Rubbery Polymer compositions with improved adhesion.

Priority: 25.11.80 GB 8037803

Date of publication of application: 02.06.82 Bulletin 82/22

Publication of the grant of the patent: 25.07.84 Bulletin 84/30

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
FR - A - 2 096 741
GB - A - 1 074 591
US - A - 3 366 612
US - A - 3 850 872

Proprietor: Exxon Research and Engineering Company
P.O.Box 390 180 Park Avenue
Florham Park New Jersey 07932 (US)

Inventor: Shinada, Yasukazu
Sakuradai Village 3E-401 Sakuradai-25
Midori-Ku Yokohama (JP)
Inventor: Nerinckx, Daniel Eugene
48 Avenue des Platanes
B-1381 Tubize (BE)

Representative: Dew, Melvyn John et al.,
Esso Chemical Ltd. Esso Chemical Research Centre P.O. Box 1
Abingdon Oxfordshire, OX13 6BB (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
The present invention relates to a process for producing rubbery polymer compositions, particularly but not exclusively those based on butyl polymers, which have improved adhesion to mineral substrates such as glass and metals. In particular the invention relates to product compositions which may be used as sealants in double glazing.

Currently sulphonated rubbers are generally supplied as solutions which need drying and furthermore they tend to be decomposed by moisture which can come from condensation. Thus it is desirable to provide an adhesive or sealant composition that can be applied by extrusion and which has improved resistance to moisture.

It is well known that it is difficult to achieve good adhesion between mineral substrates such as glass and metals, and rubber polymers such as butyl polymers including halobutyl polymers such as chlorobutyl rubber and bromobutyl rubber. Some commercial adhesives are available for bonding butyl polymers to substrates, but these have been found to be unsuitable for certain applications. For example, United States Patent 3,366,612 relates to the rendering of halogen-containing polymers such as chlorinated butyl rubber adhesive to substrates such as glass or metal by reacting them with a silane. It has been found that although this method improved the adhesion, it does not result in adequate adhesion for certain applications.

According to United States Patents 4073776 and 4073826, the reaction products of novolac resins with various epoxides are used as tackifiers for elastomers such as chlorobutyl, however there is no suggestion also to use silanes in such compositions.

It has been proposed to use combinations of amino silanes with epoxy compounds as adhesion promoters in a variety of systems. For example United States Patent 3,850,872 relates to the use of epoxy compounds and resins, along with amino silanes, to improve glass fibre-elastomer adhesion. In particular in this patent document the elastomer is blended with an oily epoxy compound and then compounded with silane treated glass fibres.

The previously proposed techniques for improving the adhesion between rubbers and mineral substrates have proved unsatisfactory where it is particularly important that the bond be water resistant such as with butyl sealants for double glazing.

We have now found that significantly improved adhesion may be achieved if a rubbery polymer such as a halobutyl rubber is subjected to a stepwise reaction sequence in which it is first reacted with a silane, the silane containing rubber is subsequently mixed with an epoxy resin, and this product then reacted with further silane.

Accordingly the present invention provides a process for producing a composition having improved adhesion to mineral substrates characterised in that it comprises in a first stage reacting at elevated temperature a rubber polymer comprising a halobutyl rubber, ethylene propylene rubber (EPR), ethylene propylene diene monomer rubber (EPDM) or ethylene vinyl acetate copolymer (EVA) with a reactive silane having a first group attached directly or indirectly to the silicon atom which is reactable with the rubbery polymer, and at least one other group attached directly or indirectly to the silicon atom which is hydrolysable and which, on hydrolysis in contact with the surface of a mineral substrate such as glass, concrete or metal will give a strong bond thereto, the amount of reactive silane used corresponding to from 50 to 100% of that stoichiometrically required to combine with the rubbery polymer; in a second stage mixing the product of the first stage with an epoxy resin as wetting agent; and in a third stage reacting the epoxy containing product of the second stage with a further amount of a reactive silane (as hereinabove defined) to form the desired composition.

The scope of the invention, it will be appreciated, also extends to the compositions produced by the defined process, and to their use as a mastic or a component of a mastic. Moreover the invention includes glazing systems which incorporate such compositions or mastics as sealants.

