_2)_5\text{Cl}
\]

in 150 ml of \(\text{C}_9\text{H}_{19}\text{OH}\) was added thereto dropwise. After completion of the addition, the resulting mixture was stirred at reflux temperature for 4 hours, and the \(\text{C}_9\text{H}_{19}\text{OH}\) was distilled off under reduced pressure, after which the residue was distilled under reduced pressure and the distillate was recrystallized to obtain

\[
\text{C}_6\text{H}_{13} - \text{H} - \text{O} - (\text{CH}_2)_5\text{OC}_9\text{H}_{19}
\]

(Sample 39)

in a yield of 21 g.

The values of elementary analysis (C 84.05%, H 12.49%) of the sample 39 were in good agreement with the values calculated from the molecular weight for \(\text{C}_9\text{H}_{20}\text{O}\). In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 456. Further, in the infrared absorption spectrum, an absorption band of the ether linkage appeared at 1120 cm\(^{-1}\). From the relation between these facts and the starting compounds, the sample 39 was identified as the liquid crystalline compound of the above formula.

Colorless liquid crystalline compounds represented by the above general formula can be produced in the same manner as above by properly selecting the number of carbon atoms of \(R^4\) in the starting material

\[
R^4 - \text{H} - \text{O} - (\text{CH}_2)_5\text{OR}^5
\]

and the number of carbon atoms of \(R^8\) in the alcohol \(R^4\text{OH}\) used for etherification.

Example 12

(Process for producing a colorless liquid crystalline compound represented by the general formula):

In a flask were placed 400 ml of \(\text{CH}_2\text{Cl}_2\), 130 g of \(\text{AlCl}_3\) and 200 g of

\[
\text{C}_9\text{H}_{19} - \text{H} - \text{O}
\]

and mixed. Thereto was added dropwise 58 g of adipic anhydride

\[
\left(\left(\text{CH}_2\right)_4\text{CO}\right)
\]

at room temperature, after which the resulting mixture was stirred at the same temperature for 8 hours. Thereafter, this reaction mixture was added to dilute hydrochloric acid, washed with water by decantation, and then dried, and the \(\text{CH}_2\text{Cl}_2\) was distilled off. The residue was recrystallized to obtain
In another flask, 120 g of the reaction product, 400 ml of HO(CH₂)₂OH, 45 g of 80% H₂N—NH₂·H₂O and 40 g of a 50% aqueous KOH solution were mixed, and allowed to react at 130°C for 3 hours and then at 230°C for 2 hours. The reaction mixture was cooled and then poured into water, and the resulting mixture was made acid with hydrochloric acid and then extracted with benzene. The extract was washed with water and then dried. After the benzene was distilled off, the residue was recrystallized to obtain a white crystal of

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{CO(CH}_2\text{)}_4\text{COOH}.
\]

In further another flask were placed 200 ml of THF and 6.5 g of Li[AlH₄] and stirred. A solution of 60 g of the

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{(CH}_2\text{)}_5\text{COOH}
\]

in 300 ml of THF was added thereto dropwise at room temperature. The resulting mixture was allowed to react at room temperature for 3 hours, poured into ice water, and then extracted with (C₂H₅)₂O. The extract was washed with water and then dried, after which the (C₂H₅)₂O was distilled off, and the residue was recrystallized to obtain

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{(CH}_2\text{)}_6\text{OH}.
\]

To a solution of 50 g of the reaction product in 200 ml of benzene was added 35 g of SOCl₂, after which the resulting mixture was refluxed for 5 hours and the surplus SOCl₂ was distilled off. The residue was poured into water and extracted with benzene. The extract was washed with water and then dried, after which the benzene was distilled off, and the residue was recrystallized to obtain

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{(CH}_2\text{)}_6\text{Cl}.
\]

In still another flask was placed 200 ml of C₆H₅OH, and 5 g of Na was completely dissolved therein, after which the resulting solution was refluxed. A solution of 40 g of the

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{(CH}_2\text{)}_6\text{Cl}
\]

in 250 ml of C₆H₅OH was added thereto dropwise, after completion of the addition, the resulting solution was refluxed continuously for 8 hours. The solution after the reflux was washed with water and then dried, after which the C₆H₅OH was distilled off, and the residue was distilled under reduced pressure and the distillate was recrystallized to obtain

\[
\text{C}_9\text{H}_{19} \quad \text{H} \quad \text{(CH}_2\text{)}_6\text{OC}_{\text{C}_9\text{H}_{19}} \quad \text{(Sample 40)}
\]

in a yield of 26 g.

The values of elementary analysis (C 84.30%, H 12.59%) of the sample 40 were in good agreement with the values calculated from the molecular weight for C₃₈H₄₈O. In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 512. Further, in the infrared absorption spectrum, an absorption band of the ether linkage appeared at 1120 cm⁻¹. From the relation between these facts and the starting compounds, the sample 40 was identified as the liquid crystalline compound of the above formula.

Colorless liquid crystalline compounds represented by the above general formula can be produced in the same manner as above by properly selecting the number of carbon atoms of R² in the starting material.
and the number of carbon atoms of R in the alcohol R'OH used for etherification.

Example 13

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
R^4 - H - \bigcirc - (\text{CH}_2)_7 OR^5
\]

In a flask were placed 300 ml of CH$_2$Cl$_2$, 133 g of AlCl$_3$ and 99 g of

\[
\begin{array}{c}
\text{C}_5\text{H}_{11} - H - \bigcirc \\
\end{array}
\]

and mixed. Thereinto was added 64 g of pimelic anhydride

\[
\begin{array}{c}
\text{CO} \\
\text{C}_6\text{H}_{12} - \text{COO}
\end{array}
\]

at room temperature, after which the resulting mixture was refluxed at the same temperature for 9 hours. Thereafter, the reaction mixture was poured into hydrochloric acid and the CH$_2$Cl$_2$ layer was washed with water by decantation. Further, it was dried, and the CH$_2$Cl$_2$ was distilled off, after which the residue was recrystallized to obtain

\[
\begin{array}{c}
\text{C}_5\text{H}_{11} - H - \bigcirc - \text{CO} - \text{CH}_2\text{COOH}.
\end{array}
\]

In another flask, 108 g of the reaction product, 300 ml of HO(CH$_2$)$_2$O(CH$_2$)$_3$OH, 44 g of 80% H$_2$N—NH$_2$—H$_2$O and 40 g of a 50% aqueous KOH solution were mixed, and stirred at 130°C for 3 hours and then at 230°C for 3 hours. The reaction mixture was cooled and then poured into water, after which the resulting mixture was made acid with hydrochloric acid and extracted with benzene. The extract was washed with water and then dried, and the benzene was distilled off. The residue was recrystallized from ligroin to obtain a white crystal of

\[
\begin{array}{c}
\text{C}_5\text{H}_{11} - H - \bigcirc - \text{CH}_2\text{COOH}.
\end{array}
\]

In further another flask were placed 100 ml of THF and 6.5 g of Li[AlH$_4$] and stirred. A mixed solution of 54 g of the

\[
\begin{array}{c}
\text{C}_5\text{H}_{11} - H - \bigcirc - \text{CH}_2\text{COOH}
\end{array}
\]

and 200 ml of THF was gradually added thereto dropwise at room temperature. The resulting solution was stirred at room temperature for 3 hours, after which this reaction solution was poured into ice water and extracted with (C$_3$H$_7$)$_2$O. The extract was washed with water and then dried, after which the (C$_3$H$_7$)$_2$O was distilled off and the residue was recrystallized from n-hexane (n-C$_6$H$_{14}$) to obtain

\[
\begin{array}{c}
\text{C}_5\text{H}_{11} - H - \bigcirc - \text{CH}_2\text{COOH}
\end{array}
\]

In 100 ml of benzene was completely dissolved 45 g of this reaction product. To the resulting solution was added 36 g of SOCl$_2$, after which the resulting mixture was refluxed for 5 hours, and the surplus SOCl$_2$ was removed. The residue was poured into water and extracted with benzene. The extract was washed with water and then dried, and the benzene was distilled off, after which the residue was recrystallized from C$_6$H$_{14}$ to obtain
In still another flask was placed 200 ml of decanol \((\text{C}_{10}\text{H}_{21}\text{OH})\), and 7 g of Na was completely dissolved therein, after which a solution of 36.5 g of the

\[
\begin{align*}
\text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad \text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad (\text{CH}_{2})_{7}\text{Cl} \\
\text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad \text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad (\text{CH}_{2})_{7}\text{Cl}
\end{align*}
\]

in 200 ml of \(\text{C}_{10}\text{H}_{21}\text{OH}\) was added thereto dropwise. After the addition, the resulting solution was refluxed for 3 hours, and this reaction mixture was cooled, after which \((\text{C}_{5}\text{H}_{5})\text{Na}\) was further added thereto. Subsequently, the thus obtained mixture was washed with water and then dried, after which the \((\text{C}_{5}\text{H}_{5})\text{O}\)

\[
\begin{align*}
\text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad \text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad (\text{CH}_{2})_{7}\text{OC}_{10}\text{H}_{21}
\end{align*}
\]

and \(\text{C}_{10}\text{H}_{21}\text{OH}\) was distilled off, and the residue was distilled under reduced pressure. The main distillate was recrystallized to obtain (Sample 41).

The values of elementary analysis (C 84.24%, H 12.49%) of the sample 41 were in good agreement with the values calculated from the molecular weight for \(\text{C}_{24}\text{H}_{40}\text{O}\). In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 486. Further, in the infrared absorption spectrum, an absorption band of the ether linkage appeared at 1120 cm\(^{-1}\). From the relation between these facts and the starting compounds, the sample 41 was identified as the liquid crystalline compound of the above formula.

Colorless liquid crystalline compounds represented by the above general formula can be produced in the same manner as above by properly selecting the number of carbon atoms of \(\text{R}^{4}\) in the starting material and the number of carbon atoms of \(\text{R}^{5}\) in the alcohol \(\text{R}^{5}\text{OH}\) used for etherification.

Example 14

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{align*}
\text{R}^{4} & \quad \text{H} & \quad \text{COO} & \quad \text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad (\text{CH}_{2})_{7}\text{OH} & \quad \text{CH}_{2}\text{O}\text{R}^{5}
\end{align*}
\]

and its physical properties)

In a flask were placed 50 g of

\[
\begin{align*}
\text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad \text{COOH}
\end{align*}
\]

and 60 g of \(\text{SOCl}_{2}\) and stirred at 60°C for 8 hours. Thereafter, the surplus \(\text{SOCl}_{2}\) was removed, and 52 g of

\[
\begin{align*}
\text{C}_{5}\text{H}_{11} & \quad \text{H} & \quad \text{COCl}
\end{align*}
\]

was obtained by distilling the residue under reduced pressure. Next, 28 g of

\[
\begin{align*}
\text{HO} & \quad \text{CHO}
\end{align*}
\]

40 ml of pyridine and 150 ml of benzene were placed in another flask, and 52 g of the
was gradually added thereto dropwise with stirring. After completion of the addition, the resulting mixture was stirred continuously for 1 hour. The deposited hydrochloride of pyridine was removed by filtration, and 59 g of

was obtained by distilling the residue under reduced pressure.

In further another flask were placed 6 g of Na[BH₄] and 300 ml of C₂H₅OH and vigorously stirred. Simultaneously with the vigorous stirring, 59 g of

was added to the resulting mixture while maintaining the temperature of the mixture at 40°C or lower. After continuous stirring for 4 hours, 10 ml of CH₃COOH was added thereto dropwise. The thus obtained mixture was poured into about 1 Kg of ice to deposit

It was thoroughly washed with water to obtain 40 g of

Subsequently, 20 g of SOCl₂ was added to 40 g of the

and the resulting mixture was refluxed for 2 hours. Thereafter, the surplus SOCl₂ was removed, and the residue was distilled under reduced pressure to obtain 40 g of

In still another flask were placed 100 ml of methyl alcohol (CH₃OH) and 3 g of Na, and Na was completely dissolved therein. Thereafter, 40 ml of pyridine was added, followed by adding thereto 40 g of

and the resulting mixture was refluxed continuously for 20 hours. Crude

was obtained by distilling the mixture under reduced pressure, after which

was obtained by recrystallization from CH₃COCH₃.

(Sample 42)
The values of elementary analysis (C 75.23%, H 9.61%) of the sample 42 were in good agreement with the values calculated from the molecular weight (C 75.43%, H 9.63%) for C_{20}H_{30}O_{5}. In addition, the infrared absorption spectrum of the sample 42 was as shown in Fig. 10, and an absorption band of the ether linkage appeared at 1100 cm^{-1} and that of the ester linkage at 1750 cm^{-1}. From the relation between these two facts and the starting compound the sample 42 was identified as the liquid crystalline compound of the above formula.

There were shown in Table 4 the phase transition temperatures of the sample 42 and other samples obtained by a production process according to that of the sample 42.
<table>
<thead>
<tr>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>C–I</th>
<th>C–N</th>
<th>N–I</th>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>C–I</th>
<th>C–N</th>
<th>N–I</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>C_6H_{11}</td>
<td>CH_3</td>
<td>53.5</td>
<td>-</td>
<td></td>
<td>(42)</td>
<td>C_6H_{11}</td>
<td>C_6H_{11}</td>
<td>7</td>
<td>-</td>
<td>(3)</td>
</tr>
<tr>
<td>43</td>
<td>CH_3</td>
<td>C_3H_7</td>
<td>-1</td>
<td>3</td>
<td>-</td>
<td>51</td>
<td>C_5H_{11}</td>
<td>C_6H_{13}</td>
<td>12</td>
<td>-</td>
<td>(10)</td>
</tr>
<tr>
<td>44</td>
<td>C_2H_5</td>
<td>C_3H_7</td>
<td>-5</td>
<td>4</td>
<td>-</td>
<td>52</td>
<td>C_5H_{11}</td>
<td>C_7H_{15}</td>
<td>36</td>
<td>-</td>
<td>(29)</td>
</tr>
<tr>
<td>45</td>
<td>C_3H_7</td>
<td>CH_3</td>
<td>23</td>
<td>-</td>
<td>(13)</td>
<td>53</td>
<td>C_7H_{15}</td>
<td>CH_3</td>
<td>49</td>
<td>-</td>
<td>(34)</td>
</tr>
<tr>
<td>46</td>
<td>C_3H_7</td>
<td>C_3H_7</td>
<td>4</td>
<td>-</td>
<td>(-15)</td>
<td>54</td>
<td>C_7H_{15}</td>
<td>C_2H_5</td>
<td>19</td>
<td>-</td>
<td>(19)</td>
</tr>
<tr>
<td>47</td>
<td>C_4H_9</td>
<td>C_3H_7</td>
<td>-3</td>
<td>3</td>
<td>-</td>
<td>55</td>
<td>C_7H_{15}</td>
<td>C_3H_7</td>
<td>19</td>
<td>-</td>
<td>(14)</td>
</tr>
<tr>
<td>48</td>
<td>C_5H_{11}</td>
<td>C_3H_7</td>
<td>7</td>
<td>-</td>
<td>(4.5)</td>
<td>56</td>
<td>C_7H_{15}</td>
<td>C_8H_{17}</td>
<td>39</td>
<td>-</td>
<td>(20)</td>
</tr>
<tr>
<td>49</td>
<td>C_5H_{11}</td>
<td>C_4H_9</td>
<td>10</td>
<td>-</td>
<td>(-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There can be produced

by a production process according to that described in the present example.

Example 15

(Process for producing a colorless liquid crystalline compound represented by the general formula:

and its physical properties)

In 600 ml of CH₂OH was dissolved 20 g of Na, and 120 g of 3-bromopropylbenzene was added dropwise with heating under reflux. After aging under reflux for 6 hours, the reaction solution was poured into 2 liters of ice water, and the separated oil layer was extracted with benzene. The benzene was distilled off, after which the residue was distilled under reduced pressure to obtain 3-methoxypyrophenylbenzene. The boiling point of this compound was 96—98°C/15 mmHg.

Next, 195 g of AlCl₃ and 100 g of 3-methoxypyrophenylbenzene were poured into 1.5 liters of CH₂C₂, and the resulting mixture was cooled with ice under stirring. Thereto was gradually added dropwise 79 g of acetyl chloride (CH₃COCl), and the thus obtained mixture was stirred under ice-cooling continuously for 6 hours. After the termination of the evolution of hydrogen chloride (HCl) gas was ascertained, the reaction solution was poured into 1 liter of dilute hydrochloric acid, and the CH₃Cl₂ layer was separated, after which the CH₃Cl₂ was distilled off, and the residue was distilled under reduced pressure to obtain p-(3-methoxypyrophenyl)acetophenone. The boiling point of this compound was 94—95°C/0.3 mmHg.

67 grams of the p-(3-methoxypyrophenyl)acetophenone and 620 ml of 88% formic acid (HCOOH) were mixed and stirred, after which 310 ml of acetic anhydride (CH₃CO₂), 4 ml of concentrated sulfuric acid and 110 ml of a 35% aqueous hydrogen peroxide solution were added thereto dropwise in that order. The resulting solution was heated to a temperature of 40°C to 50°C and then stirred for 8 hours, after which this reaction solution was poured into water. The separated oil layer was extracted, and the solvent was distilled off, after which 100 ml of CH₂OH and 250 ml of a 2N aqueous sodium hydroxide solution were added to the residue, and the thus obtained solution was heated and refluxed for 2 hours. After being cooled, this reaction solution was made acid with hydrochloric acid to separate oil layer. The oil layer was extracted with benzene, and the benzene was distilled off, after which the residue was distilled under reduced pressure to obtain p-(3-methoxypyrophenyl)phenol. The boiling point of this compound was 106—108°C/10 mmHg. In a mixture of 100 ml of benzene and 5 ml of pyridine was dissolved 10 g of the p-(3-methoxypyrophenyl)phenol, and 14 g of p-(3-methoxypyrophenylene) 4-pentylcyclohexyl carboxylate was added thereto dropwise, and the resulting solution was stirred at room temperature continuously for 3 hours. This reaction solution was poured into water and extracted with benzene, and the benzene was distilled off, after which the residue was recrystallized from CH₂CO₂H.