The reactive silane used in the first reaction stage is preferably the same as that used in the third stage, although they may be different if required. The silane may be for example a mercapto-, epoxy- or vinyl-silane in which the specified functional groups react with the rubbery polymer, in the presence of free radical initiator if necessary.

However it is particularly preferred that the reactive silane used is an amino silane such as the commercially available product Z—6020, N-beta-(aminomethyl) gamma-amino propyl trimethoxy silane.

The amount of reactive silane used in the first stage of the process is from 50 to 100%, preferably from 60 to 75% of that stoichiometrically required to combine with the rubbery polymer. For example some two thirds of the stoichiometric amount may be used in order to avoid the reticulation which could take place under certain conditions if the stoichiometric amount or more is employed.

The rubbery polymer used in accordance with the invention may be EPR, EPDM or an EVA copolymer. However the process has been found to be particularly useful when the rubbery polymer is a halobutyl rubber such as chlorobutyl rubber. Bromobutyl rubbers may also be employed, but they generally tend to be too reactive for convenience.

In the case where the reactive silane is an amino silane and the rubbery polymer is chlorobutyl rubber, the first stage reaction between the amino groupings and the alkyl chloride of the chlorinated rubbers
butyl is believed to proceed by N-alkylation or the formation of a quaternary ammonium salt, as set out in the following reaction schemes:

\[
P-\text{Cl} + H_2N-R-Si-(R')_3 \longrightarrow P-N-R-Si-(R')_3 + HCl
\]

or

\[
P-\text{Cl} + HN-R-Si-(R')_3 \longrightarrow P-N-R-Si-(R')_3 + HCl
\]

In the above, P represents a polymer; R represents a divalent radical such as an alkylene group e.g. propylene; \(R'' \) and \(R''' \), which may be the same or different, represents a monovalent radical such as an alkyl group e.g. methyl or ethyl; and the silicon substituents \(R' \) may independently be hydrogen or a hydrolyzable radical with the proviso that at least one \(R' \) must be hydrolyzable. By way of example the hydrolyzable radical may be acetoxy, halogen, or alkoxy having from 1 to 20, preferably 1 to 10 and most preferably 1 to 3 carbon atoms. Amino trialkoxy silanes of the formula

\[
NH_2(CH_3)_n Si(OR')_3
\]

where \(R' \) is alkyl and \(n \) is a number from 1 to 8 have been found to be particularly useful as reactive silanes in the process of the invention, especially when the rubbery polymer is chlorobutyl rubber.

A particularly preferred embodiment of the invention therefore provides a process for producing a composition having improved adhesion to mineral substrates characterised in that in a first stage a chlorobutyl rubber is mixed with an aminosilane having at least one hydrolyzable radical attached to the silicon atom, the amount of aminosilane used being from 50 to 100% of that stoichiometrically required to combine with the chlorobutyl rubber; in a second stage the product of the first stage is mixed with an epoxy resin; and in a third stage epoxy containing product of the second stage is mixed with a further amount of an aminosilane having at least one hydrolyzable radical attached to the silicon atom, to form the desired composition.

Generally with respect to the silane, the primary amine is preferred. Also, as stated previously, at least one of the groups on the silane atom should be readily hydrolyzable, but it is preferred that three of these be hydrolyzable. The amounts of functional silane to be used will vary to some extent depending on the degree of hydrolyzable silane functionality required to produce a vulcanized network.

The reactive silane e.g. amino silane is reacted with the rubbery polymer e.g. chlorobutyl rubber during the normal compounding conditions for the rubber; for example reaction may be achieved by incorporating the silane into the compounding, at elevated temperatures of from 135 to 150°C, say at 140°C for about half an hour.

Any epoxy resin may be used in the second stage of the process. It is preferred however to use epoxy compounds derived from biphenols and epichlorohydrin, those sold under the Registered Trade Mark "Epikote", e.g. Epikote 1007, being particularly preferred. The epoxy resin may conveniently be mixed with the silane treated rubber with heating, again preferably at temperatures in the range 135 to 150°C.

The epoxy resin serves as a wetting agent with regard to the rubbery polymer, and so to an extent the amount incorporated is arbitrary. However it has been found that added amounts of 10 to 50 wt%, particularly 25 wt%, based on the weight of rubbery polymer are effective.