The infrared absorption spectrum of the compound obtained in the manner described above showed an absorption band of an ester linkage at 1750 cm⁻¹ and that of an ether linkage at 1120 cm⁻¹ as shown in Fig. 11. In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 346. From the relation between these two facts and the starting compound, the compound synthesized here was identified as p-(3-methoxypyrophenyl)phenyl-4'-pentylcyclohexyl carboxylylate:

The melting point of the sample 57 was 42°C and its phase transition temperature was 32°C for (l—N) transition.

Colorless liquid crystalline compounds represented by the above general formula can be produced in the same manner as mentioned above by changing the respective numbers of carbon atoms of R¹ and R² in the starting compounds. Further, the compound represented by the above general formula can most easily be produced by a combined process of Williamson’s synthesis of ether, Friedel-Crafts reaction and Beyer-Villiger process.)
Among values showing physical properties of liquid crystal materials, there is optical anisotropy (hereinafter referred to as Δn, which is the difference between the refractive indexes for abnormal light and normal light). Δn is greatly concerned with the display properties of liquid crystal display elements, and a liquid crystal having a large Δn or that having a small Δn is desired depending upon the difference of driving method. It is well known about the difference in refractive index that when these liquid crystals are used, the display properties of liquid crystal display element can be improved. It was confirmed that in the case of the liquid crystalline compound of the present example, Δn can be varied by varying the distance between the benzene ring and the oxygen atom. The colorless liquid crystalline compound of the present example also makes Δn of a liquid crystal composition still smaller.

Example 16

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{aligned}
 &R^4 - H - \text{OCO-} - \text{(CH}_2_3\text{-OR}^5
\end{aligned}
\]

and its physical properties)

In a flask were placed 500 ml of CH_2Cl_2, 80 g of AlCl_3 and 130 g of 4-pentyloctahexane carbonyl chloride and stirred. Thereafter, 100 g of (3-bromopropyl)benzene was added dropwise with ice-cooling. After 6 hours, the reaction solution was poured into dilute hydrochloric acid to decompose the complex. The CH_2Cl_2 layer was washed with water, dehydrated and then filtered, after which the CH_2Cl_2 was removed, and the residue was recrystallized from ligroin to obtain 4-pentyloctahexyl-p-(3-bromopropyl)-phenyl ketone. The melting point of this compound was 38° to 39°C.

In another flask were placed 40 g of 4-pentyloctahexyl-p-(3-bromopropyl)phenyl ketone and 200 ml of CH_3OH and stirred. Thereafter, a sodium methylate-methanol solution prepared by dissolving 3.5 g of Na in 80 ml of absolute CH_3OH was added thereto dropwise, and the resulting solution was refluxed. After 6 hours, the reaction solution was concentrated and then poured into water, after which the separated oil layer was extracted with benzene. After the benzene was distilled off, the residue was distilled under reduced pressure to obtain 4-pentyloctahexyl-p-(3-methoxypropyl)phenyl ketone. The boiling point of this compound was 168°-171°C/0.08 mmHg.

In further another flask, 24 g of the 4-pentyloctahexyl-p-(3-methoxypropyl)phenyl ketone and 130 ml of 88% HCOOH were mixed and stirred. Subsequently, 65 ml of ($\text{CH}_3\text{CO}_2\text{O}$, 1 ml of concentrated sulfuric acid and 20 ml of a 35% aqueous hydrogen peroxide solution were added thereto dropwise in that order. The resulting solution was heated to 40°C to 60°C and stirred for 13 hours, after which this reaction solution was poured into water. The separated oil layer was extracted with benzene and the solvent was distilled off, after which the residue was distilled under reduced pressure, and the distillate was recrystallized from CH_3OH.

The boiling point of the thus obtained compound was 181°-188°C/0.15 mmHg. The infrared absorption spectrum of the compound obtained in the manner described above had an absorption band of an ester linkage at 1720 cm$^{-1}$ and that of another linkage at 1120 cm$^{-1}$ as shown in Fig. 12. In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 346. From the relation between these two facts and the starting compounds, the compound synthesized here was identified as 4-pentyloctahexyl-p-(3-methoxypropyl)benzoate:

\[
\begin{aligned}
 &\text{C}_5\text{H}_{11}\text{H} - \text{OCO-} - \text{(CH}_2\text{CH}_2\text{CH}_2\text{OC}_3\text{H}_3
\end{aligned}
\]

(Sample 58).

The melting point of the sample 58 was 30°C and its phase transition temperature was 13°C for (I—N) transition.

Colorless liquid crystalline compounds represented by the above formula can be produced in the same manner as above by properly selecting the respective numbers of carbon atoms of R^4 and R^5.

Like the compound of Example 15, the colorless liquid crystalline substance of the present example is a compound which also makes Δn of a liquid crystal composition still smaller.

Example 17

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{aligned}
 &R^4 - H - \text{(CH}_2_3\text{-OR}^5
\end{aligned}
\]

and its physical properties)

To a mixture of 40 g of p-(4-pentyloctahexyl)acetophenone, 20 g of thallium nitrate ($\text{Ti(NO}_3)_2$) and 87 g of 70% perchloric acid was added 300 ml of CH_3OH, and the resulting mixture was stirred at room
temperature for 4 hours. Thereafter, it was filtered, and the filtrate was extracted with benzene, after which the benzene layer was washed with water and dried. Then the benzene was distilled off and the residue was recrystallized from CH₂OH to obtain the objective compound methyl p-(4-pentylcyclohexyl)phenylacacetate. The compound had a melting point of 46 to 47°C.

Next, 400 ml of (C₂H₅)₂O was added to 6 g of Li[AlH₄], and the resulting mixture was stirred. Thereto was very gradually added dropwise a (C₂H₅)₂O solution including 36 g of the aforesaid methyl p-(4-pentylcyclohexyl)phenylacacetate, and after completion of the addition, the thus obtained mixture was stirred at 30°C or lower continuously for 3 hours. The mixture was then poured into dilute hydrochloric acid and extracted with (C₂H₅)₂O. After the (C₂H₅)₂O was distilled off, the residue was recrystallized from n-C₆H₄ to obtain 4-[p-(2-hydroxyethyl)phenyl]pentylicyclohexane. The melting point of this compound was 44° to 46°C.

To 20 g of the compound were added 18 g of SOCl₂, 0.6 g of pyridine and 300 ml of benzene, and the resulting mixture was refluxed for 5 hours. After the surplus SOCl₂ was distilled off, the residue was distilled to obtain 4-[p-(2-chloroethyl)phenyl]pentylicyclohexane. The boiling point of this compound was 174—176°C (1 mmHg).

9 Grams of the 4-[p-(2-chloroethyl)phenyl]pentylicyclohexane, 100 ml of dimethyl sulfoxide [(CH₃)₂SO] and 23 g of sodium cyanide (NaCN) were stirred together at 140°C to 150°C for 2 hours. After the resulting mixture was cooled, a 10% aqueous sodium hypochlorite (NaClO) solution was added. Further, water was added thereto, and the precipitate was recrystallized from ligroin to obtain 4-[p-(2-cyanoethyl)phenyl]-pentylcyclohexane. The melting point of this compound was 44° to 46°C.

To 6 g of the compound were added 11 g of KOH, 80 ml of water and 130 ml of C₂H₅OH, and the resulting mixture was refluxed for 10 hours. The C₂H₅OH was distilled off, after which the residue was extracted with (C₂H₅)₂O, and the extract was washed with water. After the (C₂H₅)₂O was distilled off, the residue was recrystallized from ligroin to obtain 4-[p-(2-hydroxycarbonyl)phenyl]pentylicyclohexane. It was confirmed that this compound had a liquid crystal phase in a temperature range from 128.5° to 163.3°C.

Next, 0.82 g of Li[AlH₄] was added to 50 ml of dried (C₂H₅)₂O, and the resulting mixture was stirred. Thereto was gradually added 5 g of 4-[p-(2-hydroxycarbonyl)ethyl]phenyl]pentylicyclohexane. Thereafter the thus obtained mixture was stirred for 5 hours, and filtered. The (C₂H₅)₂O was distilled off from the filtrate, and the residue was recrystallized from n-C₆H₄ to obtain 4-[p-(3-hydroxypropyl)phenyl]-pentylcyclohexane. The melting point of this compound was 70.7° to 72.5°C. To a mixture of 3.6 g of SOCl₂, one drop of pyridine and 50 ml of benzene was added 4.3 g of the 4-[p-(3-hydroxypropyl)phenyl]pentylicyclohexane obtained above, and the resulting mixture was refluxed for 5 hours. Thereafter, the surplus SOCl₂ was distilled off to obtain 4-[p-(3-chloropropyl)phenyl]pentylicyclohexane. The melting point of this compound was 70.7° to 72.5°C.

Subsequently, 1 g of Na was dissolved in 50 ml of dried CH₂OH. Thereto was added 4.3 g of the 4-[p-(3-chloropropyl)phenyl]pentylicyclohexane obtained above. The resulting mixture was refluxed for 62 hours, after which the CH₂OH was distilled off, and the residue was poured into water, and then the oil layer was extracted with benzene, and the extract was dried, the benzene was distilled off and the obtained residue was recrystallized.

The infrared absorption spectrum of the compound obtained in the manner described above had an absorption band of the ether linkage at 1120 cm⁻¹, and an additional absorption band of the —CH₂— group at 2800—3000 cm⁻¹. In the mass spectrum, a peak of ion of the molecular appeared at a m/e ratio of 302. From the relation between these two facts and the starting compounds, the compound synthesized here was identified as 4-[p-(3-methoxypropyl)phenyl]pentylicyclohexane:

\[
\begin{align*}
\text{C}_2\text{H}_{11} & \quad \text{H} & \quad \text{CH}_2\text{CH}_2\text{OCH}_3 \\
\text{CH}_2\text{CH}_2\text{CH}_2\text{OCH}_3 & & & & \\
\end{align*}
\]

(Sample 59).

The melting point of the sample 59 was 2.0°C, and its phase transition temperature was —16°C for (l—N) transition. Colorless liquid crystalline compounds represented by the above general formula can be produced in the same manner as above by changing the respective number of carbon atoms of R⁴ and R⁵ in the starting compounds.

Like the compound of Example 15, the colorless liquid crystalline compound of the present example also makes Δn of a liquid crystal composition still smaller.

Example 18

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[
\begin{align*}
\text{R}^4 & \quad \text{H} & \quad \text{H} & \quad \text{COO} & \quad \text{CH}_2\text{OR}^5 \\
\end{align*}
\]

and its physical properties)

Dried bromine gas (Br₂) was blown through a mixed solution of 33 g of p-hydroxybenzyl alcohol
and 900 ml of benzene for 2 hours while cooling the solution with ice water. Thereafter, the solution was stirred for 2 hours, and then distilled to obtain p-hydroxybenzyl bromide

The boiling point of this compound was 125—126°C/15 mmHg.

Next, 5 g of Na was dissolved in 300 ml of absolute CH₃OH, and about 25 g of the

was added dropwise to the resulting solution while refluxing solution. The reaction mixture was refluxed continuously for 4 hours, and then poured into 1 liter of ice water. The separated oil layer was extracted with (C₆H₅)₂O, and the extract was dried. There was thus obtained p-(methoxymethyl)phenol.

On the other hand, 50 g of 4-propyl-4'-cyanobicyclohexane was dissolved in 50 ml of C₆H₅OH, and 25 g of KOH and 15 ml of water was added to the resulting solution, after which the resulting mixture was refluxed for 8 hours and poured into dilute hydrochloric acid, and then the acidic solution was extracted with (C₆H₅)₂O and the (C₆H₅)₂O was distilled off. The residue was recrystallized from benzene to obtain 4-propyl-4'-bicyclohexanecarboxylic acid.

To 100 ml of SOCl₂ was added 45 g of this compound, and the resulting mixture was stirred continuously for 8 hours while maintaining it at 50°C. Thereafter, it was distilled to obtain 4-propyl-4'-bicyclo-hexanecarbonyl chloride.

Next, 10 g of pyridine was added to 50 g of a solution (content: about 15%) of the previously obtained p-(methoxymethyl)phenol in 50 g of (C₆H₅)₂O, and the 4-propyl-4'-bicyclohexanecarbonyl chloride was added dropwise thereto.

Thereafter, the resulting mixture was refluxed for 2 hours and then washed with water, after which the (C₆H₅)₂O was distilled off, and the residue was recrystallized from CH₃COCH₃.

The infrared absorption spectrum of the compound obtained in the manner described above is shown in Fig. 14. It can be seen from Fig. 14 that an absorption band of the ester linkage appeared at 1750 cm⁻¹ and that of the ether linkage at 1100 cm⁻¹. In the mass spectrum, a peak of ion of the molecule appeared at a m/e ratio of 372. From the relation between these two facts and the starting compounds, the compound synthesized here was identified as p-methoxymethylphenyl 4-propyl-4'-bicyclohexanecarboxylate:

C₃H₇ H H COO (Sample 60). CH₂OCH₃

The phase transition temperature of this compound was 50° for (C—N) transition and 193°C for (N—I) transition. The compound was very excellent in chemical stability.

A liquid crystalline compound corresponding to the above general formula can be produced by a production process according to that of the sample 60. That is to say

is first halogenated, and then converted into

by using Williamson's synthesis process of ether. On the other hand

was hydrolyzed to prepare a carboxylic acid, which was then halogenated into an acid halide. Esterification reaction of the acid halide with
is effected, whereby a liquid crystalline compound of the above general formula is obtained.
As the starting material, there may be used

\[\text{R}^4 \text{H} \text{CN} \text{CN, R}^4 \text{H} \text{CN and R}^4 \text{H} \text{CN} \text{CN} \text{CN}. \]

By properly selecting the starting material from these, there can be obtained, besides the liquid crystalline compound of the present example, colorless liquid crystalline compounds represented by the general formulas listed below.

\[\text{R}^4 \text{H} \text{COO} \text{CH}_2 \text{OR}^5 \]

\[\text{R}^4 \text{H} \text{COO} \text{CH}_2 \text{OR}^5 \]

\[\text{R}^4 \text{H} \text{COO} \text{CH}_2 \text{OR}^5 \]

For example,

\[\text{C}_3 \text{H}_7 \text{H} \text{COO} \text{CH}_2 \text{OCH}_3 \quad \text{(Sample 61)} \]

had a phase transition temperature of 82°C for (C—N) transition and 139°C for (N—I) transition, and

\[\text{C}_3 \text{H}_7 \text{H} \text{COO} \text{CH}_2 \text{OCH}_3 \quad \text{(Sample 62)} \]

had a phase transition temperature of 90°C for (C—N) transition and 173°C for (N—I) transition.

Example 19

(Process for producing a colorless liquid crystalline compound represented by the general formula:

\[\text{R}^5 \text{OCH}_2 \text{H} \text{COO} \text{R}^4 \]

and its physical properties)

In a flask were placed 30.5 g of Li[AlH_4] and 200 ml of THF to obtain a suspension. One liter of a solution of 133 g of

in THF was added dropwise with stirring under ice-cooling, and after completion of the addition, the resulting mixture was further stirred continuously for 2 hours. The reaction solution was poured into dilute hydrochloric acid and extracted with benzene. Thereafter the benzene was distilled off to obtain

\[\text{H} \text{CH}_2 \text{OH} \]
In 1.5 liters of (CH$_3$)$_2$SO were dissolved 123 g of the

and 100 ml of a 4% aqueous NaOH solution together with 700 g of methyl iodide (CH$_3$I), and the resulting solution was stirred at 60°C for 2 hours, after which the reaction solution was poured into water and extracted with benzene, and the benzene was distilled off to obtain

In another flask were placed 51.8 g of CH$_3$COCl, 500 ml of CH$_2$Cl$_2$ and 117 g of AlCl$_3$, and the resulting mixture was cooled with ice under stirring. Subsequently, 8.9 g of

was gradually added thereto dropwise, and the thus obtained solution was stirred under ice-cooling for 4 hours. This reaction solution was poured into 1 liter of dilute hydrochloric acid, and the CH$_2$Cl$_2$ layer was washed with water and the CH$_2$Cl$_2$ was distilled off, after which the residue was distilled under reduced pressure to obtain

In further another flask, 500 ml of dioxane and 50 g of the

were placed. 1 Liter of 10% aqueous sodium hypobromite (NaBrO) solution was added dropwise thereto at room temperature with stirring. This reaction solution was poured into water and acidified with dilute hydrochloric acid, and was extracted with benzene. And the benzene was distilled off to obtain

Thereafter, 100 g of SOCl$_2$ was added dropwise to 30 g of the

under ice-cooling, and the resulting mixture was stirred for 4 hours to obtain

Further, 10 g of pyridine was added to 30 g of a solution (content: 30%) of

in benzene, and 8 g of the
obtained above was added thereto dropwise. Thereafter, the resulting mixture was refluxed for 2 hours and then washed with water, after which the benzene was distilled off, and the residue was recrystallized from n-C₆H₁₄ and C₂H₅OH.

The infrared absorption spectrum of the compound obtained in the manner described above is shown in Fig. 15. It can be seen from Fig. 15 that an absorption band of the ester linkage appeared at 1,750 cm⁻¹ and that of the ether linkage at 1,100 cm⁻¹. From the relation between these two facts and the starting compounds, the compound synthesized here was identified as p-proplyphenyl p-[4-(methoxymethyl)-cyclohexyl]benzoate:

\[
\text{CH}_3\text{OCH}_2\text{H} - \text{COO} - \text{C}_3\text{H}_7
\]

(Sample 63)

The phase transition temperature of this compound was 103°C for (C—N) transition and 166°C for (N—I) transition.