The second charge of silane may then be reacted with the epoxy treated material in the third process stage, if required under similar conditions to those used for the first process stage. The amount of silane used is preferably at least that stoichiometrically required to combine with the epoxy groups present. The use of an excess amount of silane is even preferred since this will enhance the formation of chemical bonding between the rubber and the substrate.

We have found that the compositions produced according to the present invention have significantly improved adhesion to mineral substrates, particularly when the modified rubber is chlorobutyl rubber, compared with unmodified butyl rubbers. On contact between the substrate and the composition, the alkoxy groups or other hydrolyzable groups present in the silane attached to the
polymer chains will be hydrolyzed by traces of water on the mineral substrate surface to give a strong bond thereto. Frequently in the use of such compositions there will be sufficient water present to give a strong bond but if necessary the surface may be deliberately wetted. It is believed that through the effect of moisture the alkoxysilane or other hydrolyzable groups form silanols which can react both among themselves (thus crosslinking the rubbery polymer and the epoxy resin) and with e.g. OH groups on the glass surfaces. The adhesion can be developed under normal atmospheric conditions or at elevated temperatures or by immersing the surfaces to be bonded in hot water. The compositions are particularly useful in bonding glass, especially as sealants for double glazing. It is believed that the presence of the epoxy resin improves the extent to which the glass is wetted by the rubber, and that the process technique gives improved internal bonding and adhesion. It has also been found that the compositions such as are exemplified hereinafter undergo crosslinking with time at room temperature. Thus once applied the composition will provide increasingly cohesive strength.

The compositions, especially modified chlorobutyl rubbers produced by the process of the present invention are particularly useful as sealants for double glazing between the glass and the metal, generally aluminium, spacer. The compositions will generally be used as a component in a hot flow mastic which may contain other conventional components such as polyisobutylene and petroleum resin tackifiers; fillers such as carbon black and whiting; and other additives such as stabilisers, antioxidants and pigments. Thus in one embodiment the process of the invention includes incorporating a filler or other conventional additive at any stage. By way of example the final composition may have the overall ingredients, based on the composition or as whole, of 7.5—12.5% rubbery polymer; 2—5% epoxy resin; 0.5—1.5% silane; 15—20% polyisobutylene; 10—15% carbon black; 25—30% whiting; 25—30% plasticiser/tackifier. The handling and service properties (temperature and viscosities) of such compositions may be adjusted by controlling the ratio of rubbery polymer and additive e.g. polyisobutylene, or by controlling the molecular weight of the polyisobutylene.

The mastic may then be extruded at elevated temperatures between the surfaces to be adhered. The temperatures vary, depending on the viscosity of the mastic composition and may be in the range 150—180°C. Alternatively the composition may be in the form of a tape.

The following Examples illustrate, but in no way limit, the invention.

Example 1

A rubber composition in the form of a mastic was prepared by mixing the components in the manner described below, the composition having the ingredients in the proportions (parts by weight) indicated in Table 1 in which:

Chlorobutyl 1068 is a chlorobutyl rubber; Vistanex MML-140 is a polyisobutylene of molecular weight 1900 000—2350 000; Vistanex LM-MS is a polyisobutylene (molecular weight about 55000); silane Z-6020 is commercially available N-beta-(aminooctyl) gamma-aminopropyl trimethoxy silane; Epikote 1007 is a solid bisphenol A-epichlorohydrin epoxide resin; Omya BL is a whiting; Escorez 1304 is a petroleum resin tackifier; and PEP is a carbon black. At least some of these trade names, particularly Vistanex, Epikote and Escorez, are registered trade marks.

Thus 40 parts of chlorobutyl rubber and 20 parts of carbon black were mixed in a Banbury internal mixer at 140°C to make a masterbatch. Half of this masterbatch was placed in a kneader mixer at 110°C with 30 parts polyisobutylene and 15 parts carbon black and after 15 minutes mixing the remainder of the masterbatch, the remainder of the polyisobutylene and the remainder of the carbon black were added. After a further 15 minutes mixing 33.33 parts tackifier and 50 parts whiting were added and mixing was continued for another 15 minute period. Thereafter the remainder of the tackifier and whiting was added and the temperature was increased with mixing over 30 minutes to 135—140°C. At this point 2 parts of silane were added and reacted with the chlorobutyl for 30 minutes with mixing. Subsequently the epoxy resin was added and mixed for 15 minutes at 145—150°C, and thereafter the remaining 1.5 parts of silane were added and reacted with the epoxy for 30 minutes prior to dumping the composition from the kneader.