Liquid crystalline compounds corresponding to the above general formula can be produced by a production process according to that of the sample 63. That is to say, is first reduced into an alcohol. Subsequently, the alcohol was subjected to etherification, acetylation, halo-form reaction and halogenation in that order to obtain an acid halide

\[
\text{ClOC} - \text{H} - \text{COOH}
\]

Next esterification of the acid halide with

\[
\text{HO} - \text{R}^4 \quad \text{or} \quad \text{HO} - \text{H} - \text{R}^4
\]

is effected to obtain the object compound:

\[
\text{R}^5\text{OH}_2\text{C} - \text{H} - \text{CO}_2 - \text{R}^4 \quad \text{or}
\]

\[
\text{R}^5\text{OH}_2\text{C} - \text{H} - \text{CO}_2 - \text{H} - \text{R}^4
\]

Besides

\[
\text{H} - \text{COOH}
\]

is first esterified to

\[
\text{H} - \text{COOR}
\]

subsequently the ester is subjected to formylation, reduction, halogenation and etherification in order to obtain

\[
\text{R}^5\text{OH}_2\text{C} - \text{H} - \text{CO}_2\text{R}
\]

and then
As compounds having, like the compound of the present example, three 6-membered rings and an ester group, there have heretofore known

(Phase transition temperature: 93°C for (C–N) transition and 189°C for (N–I) transition) and

(Phase transition temperature: 89°C for (C–N) transition and 183°C for (N–I) transition). Liquid compositions containing any of these conventional compounds have a wide mesomorphic range including room temperature, however they are disadvantageous in that they have a high viscosity. The cause of their high viscosity is presumed to be that in the compounds two ester groups are directly linked to three benzene rings, so that the oxygen atoms have a great polarizing effect. The cause why the mesomorphic range extends is thought to be that owing to the polarizing effect, the intermolecular interaction has such an intensity that the compounds are liable to become a liquid crystal. In contrast to the conventional compounds, the liquid crystalline compound of this invention extends the mesomorphic range of a liquid crystal composition and lowers its viscosity because in said compound, ester groups having a great polarizing effect is decreased and an ether group effective for lowering the viscosity is contained at the end.

Example 20
(Process for producing a colorless liquid crystalline compound represented by the general formula:

(Wherein p is an integer of 1 to 6, and its physical properties)

In a flask, 600 g of 2-octanone (CH₃CH₂₂COCH₂)₃, 500 g of tert-butanol ((CH₃)₂COH) and 30 g of KOH/CH₂OH solution were mixed and then stirred under ice-cooling. To the resulting solution was added dropwise a solution of 375 g of acetonitrile (CH₂=CHCN) in 400 g of (CH₂)₂COH while maintaining the temperature at 5°C or lower. After completion of the addition, the resulting solution was further stirred continuously for 1 hour, after which this reaction solution was made neutral by addition of dilute hydrochloric acid. The deposited salt was separated by filtration, and the residue was distilled under reduced pressure to obtain 3-acetyl-1,5-dicyano-3-pentylpentane.

Into 400 g of a 20% aqueous NaOH solution was poured 232 g of the reaction product, and the resulting mixture was heated and stirred for 8 hours. Subsequently, the mixture was made slightly acidic with dilute hydrochloric acid and then extracted with chloroform (CHCl₃). The solvent was distilled off to obtain 4-acetyl-4-pentyl-1,7-heptanedioic acid.

In 750 ml of (CH₂)₂CO₂O was dissolved 130 g of this reaction product, and the resulting mixture was heated and refluxed for 3 hours and then distilled under reduced pressure to obtain 4-acetyl-4-pentylcyclohexanone.

To 600 ml of a 10% aqueous KOH solution was poured 70 g of this reaction product, and the resulting mixture was heated and refluxed for 5 hours. After cooled, the mixture was made neutral by addition of dilute hydrochloric acid and then reacted with (C₆H₄)₂O. The (C₆H₄)₂O was distilled off to obtain 1-hydroxy-4-pentyl-3-bicyclo(2,2,2)octanone.

In 130 ml of NH₂-NH₂ was dissolved 21 g of this reaction product, and the resulting solution was heated and refluxed for 5 hours. After the solution was cooled, 29 g of KOH and 180 ml of HO(CH₂)₂O(CH₂)₂OH were added thereto, and the resulting mixture was heated to 230° to 240°C. When the evolution of nitrogen gas (N₂) ceased, 1.7 liters of cold water was added, after which the thus obtained mixture was extracted with (C₆H₄)₂O. The (C₆H₄)₂O was distilled off to obtain 1-hydroxy-4-pentylbicyclo(2,2,2)octane.

Into a mixed solution of 160 g of hydrobromic acid and 40 g of concentrated sulfuric acid was poured 20 g of this reaction product, and the resulting mixture was heated and refluxed for 4 hours. After being cooled, the mixture was poured into 50 ml of water and extracted with (C₆H₄)₂O, and the (C₆H₄)₂O was distilled off, after which the residue was distilled under reduced pressure to obtain 1-bromo-4-pentylbicyclo(2,2,2)octane.

In another flask, 150 ml of concentrated sulfuric acid and 1.3 g of silver sulfate (Ag₂SO₄) were mixed and cooled to 5°C, and 5 ml of a solution of 3 g of the aforesaid 1-bromo-4-pentylbicyclo(2,2,2)octane in n-C₄H₁₀ was added. Subsequently, 1 ml of 98% HCOOH was gradually added thereto. After the evolution of
is hydrolized and halogenated to

obtained as an intermediate in the above-mentioned process is used to produce bicyclohexane derivatives. That is to say, those both are hydrogenated to

and halogenated to

is obtained by using

as a starting material according to the same process as mentioned in Example 19. These obtained acid chlorides are reacted with

to obtain the following colorless liquid crystalline compounds besides the colorless liquid crystalline compound of the present Example.
gas ceased, the reaction solution was added to 600 ml of ice water to deposit crystals. The crystals were collected by filtration to obtain 4-pentylicyclo[2,2,2]octanecarboxylic acid.

To 30 ml of SOCl₂ was added 3.0 g of this reaction product, and the resulting mixture was stirred continuously for 8 hours while maintaining its temperature at 60°C. The mixture was then distilled to obtain 4-pentylicyclo[2,2,2]octanecarboxyl chloride

\[
\begin{align*}
\text{C}_5\text{H}_{11} & \quad \text{COCl}.
\end{align*}
\]

In further another flask, 33 g of

\[
\begin{align*}
\text{HO} & \quad \text{CH}_2\text{OH}
\end{align*}
\]

and 900 ml of benzene were mixed, and hydrogen bromide gas (HBr) was blown through the reaction solution for 2 hours under ice-cooling. Thereafter, the solution was stirred continuously for 2 hours and then distilled to obtain p-(a-bromoethyl)phenol

\[
\begin{align*}
\text{BrH}_2\text{C} & \quad \text{OH}.
\end{align*}
\]

The boiling point of this compound was 125—126°C/15 mm Hg.

In still another flask, 5 g of Na was dissolved in 300 ml of C₂H₅OH and the resulting solution was refluxed while adding thereto dropwise 25 g of

\[
\begin{align*}
\text{BrH}_2\text{C} & \quad \text{OH}.
\end{align*}
\]

After 4 hours, the reaction mixture was poured into ice water, and the separated oil layer was extracted with (C₄H₉O)₂O. The extract was dehydrated to obtain p-(a-propoxymethyl)phenol

\[
\begin{align*}
\text{(C}_3\text{H}_7\text{OCH}_2 & \quad \text{OH}.
\end{align*}
\]

Next, 3 g of pyridine was mixed with 16 g of a solution (content 18%) of the

\[
\begin{align*}
\text{C}_3\text{H}_7\text{OCH}_2 & \quad \text{OH}
\end{align*}
\]

in (C₄H₉O)₂O, and 2 g of

\[
\begin{align*}
\text{C}_3\text{H}_11 & \quad \text{COCl}
\end{align*}
\]

was added dropwise, after which the resulting mixture was refluxed continuously for 3 hours. The reaction mixture was washed with water, and (C₄H₉O)₂O was removed, after which the residue was distilled to obtain the objective compound p-(propoxymethyl)phenyl-4-pentylicyclo[2,2,2]octane carboxylate:

\[
\begin{align*}
\text{C}_5\text{H}_{11} & \quad \text{COO} \quad \text{CH}_2\text{OC}_3\text{H}_7
\end{align*}
\]

(Sample 64).

The infrared absorption spectrum of the sample 64 was as shown in Fig. 16, and an absorption band of the ester linkage appeared at 1750 cm⁻¹ and that of the ether linkage at 1100 cm⁻¹. In the mass spectrum of the sample 64, a peak of ion of the molecule appeared at a m/e ratio of 372. The values of elementary analysis (C 77.41%, H 9.71%) of the sample 64 were in good agreement with the values calculated from the molecular weight (C 77.38%, H 9.74%) for C₄H₉O₂. From the relation between these facts and the starting compounds, the sample 64 was identified as the liquid crystalline compound of the above formula.