The mastic composition was tested using a sandwich technique. Thus two aluminium spacers (wrapped with release paper) were sandwiched between two glass plates which had been cleaned and dried with acetone, and the cavity was filled to a contact area of 25 × 50 × 7.5 mm with the mastic delivered from a hot gun having a body temperature of about 180°C. The set was then tested by pulling at 5 cm/min in shear: the Mooney viscosity was also measured. These measurements, which were made on the fresh composition and on composition which had been aged for one year, are given in Table 2. Adhesion values marked* were interfacial values; the other values reflect cohesive failure.

Examples 2 and 3, and Comparison Example 4

Example 1 was substantially repeated but using ingredients such that the overall compositions produced had the formulation shown in Table 1.

Example 1 was substantially repeated but using ingredients such that the overall compositions produced had the formulation shown in Table 1.
TABLE 1

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorobutyl 1068</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Vistanex LM–MS</td>
<td>60</td>
<td>70</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Vistanex MML–140</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>FEF</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Omya BL</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Escorol 1204</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Silane Z–6020</td>
<td>2+1.5</td>
<td>1.5+1.5</td>
<td>2+1.5</td>
<td>2</td>
</tr>
<tr>
<td>Epikote 1007</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Example</th>
<th>1 Unaged</th>
<th>1 Aged</th>
<th>2 Unaged</th>
<th>3 Unaged</th>
<th>4 Unaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>34</td>
<td>41</td>
<td>26</td>
<td>32*</td>
<td>24</td>
</tr>
<tr>
<td>65°C</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80°C</td>
<td></td>
<td>2.2*</td>
<td>1.0</td>
<td>2.3*</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Mooney Viscosity ML (1+14)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>50°C</th>
<th>70°C</th>
<th>90°C</th>
<th>110°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69</td>
<td>34</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>18</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>19</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>32</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>21</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

As may be concluded from the above results, the presence of the epoxy resin in the formulation improves the adhesion and has a low effect on cohesion. Moreover the viscosity and cohesion of the mastic composition decrease as the ratio of chlorobutyl to polyisobutylene is decreased (a decrease in hot viscosity being a means of improving the contact surface and hence adhesion). Furthermore it may be deduced that increasing the molecular weight of the polyisobutylene which is admixed with the composition produced according to the invention leads to an increase in the hot cohesion.

Claims

1. A process for producing a composition having improved adhesion to mineral substrates characterised in that it comprises in a first stage reacting at elevated temperature a rubbery polymer comprising a halobutyl rubber, ethylene propylene rubber (EPR), ethylene propylene diene monomer rubber (EDPM) or ethylene vinyl acetate copolymer (EVA) with a reactive silane having a first group attached directly or indirectly to the silicon atom which is reactable with the rubbery polymer, and at least one other group attached directly or indirectly to the silicon atom which is hydrolysable and which, on hydrolysis in contact with the surface of a mineral substrate such as glass, concrete or metal.
will give a strong bond thereto, the amount of reactive silane used corresponding to from 50 to 100% of that stoichiometrically required to combine with the rubbery polymer; in a second stage mixing the product of the first stage with an epoxy resin as wetting agent; and in a third stage reacting the epoxy containing product of the second stage with a further amount of a reactive silane (as hereinabove defined) to form the desired composition.

2. A process according to claim 1 characterised in that the halobutyl rubber is a chlorobutyl rubber.

3. A process according to claim 1 or 2 characterised in that the reactive silane used in the first stage is the same as that used in the third stage.

4. A process according to claim 1, 2 or 3 characterised in that the reactive silane is an aminosilane.

5. A process according to claim 1, 2 or 3 characterised in that the reactive silane is a mercaptot- epoxy- or vinyl silane.

6. A process according to any of the preceding claims characterised in that the amount of reactive silane used in the first stage corresponds to from 60—75%; of that stoichiometrically required to combine with the rubbery polymer.

7. A process according to any of the preceding claims characterised in that in the third stage an amount of reactive silane is used corresponding to at least that stoichiometrically required to combine with the epoxy groups present.

8. A process according to any of the preceding claims characterised in that a filler or other additive is incorporated at any stage.

9. A process for producing a composition having improved adhesion to mineral substrates characterised in that in a first stage a chlorobutyl rubber is mixed with an aminosilane having at least one hydrolyzable radical attached to the silicon atom, the amount of aminosilane used being from 50 to 100% of that stoichiometrically required to combine with the chlorobutyl rubber; in a second stage the product of the first stage is mixed with an epoxy resin; and in a third stage the epoxy containing product of the second stage is mixed with a further amount of an aminosilane having at least one hydrolyzable radical attached to the silicon atom, to form the desired composition.

10. The use of a composition produced in accordance with the process of any of claims 1 to 9 as a mastic or as a component of a mastic.

11. A glazing system which includes, as seelant, a composition produced in accordance with the process of any of claims 1 to 9.

Revendications

1. Procédé de production d’une composition douée d’une très bonne adhésion à des substrats minéraux, caractérisé en ce qu’il consiste à faire réagir dans une première étape, à température élevée, un polymère ressemblant au caoutchouc comprenant un halogénochimique ou caoutchouc, un caoutchouc éthylène-éthylène-propylène (EPR), un caoutchouc éthylène-propylène-monomère diénique (EPDM) ou un copolymère éthylène-acétate de vinyle (EVA) avec un silane réactif portant un premier groupe attaché directement ou indirectement à l’atome de silicium qui est apte à réagir avec le polymère ressemblant au caoutchouc, et au moins un autre groupe attaché directement ou indirectement à l’atome de silicium qui est hydrolysable et qui, par hydrolyse au contact de la surface d’un substrat minéral tel que le verre, le béton ou un métal, crée une liaison résistante à ce substrat, la quantité de silane réactif utilisé correspondant à 50—100% de la quantité stoichiométriquement nécessaire à la combinaison avec le polymère ressemblant au caoutchouc; à mélanger dans une deuxième étape le produit de la première étape avec une résine époxy utilisée comme agent mouillant, et à faire réagir dans une troisième étape le produit contenant la résine époxy de la deuxième étape avec une quantité additionnelle d’un silane réactif (tel que défini ci-dessus) pour former la composition désirée.

2. Procédé suivant la revendication 1, caractérisé en ce que l’halogénochimique ou caoutchouc est un chlorobutyl caoutchouc.

3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le silane réactif utilisé dans la première étape est le même que celui qui est utilisé dans la troisième.

4. Procédé suivant la revendication 1, 2 ou 3, caractérisé en ce que le silane réactif est un aminosilane.

5. Procédé suivant la revendication 1, 2 ou 3, caractérisé en ce que le silane réactif est un mercaptosilane, un époxysilane ou un vinylsilane.

6. Procédé suivant l’une quelconque des revendications précédentes, caractérisé en ce que la quantité de silane réactif utilisé dans la première étape correspond à 60—75% de la quantité stoichoïmétriquement nécessaire à la combinaison avec le polymère ressemblant au caoutchouc.

7. Procédé suivant l’une quelconque des revendications précédentes, caractérisé en ce qu’on utilise dans la troisième étape une quantité de silane réactif correspondant au moins à la quantité stoichoïmétriquement nécessaire à la combinaison avec les groupes époxy présents.

8. Procédé suivant l’une quelconque des revendications précédentes, caractérisé en ce qu’une charge ou un autre additif est incorporé à un stade quelconque.
9. Procédé de production d’une composition douée d’une très bonne adhérence à des substrats minéraux, caractérisé en ce qu’on mélange un chlorobutyllakautschouc dans une première étape avec un aminosilane portant au moins un radical hydrolysable lié à l’atome de silicium, la quantité d’aminosilane utilisée allant de 50 à 100% de la quantité stoechiométriquement nécessaire à la combinaison avec le chlorobutyllakautschouc; le produit de la première étape est mélange dans une deuxième étape avec une résine époxy; et le produit contenant la résine époxy de la deuxième étape est mélange dans une troisième étape avec une quantité additionnelle d’un aminosilane ayant au moins un radical hydrolysable attaché à l’atome de silicium, pour former la composition désirée.