Liquid crystalline compounds corresponding to the above general formula can be produced by the production process according to that of the sample 64. That is to say, R⁴—CH₂COCH₃ and CH₂=CHCN are first condensed together under basic conditions to obtain
Subsequently, the cyano group is hydrolyzed with an alkali into a carboxyl group, and the thus treated condensation product is heated in \((\text{CH}_3\text{CO})_2\text{O}\) to obtain a cyclohexanone derivative

\[
\begin{array}{c}
\text{CH}_3\text{CO} \\
\text{CH}_2\text{CH}_2\text{CN}
\end{array}
\]

Thereafter, the derivative is heated in the presence of an alkali to obtain a bicyclooctanol derivative

\[
\begin{array}{c}
\text{R}^4 \\
\text{CH}_3\text{CO}
\end{array}
\]

Subsequently, this derivative is subjected to reduction by \(\text{NH}_2\text{NH}_2\), bromination with 48% HBr aqueous solution, acidification treatment with formic acid and treatment with \(\text{SOCl}_2\) in that order to obtain

\[
\begin{array}{c}
\text{R}^4 \\
\text{COCl}
\end{array}
\]

The

\[
\begin{array}{c}
\text{R}^4 \\
\text{COCl}
\end{array}
\]

is reacted with the other starting compound

\[
\begin{array}{c}
\text{HO} \\
\text{(CH}_2\text{)}_p\text{OR}^5
\end{array}
\]

in a basic solution, whereby the objective compound can be obtained.

For example, a liquid crystalline compound of the above general formula in which \(p=3\) can be obtained by esterification reaction of

\[
\begin{array}{c}
\text{R}^4 \\
\text{COCl}
\end{array}
\]

obtained in the same manner as above, with

\[
\begin{array}{c}
\text{HO} \\
\text{(CH}_2\text{)}_3\text{OR}^5
\end{array}
\]

\[
\begin{array}{c}
\text{HO} \\
\text{(CH}_2\text{)}_3\text{OR}^5
\end{array}
\]

can be obtained, for example, in the following manner. In 600 ml of \(\text{CH}_2\text{OH}\) was dissolved 20 g of Na, and 120 g of 3-bromopropylbenzene

\[
\begin{array}{c}
\text{C}_3\text{H}_5\text{Br}
\end{array}
\]

was added dropwise with heating under reflux. After 6 hours, the reaction solution was poured into ice water, and the separated oil layer was extracted with benzene, after which the benzene was distilled off, and the residue was distilled to obtain

\[
\begin{array}{c}
\text{C}_3\text{H}_6\text{OCH}_3
\end{array}
\]
This compound had a boiling point of 96—98°C/15 mm Hg. Next, 195 g of AlCl₃ and 100 g of the

were added to 1.5 liters of CH₂Cl₂, and the resulting mixture was cooled with ice under stirring. Subsequently, 79 g of CH₂COCl was gradually added thereto dropwise, and the thus obtained solution was stirred under ice-cooling continuously for 6 hours. This reaction solution was poured into dilute hydrochloric acid, and the CH₂Cl₂ was separated, after which the CH₂Cl₂ was distilled off, and the residue was distilled to obtain

\[
\text{CH}_3\text{CO} - \text{O} - (\text{CH}_2)_3\text{OCH}_3
\]

The boiling point of this compound was 94—95°C/0.3 mm Hg. Sixty-seven grams of this compound and 620 ml of 88% HCOOH were mixed and stirred, after which 310 ml of (CH₃CO)₂O, 4 ml of concentrated sulfuric acid and 110 ml of a 35% aqueous hydrogen peroxide solution were added thereto. The resulting solution was heated to 40° to 50°C and stirred for 8 hours, after which the reaction solution was poured into water, and the separated oil layer was extracted. The solvent was distilled off from the extract, and 100 ml of CH₃OH and 250 ml of a 2N aqueous NaOH solution were added to the residue, after which the resulting solution was heated and refluxed for 2 hours. After being cooled, the reaction solution was made acid with hydrochloric acid, and the oil layer was extracted with benzene. The benzene was distilled off from the extract, and the residue was further distilled to obtain p-(3-methoxypropyl)-phenol

\[
\text{HO} - \text{O} - (\text{CH}_2)_3\text{OCH}_3
\]

The boiling point of this compound was 106—108°C/0.3 mm Hg. Esterification reaction was effected by use of the

\[
\text{HO} - \text{O} - (\text{CH}_2)_3\text{OCH}_3
\]

as one starting compound and the already described

\[
\text{C}_5\text{H}_{11} - \text{O} - \text{COCl}
\]

as the other starting compound to obtain the objective compound p-(3-methoxypropyl)phenol-4-pentylbicycl(2,2,2)octanecarboxylate:

\[
\text{C}_5\text{H}_{11} - \text{COO} - \text{O} - (\text{CH}_2)_3\text{OCH}_3
\]

(Sample 65).

The infrared absorption spectrum of the sample 65 was as shown in Fig. 17, and an absorption band of the ester linkage appeared at 1750 cm⁻¹ and that of the ether linkage at 1100 cm⁻¹. In the mass spectrum of the sample 65, a peak of ion of the molecule appeared at a m/e ratio of 372. The values of elementary analysis (C 77.32%, H 9.76%) of the sample 65 were in good agreement with the values calculated from the molecular weight (C 77.38%, H 9.74%) for C₂₅H₄₀O₂. From the relation between these facts and the starting compounds, it was confirmed that the sample 65 had the above formula.

There are shown in Table 5 the phase transition temperatures of the samples 64 and 65 and other liquid crystalline compounds produced by a production process according to those of the samples 64 and 65.
<table>
<thead>
<tr>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>P</th>
<th>C—I</th>
<th>C—N</th>
<th>Sample</th>
<th>R^4</th>
<th>R^5</th>
<th>P</th>
<th>C—I</th>
<th>C—N</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>C2H${11}$</td>
<td>C$_3$H$_7$</td>
<td>1</td>
<td>24.0</td>
<td>(21.0)</td>
<td>67</td>
<td>C7H${15}$</td>
<td>CH$_3$</td>
<td>1</td>
<td>58.0</td>
<td>(55.0)</td>
</tr>
<tr>
<td>65</td>
<td>C5H${11}$</td>
<td>CH$_3$</td>
<td>3</td>
<td>53.2</td>
<td>43.1</td>
<td>68</td>
<td>C7H${15}$</td>
<td>C$_2$H$_5$</td>
<td>1</td>
<td>31.0</td>
<td>26.0</td>
</tr>
<tr>
<td>66</td>
<td>C5H${11}$</td>
<td>CH$_3$</td>
<td>1</td>
<td>62.0</td>
<td>(56.0)</td>
<td>69</td>
<td>C6H${13}$</td>
<td>C$_6$H$_3$</td>
<td>5</td>
<td>59.0</td>
<td>37.0</td>
</tr>
</tbody>
</table>
Example 21

(Characteristics of liquid crystalline compounds incorporated with any of the colorless liquid crystalline compounds produced in the above-mentioned examples)

Nematic liquid crystal compositions having the respective compositions shown in Table 6 were used as base liquid crystal, and each of the samples produced in the above-mentioned examples was incorporated into said compounds. The viscosities, mesomorphic ranges (hereinafter referred to as MR) and Δn of the thus prepared liquid crystal compositions are shown together with those of comparative examples in Tables 8, 9 and 10. Incorporated samples used for compositions are shown in Table 7. Table 10 shows the values of Δn which were measured for compositions obtained by using the sample as an incorporated sample.

The liquid crystal compositions were prepared by adding predetermined amount of individual colorless liquid crystalline compounds to the base liquid crystals, heating the resulting mixture at 80°C to 85°C for about 1 hour, and then sufficiently stirring and mixing it. The viscosity was measured by using a rotation viscometer. The measurement temperature was 20°C. MR was measured by sealing up each of the prepared liquid crystal compositions in a glass capillary having a diameter of 1 mm, and then observing phase transition with the naked eye.
<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th>Weight Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>50% by weight</td>
</tr>
<tr>
<td>A</td>
<td>C<sub>7</sub>H<sub>15</sub></td>
<td>30% by weight</td>
</tr>
<tr>
<td>A</td>
<td>C<sub>9</sub>H<sub>17</sub></td>
<td>20% by weight</td>
</tr>
<tr>
<td>B</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>34% by weight</td>
</tr>
<tr>
<td>B</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>34% by weight</td>
</tr>
<tr>
<td>B</td>
<td>C<sub>7</sub>H<sub>15</sub></td>
<td>20% by weight</td>
</tr>
<tr>
<td>B</td>
<td>C<sub>9</sub>H<sub>11</sub></td>
<td>12% by weight</td>
</tr>
<tr>
<td>C</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>40% by weight</td>
</tr>
<tr>
<td>C</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>20% by weight</td>
</tr>
<tr>
<td>C</td>
<td>C<sub>5</sub>H<sub>11</sub></td>
<td>40% by weight</td>
</tr>
<tr>
<td>D</td>
<td>C<sub>6</sub>H<sub>13</sub></td>
<td>35% by weight</td>
</tr>
<tr>
<td>D</td>
<td>CH<sub>3</sub>O</td>
<td>65% by weight</td>
</tr>
<tr>
<td>E</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>50 mol %</td>
</tr>
<tr>
<td>E</td>
<td>C<sub>3</sub>H<sub>7</sub></td>
<td>50 mol %</td>
</tr>
<tr>
<td>F</td>
<td>C\textsubscript{3}H\textsubscript{7} - H - \circ - CN</td>
<td>50 mol %</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>C\textsubscript{5}H\textsubscript{11} - H - \circ - CN</td>
<td>50 mol %</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Liquid crystalline substance</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Liquid crystalline substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Base liquid crystal</td>
<td>Sample No.</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Base liquid crystal</td>
<td>Sample No.</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>57</td>
<td>20</td>
</tr>
<tr>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td>59</td>
<td>20</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Added amount of sample (wt.%)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