10. Utilisation d’une composition produite conformément au procédé suivant l’une quelconque des revendications 1 à 9 comme mastic ou comme composant d’un mastic.

11. Système de vitrage qui comprend comme matière d’étanchéité une composition produite conformément au procédé suivant l’une quelconque des revendications 1 à 9.

Patentansprüche

1. Verfahren zur Herstellung einer Zusammensetzung mit verbesserter Haftung auf mineralischen Substraten, dadurch gekennzeichnet, daß in einer ersten Stufe bei erhöhter Temperatur ein kautschukartiges Polymer, das einen Halobutyllakautschuk, einen Ethylen-Propylen-Kautschuk (EPR), einen Ethylen-Propylen-Dienmonomer-Kautschuk (EPDM) oder ein Ethylen-Vinylacetat-Copolymer (EVA) umfaßt, mit einem reaktiven Silan umgesetzt wird, das eine erste, direkt oder indirekt an das Siliciumatom gebundene Gruppe, die mit dem kautschukartigen Polymer reaktionsfähig ist, und mindestens eine weitere, direkt oder indirekt an das Siliciumatom gebundene Gruppe besitzt, die hydrolisierbar ist und bei der Hydrolyse beim Kontakt mit der Oberfläche eines mineralischen Substrats wie Glas, Beton oder Metall eine starke Bindung zu diesem ergibt, wobei die verwendete Menge an reaktivem Silan 50 bis 100% der stöchiometrisch zur Kombination mit dem kautschukartigen Polymer erforderlichen Menge entspricht; in einer zweiten Stufe das Produkt der ersten Stufe mit einem Epoxypharz als Benetzungsmedium gemischt wird; und in einer dritten Stufe das das Epoxypharz enthaltende Produkt der zweiten Stufe mit einer weiteren Menge eines reaktiven Silans (gemäß obiger Definition) zur Bildung der gewünschten Zusammensetzung umgesetzt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Halobutyllakautschuk ein Chlorbutyllakautschuk ist.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das in der ersten Stufe verwendete reaktive Silan dasselbe Silan wie das in der dritten Stufe verwendete Silan ist.

4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das reaktive Silan ein Aminosilan ist.

5. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das reaktive Silan ein Mercapto-, Epoxy- oder Vinylsilan ist.

6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die in der ersten Stufe verwendete Menge des reaktiven Silans 60 bis 75% der stöchiometrisch zur Kombination mit dem kautschukartigen Polymer erforderlichen Menge entspricht.

7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in der dritten Stufe eine Menge des reaktiven Silans verwendet wird, die mindestens derjenigen entspricht, die stöchiometrisch zur Kombination mit den vorhandenen Epoxygruppen erforderlich ist.

8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in einer beliebigen Stufe ein Füllstoff oder ein anderes Additiv zugesetzt wird.

9. Verfahren zur Herstellung einer Zusammensetzung mit verbesserter Haftung auf mineralischen Substraten, dadurch gekennzeichnet, daß in einer ersten Stufe ein Chlorbutyllakautschuk mit einem Aminosilan gemischt wird, das mindestens einen hydrolysierbaren, an das Siliciumatom gebundenen Rest besitzt, wobei die verwendete Menge an Aminosilan 50 bis 100% der stöchiometrisch zur Kombination mit dem Chlorbutyllakautschuk erforderlichen Menge entspricht; in einer zweiten Stufe das Produkt der ersten Stufe mit einem Epoxypharz gemischt wird; und in einer dritten Stufe daß das Epoxypharz enthaltende Produkte der zweiten Stufe mit einer weiteren Menge eines Aminosilans zur Bildung der gewünschten Zusammensetzung gemischt wird, wobei das Aminosilan mindestens einen hydrolysierbaren, an das Siliciumatom gebundenen Rest besitzt.

11. Verglasungssystem, das als Dichtungsmittel eine nach dem Verfahren gemäß einem der Ansprüche 1 bis 9 hergestellte Zusammensetzung aufweist.