(Base liquid crystal: A)
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Added amount of sample (wt %)</th>
<th>Viscosity (cp) at 20°C</th>
<th>MR (°C)</th>
<th>Sample No.</th>
<th>Added amount of sample (wt %)</th>
<th>Viscosity (cp) at 20°C</th>
<th>MR (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>29</td>
<td>-2 - 71</td>
<td>50</td>
<td>10</td>
<td>23</td>
<td>-10 - 67</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>28</td>
<td>-7 - 67</td>
<td>52</td>
<td>10</td>
<td>24</td>
<td>-9 - 67</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>26</td>
<td>-10 - 64</td>
<td>54</td>
<td>10</td>
<td>24</td>
<td>-10 - 69</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>24</td>
<td>-15 - 50</td>
<td>56</td>
<td>5</td>
<td>24</td>
<td>-13 - 68</td>
</tr>
<tr>
<td>102</td>
<td>10</td>
<td>27</td>
<td>-1 - 67</td>
<td>60</td>
<td>10</td>
<td>31</td>
<td>^ to 84</td>
</tr>
<tr>
<td>103</td>
<td>10</td>
<td>28</td>
<td>0 - 69.5</td>
<td>60</td>
<td>20</td>
<td>32</td>
<td>^ to 93</td>
</tr>
<tr>
<td>104</td>
<td>10</td>
<td>27</td>
<td>0.5 - 74</td>
<td>60</td>
<td>30</td>
<td>33</td>
<td>^ to 109</td>
</tr>
<tr>
<td>104</td>
<td>30</td>
<td>Not compatible</td>
<td></td>
<td>61</td>
<td>10</td>
<td>32</td>
<td>^ to 88</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
<td>26.5</td>
<td>3 - 73</td>
<td>61</td>
<td>20</td>
<td>32</td>
<td>^ to 109</td>
</tr>
<tr>
<td>105</td>
<td>30</td>
<td>23</td>
<td>6 - 83</td>
<td>61</td>
<td>30</td>
<td>33</td>
<td>^ to 116</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>-21 - 63</td>
<td>62</td>
<td>10</td>
<td>31</td>
<td>^ to 91</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>22</td>
<td>-19 - 65</td>
<td>62</td>
<td>20</td>
<td>32</td>
<td>^ to 103</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>26</td>
<td>-11 - 66</td>
<td>62</td>
<td>30</td>
<td>33</td>
<td>^ to 121</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>23</td>
<td>-15 - 64</td>
<td>63</td>
<td>10</td>
<td>31</td>
<td>^ to 80</td>
</tr>
<tr>
<td>44</td>
<td>10</td>
<td>24</td>
<td>-12 - 68</td>
<td>63</td>
<td>20</td>
<td>32</td>
<td>^ to 92</td>
</tr>
<tr>
<td>45</td>
<td>10</td>
<td>23</td>
<td>-9 - 67</td>
<td>63</td>
<td>30</td>
<td>33</td>
<td>^ to 103</td>
</tr>
<tr>
<td>46</td>
<td>10</td>
<td>25</td>
<td>-13 - 69</td>
<td>64</td>
<td>10</td>
<td>26</td>
<td>-3 - 73</td>
</tr>
<tr>
<td>47</td>
<td>10</td>
<td>26</td>
<td>-13 - 68</td>
<td>64</td>
<td>20</td>
<td>24</td>
<td>-4 - 75</td>
</tr>
<tr>
<td>48</td>
<td>10</td>
<td>25</td>
<td>-11 - 69</td>
<td>64</td>
<td>30</td>
<td>22</td>
<td>-6 - 80</td>
</tr>
<tr>
<td>49</td>
<td>10</td>
<td>24</td>
<td>-12 - 68</td>
<td>65</td>
<td>10</td>
<td>26</td>
<td>-3.5 - 73</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Added amount of sample (wt %)</td>
<td>Viscosity (cp) at 20°C</td>
<td>MR (°C)</td>
<td>Sample No.</td>
<td>Added amount of sample (wt %)</td>
<td>Viscosity (cp) at (20°C)</td>
<td>MR (°C)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>(Base liquid crystal; B) (Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>30</td>
<td>23</td>
<td>-6.5 – 78</td>
<td>65</td>
<td>10</td>
<td>11.5</td>
<td>17 – 35.5</td>
</tr>
<tr>
<td>69</td>
<td>10</td>
<td>26.5</td>
<td>-3.5 – 74</td>
<td>69</td>
<td>30</td>
<td>10</td>
<td>11 – 38</td>
</tr>
<tr>
<td>69</td>
<td>30</td>
<td>23.5</td>
<td>-7 – 79</td>
<td>69</td>
<td>10</td>
<td>11.5</td>
<td>16 – 36</td>
</tr>
<tr>
<td>(Base liquid crystal; E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>0</td>
<td>12</td>
<td>20 – 33.5</td>
<td>65</td>
<td>10</td>
<td>11.5</td>
<td>17 – 35.5</td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>11.5</td>
<td>16 – 35</td>
<td>65</td>
<td>30</td>
<td>10</td>
<td>11 – 38</td>
</tr>
<tr>
<td>64</td>
<td>20</td>
<td>10.5</td>
<td>14.5 – 37</td>
<td>69</td>
<td>10</td>
<td>11.5</td>
<td>16 – 36</td>
</tr>
<tr>
<td>64</td>
<td>30</td>
<td>9.5</td>
<td>12 – 38</td>
<td>69</td>
<td>30</td>
<td>10</td>
<td>12 – 38</td>
</tr>
<tr>
<td>(Base liquid crystal; F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>0</td>
<td>22</td>
<td>9 – 50</td>
<td>64</td>
<td>20</td>
<td>19.5</td>
<td>6 – 52</td>
</tr>
<tr>
<td>104</td>
<td>10</td>
<td>21</td>
<td>7 – 53</td>
<td>64</td>
<td>30</td>
<td>18</td>
<td>5 – 56</td>
</tr>
<tr>
<td>104</td>
<td>30</td>
<td>19</td>
<td>13.5 – 63</td>
<td>65</td>
<td>10</td>
<td>21</td>
<td>7 – 52</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
<td>21</td>
<td>8 – 51</td>
<td>65</td>
<td>30</td>
<td>18</td>
<td>6 – 58</td>
</tr>
<tr>
<td>105</td>
<td>30</td>
<td>18.5</td>
<td>14 – 67</td>
<td>69</td>
<td>10</td>
<td>21</td>
<td>8 – 53</td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>20.5</td>
<td>7 – 51</td>
<td>69</td>
<td>30</td>
<td>18</td>
<td>6 – 56</td>
</tr>
</tbody>
</table>

(*Not crystallized after -40°C/100 hr.*)
The data shown in the above tables mean as follows.

1. Each of the liquid crystal compositions incorporated with each of the colorless liquid crystalline compounds of Examples 1 to 10 and Example 14 has a viscosity lower than that of the corresponding base liquid crystal by 10 to 30%.

2. Each of the liquid crystal compositions incorporated with each of the colorless liquid crystalline compounds of Examples 15 and 16 has a viscosity lower than that of the corresponding base liquid crystal by 15 to 35%.

3. Each of the liquid crystal compositions incorporated with the colorless liquid crystalline compound of Example 17 has a viscosity lower than that of the corresponding base liquid crystal by 36 to 41% and has a Δn smaller than that of the latter by 23 to 30% as shown in Table 10.

4. Each of the liquid crystal compositions incorporated with each of the colorless liquid crystalline compounds of Examples 18 and 19 is increased in viscosity by only 4 cp as compared with the corresponding base liquid crystal, and the upper limit of MR is elevated by 39° to 59°C in the case of the compound of Example 18 and by 10° to 32°C in the case of the compound of Example 19.

Example 22

(Response properties of liquid crystal display elements using a liquid crystal composition containing any of the colorless liquid crystalline compounds of this invention prepared in Example 21)

TN type liquid crystal display elements were produced by using, as a liquid crystal layer, any of the liquid crystal compositions prepared in Example 21. In these liquid crystal display elements, transparent SnO₂ or InO₃ NESA electrodes were formed on the insides of each of the upper and lower glass substrates, and each orientation controlling film made from an imide polymer was formed thereon in order to orient the liquid crystal molecules. The gap between the upper and lower substrates was controlled so that the thickness of the liquid crystal layer becomes about 10 μm. A voltage of 6 V was applied to each of the liquid crystal display elements at ambient temperature (30°C), and the response time was measured. The results are shown in Table 11.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Base liquid crystal</th>
<th>Added amount of sample (wt %)</th>
<th>Response time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Responding time: 1.4, 3.4, 1.2
Claims

1. A colorless liquid crystalline compound of the formula:

\[R^1 - A - B - R^2 \]
\[\text{or} \quad R^1 - A - X - B - R^2 \]

wherein \(R^1 \) in the formula (I) or (II) is

\[-(\text{CH}_2\text{O})_n\text{C}_m\text{H}_{2m+1}, \quad -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \quad -(\text{CH}_2\text{O})_n\text{OC}_m\text{H} \]

\[\text{or} \quad -(\text{CH}_2\text{O})_n\text{O(CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \]

wherein \(n \) and \(m \) are independently an integer of 1 to 8; and \(m \) is an integer of 1 to 12; and wherein \(R^2 \) in the formula (I) or (II) is a cyano group, a nitro group, a halogen group or a non-cyclic group represented by the formula:

\[-(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \quad -(\text{CH}_2\text{O})_n\text{C}_m\text{H}_{2m+1}, \quad -(\text{CH}_2\text{O})_n\text{OC}_m\text{H} \]

\[\text{or} \quad -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \]

wherein \(n \) and \(m \) are independently an integer of 1 to 8; and \(m \) is an integer of 1 to 12; and \(A \) and \(B \) are independently a 6-membered ring of the formula:

\[\text{and } X \text{ is a group of the formula:} \]

\[\text{--COO--, --OCO--, --CH=CH--, --C≡C--, --CH}_3\text{CH}_2-- \text{or } --\text{CH}_2\text{O}. \]

2. A colorless liquid crystalline compound according to claim 1 of the formula:

\[R^4 - H - \text{(CH}_2\text{)}_p\text{OR}^5 \]
\[\text{or} \quad R^4 - H - X - \text{(CH}_2\text{)}_p\text{OR}^5 \]
0 058 961

3. A colorless liquid crystalline compound according to claim 1 of the formula:

\[R^4-\text{B}^-'\text{COO}-\text{A}^-'\text{CH}_2\text{OR}^5 \]

wherein \(R^4\) and \(R^5\) are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms; \(A^-'\) is

\[\text{or} \]

\[\text{or} \]

4. A colorless liquid crystalline compound according to claim 1 of the formula:

\[R^4\text{OCH}_2-\text{A}''\text{COO}-\text{B}''-\text{R}^4 \]

wherein \(R^4\) and \(R^5\) are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms; \(A''\) is

\[\text{or} \]

5. A colorless liquid crystalline compound according to claim 1 of the formula:

\[R^4\text{COO}-(\text{CH}_2)_p\text{OR}^5 \]

wherein \(R^4\) and \(R^5\) are independently a straight-chain or branched-chain alkyl group having 12 or less carbon atoms and \(p\) is an integer of 1 to 6.

Patentansprüche

1. Farblose flüssigkristalline Verbindung der Formel

\[R^1-\text{A}^B-\text{R}^2 \] (I), oder \[R^1-\text{A}^X-\text{B}^B-\text{R}^2 \] (II),

wobei \(R^1\) in der Formel (I) oder (II)

\[-(\text{CH}_2\text{O})_n\text{C}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})(\text{CH}_2)_n\text{OC}_m\text{H}_{2m+1} \text{ oder } -(\text{CH}_2)_n\text{O}(\text{CH}_2)_n\text{OC}_m\text{H}_{2m+1} \]

wobei \(n\) und \(m\) unabhängig voneinander eine ganze Zahl von 1 bis 8 und \(m\) eine ganze Zahl von 1 bis 12 bedeuten, und wobei \(R^2\) in der Formel (I) oder (II) für eine Cyano-, Nitro-, Halogen- oder eine acyclische Gruppe der Formel

\[-\text{O}(\text{CH}_2)_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{C}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2)_n\text{O}(\text{CH}_2)_n\text{OC}_m\text{H}_{2m+1} \text{ oder } -(\text{CH}_2)_n\text{O}(\text{CH}_2)_n\text{OC}_m\text{H}_{2m+1} \]

wobei \(n\) und \(m\) unabhängig voneinander eine ganze Zahl von 1 bis 8 und \(m\) eine ganze Zahl von 1 bis 12 darstellen, und wobei A und B unabhängig voneinander ein 6gliedriger Ring der Formel
und X eine Gruppe der Formel

\[-\text{COO}, -\text{OCO}, -\text{CH}=\text{CH}, -\text{C}=\text{C}, -\text{CH}_2\text{CH}_2-\] oder \[-\text{CH}_3\] sind.

2. Farblose flüssigkristalline Verbindung nach Anspruch 1 der Formel

\[R^4-\text{B}^-\text{COO}\rightarrow A'\rightarrow \text{CH}_2\text{OR}^6,\]

worin \(R^4\) und \(R^6\) unabhängig voneinander eine geradkettige oder verzweigtkettige Alkylgruppe mit 12 oder weniger Kohlenstoffatomen, \(X\rightarrow\text{COO}\) oder \(-\text{OCO}\) und \(p\) eine ganze Zahl von 1 bis 8 sind.

3. Farblose flüssigkristalline Verbindung nach Anspruch 1 der Formel

\[R^4-\text{B}^-\text{COO}\rightarrow A'\rightarrow \text{CH}_2\text{OR}^6,\]

worin \(R^4\) und \(R^6\) unabhängig voneinander eine geradkettige oder verzweigtkettige Alkylgruppe mit 12 oder weniger Kohlenstoffatomen, \(A'\)

\[\text{ oder }\]

sind.

4. Farblose flüssigkristalline Verbindung nach Anspruch 1 der Formel

\[R^6\text{OCH}_2\rightarrow A'\rightarrow \text{COO}^-\rightarrow \text{B}^--R^4,\]

worin \(R^4\) und \(R^6\) unabhängig voneinander eine geradkettige oder verzweigtkettige Alkylgruppe mit 12 oder weniger Kohlenstoffatomen, \(A'\)
0 058 981

5

sind.

10 5. Farblose flüssigkristalline Verbindung nach Anspruch 1 der Formel

15

worin R⁴ und R⁵ unabhängig voneinander eine geradkettige oder verzweigkettige Alkylgruppe mit 12 oder weniger Kohlenstoffatomen und p eine ganze Zahl von 1 bis 6 sind.

20 Reivendications

1. Composé de cristal liquide incolore répondant à la formule:

25

\[R¹-A-B-R² \] (I), ou \[R¹-A-X-B-R² \] (II)

pour lequel R¹ de la formule (I) ou (II) est du

30

\[-(\text{CH}_2\text{O})_n\text{C}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -\text{CH}_2\text{O}(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, ou -(\text{CH}_2\text{O})_n\text{O}(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \]

n et l étant, de façon indépendante, des nombres entiers compris entre 1 et 8; et m est un nombre entier compris entre 1 et 12; et pour lequel R² de la formule (I) ou (II) est un groupe cyano, un groupe nitro, un groupe halogène ou un groupe non cyclique représenté par la formule:

35

\[-(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, -(\text{CH}_2\text{O})_n\text{O}(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, ou \]

- \[-(\text{CH}_2\text{O})_n\text{OC}_m\text{H}_{2m+1}, \]

n et l étant, de façon indépendante, des nombres entiers compris entre 1 et 8; et m est un nombre entier compris entre 1 et 12; A et B étant, de façon indépendante, un noyau à 6 éléments répondant à la formule:

45

50

55

60

65
et X étant un groupe répondant à la formule:

$-\text{COO}-, -\text{OCO}-, -\text{CH}=\text{CH}-, -\text{C}==\text{C}-, -\text{CH}_2\text{CH}_2-$ ou $-\text{CH}_2\text{O}-$.

2. Composé de cristal liquide incolore selon la revendication 1, répondant à la formule:

$R^4\times H - (\text{C}_2\text{H}_2)_p - \text{OR}^5$ ou $R^4\times H - X - (\text{C}_2\text{H}_2)_p - \text{OR}^5$

R^4 et R^5 étant, de façon indépendante, un groupe alcoyle en chaîne longue ou à chaîne ramifiée, comportant 12 atomes de carbone ou moins; X étant $-\text{COO}-$ ou $-\text{OCO}-$; et p étant un nombre entier compris entre 1 et 8.

3. Composé de cristal liquide incolore selon la revendication 1, répondant à la formule:

$R^4\times B'-\text{COO}-A'\times \text{CH}_2\text{OR}^5$

R^4 et R^5 étant, de façon indépendante, un groupe alcoyle en chaîne longue ou à chaîne ramifiée comportant 12 atomes de carbone ou moins; A' étant

4. Composé de cristal liquide incolore selon la revendication 1, répondant à la formule:

$R^5\text{OCH}_2-A'^-\text{COO}-B'^-R^4$

R^4 et R^5 étant, de façon indépendante, un groupe alcoyle, en chaîne longue ou à chaîne ramifiée comportant 12 atomes de carbone ou moins; A'^- étant

5. Composé de cristal liquide incolore selon la revendication 1, répondant à la formule:

$R^4\times \text{COO} - (\text{C}_2\text{H}_2)_p - \text{OR}^5$

R^4 et R^5 étant, de façon indépendante, un groupe alcoyle en chaîne longue ou à chaîne ramifiée, comportant 12 atomes de carbone ou moins et p étant un nombre entier compris entre 1 et 6.
FIG. 5

FIG. 6
0 058 981

FIG. 17

Wave Number (cm⁻¹)