Method for steering a steerable vehicle along a guide line marking.

Priority: 02.10.80 SE 8006905

Date of publication of application: 14.04.82 Bulletin 82/15

Publication of the grant of the patent: 13.08.86 Bulletin 86/33

Designated Contracting States: BE CH DE FR GB IT LI

References cited:
EP-A-0 001 505
DE-A-1 808 442
DE-A-2 609 532
DE-A-2 752 167
US-A-3 172 496
US-A-3 638 751
US-A-3 715 572

Proprietor: AB VOLVO
Torslanda
S-405 06 Göteborg (SE)

Inventor: Ahlbom, Sten Hugo Nils
Gamla vägen 4-6
S-421 77 Västra Frölunda (SE)

Representative: Gremberg, Erik Bertil et al
ALBIHNS PATENTBYRA AB Box 7664
S-103 94 Stockholm (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

The invention relates to a method for steering a steerable vehicle along a guide line marking, of the kind recited in the preamble of the claim.

From EP—A—1505, there is known a method of this kind, where a ground vehicle senses a guide line marking in the ground whereon the vehicle rolls. As stated in said publication, the use of floor-imbedded guide wires for guiding vehicles is widespread. It has been recognized that the mere sensing at one point in the vehicle of the deviation from the marked line will be insufficient for stable tracking at least at increased speeds, and said publication, it is therefore proposed to measure not only the sideview deviation but also the heading, obtaining two variables for the steering. A particular sensing system is therefore proposed that will sense the electromagnetic field from a guide wire in such a way that a heading signal is obtained which depends but little on side deviation. According to one embodiment shown, two side deviation sensing devices are arranged fore and aft respectively in relation to the length axis of the vehicle. The said two measurements are used to set a steered wheel.

The present invention also envisages the steering of a steerable vehicle along a guide line marking, which may be an electric wire imbedded in the ground or a line to be sensed by optical means. According to the invention, the steering problem is seen as similar to that of steering a car where the driver can only observe his whereabouts by observing the guide line through a slit made in the floor of the vehicle perpendicular to the orientation of the vehicle and so narrow that the direction of the line cannot be instantaneously determined. Thus, a single observation will not be sufficient for knowing how the steering-wheel should be set.

According to the invention, this problem is solved, using the concept of measuring two successive lateral deviations as recited in the preamble of the claim, by adding the steps recited in the characterizing clause of the claim.

It is noted that having thus at hand three successive lateral deviations, it is possible to calculate two successive attitude deviations, and thereby a time derivative of the attitude, plus a time derivative for the lateral deviation. The side deviation, the attitude angle and their respective derivatives are used for making a weighted sum for determining a suitable setting of a steered wheel of the vehicle. The weighting factor is also given different values for the attitude, depending on whether the vehicle is currently moving toward or away from the guide line marking.

The invention may be used for steering a vehicle along a continuous guide line marking, but it may also be used alternately with steering along a track programmed into the vehicle itself, as described in our Swedish Patent 7900933-2.

According to the invention, it is suitable to arrange the linear detector on the longitudinal centerline of the vehicle, i.e. on the line of symmetry and perpendicular thereto. Technical conditions such as steering geometry, control functions, response times of the steering arrangement and space considerations will determine where the linear detector should be placed to produce stable steering with good precision at the speeds to be used. The same linear detector can suitably be used to steer the vehicle both forwards and backwards.

Fig. 1 shows schematically how the intended steering principle can be embodied. A line L is marked on a floor on which the vehicle is to be driven. The vehicle is provided with a linear detector, schematically represented as D, which is rigidly mounted in the vehicle perpendicular to its forward direction of movement. The center point or index point I of the linear detector describes, as the vehicle moves, a curve, the projection of which on the floor forms the curve T. At a first position shown, the detector finds that the marking L is at a distance \(\Delta X_1 \) from the index point I. The vehicle rolls further, and the rolled-off distance is measured, e.g. by a measuring wheel rolling against the floor, and after the distance \(s_1 \), a new measurement is made, with the result that the lateral error has now been changed to \(\Delta X_2 \), this time with an opposite sign. After rolling off the distance \(s_2 \), a new measurement is made with the result \(\Delta X_3 \), also with an opposite sign to the first measurement.

From the first two measurements it is possible to determine the attitude of the vehicle (relative to the orientation of the marking) as an average, by the expression

\[
\frac{\Delta X_2 - \Delta X_1}{s_1} = \varphi_1
\]

(1)

The last two measurements provide a new value for the attitude of the vehicle, which is different if the vehicle moves on a curved path:

\[
\frac{\Delta X_3 - \Delta X_2}{s_2} = \varphi_2
\]

For greater accuracy, it is possible to use instead of equation (1) the expression:

\[
\frac{\Delta X_2 - \Delta X_1}{s_1} = \varphi_1 = \sin^{-1} \left(\frac{\Delta X_2 - \Delta X_1}{s_1} \right)
\]

(c)

The steerable wheels of the vehicle should now be activated so that \(\varphi \) and \(\Delta X_1 \) approach zero. If sufficiently frequent measurements are made, one can make the assumption that the index point I, which is here identical with the midpoint of the linear detector, follows a circular arc, and that the radius of curvature of the vehicle is virtually constant between three measurements. It is possible to set up a steering equation to compute a setting for a steered wheel for returning the vehicle to follow the path L. It is assumed that at a
certain moment the vehicle is found to have the attitude \(\phi_2 \), that the preceding attitude was \(\phi_1 \), and that the prevailing lateral deviation is \(\Delta x_2 \). A suitable steering setting \(\delta \) can then be computed from the following equation:

\[
\delta = e \phi_2 + \frac{a \Delta x_2 + b \Delta x_2 - d \Delta x_2}{\Delta t_2} + c \phi_2 \\
\]

\(e = e_0 \) if \(\Delta x_2 \) and \(\phi_2 \) have the same sign
\(e = 0 \) otherwise

Where \(\Delta t_2 \) is the time for covering the distance \(s_2 \) in Fig. 1, and \(a, b, c, d \) and \(e_0 \) are constants. The time-dependent factors provide stable movement at higher speeds, where inertial forces must be taken in account.

By allowing the value of \(e \) to be non-zero only when \(\phi_2 \) and \(\Delta x_2 \) have the same sign, \(\phi_2 \) is given added weight over \(\Delta x_2 \) in that case, which makes the curve-following more stable. The reason for this is that in this case, swinging-in towards the line will initially involve an increase in \(\delta \), which must be given less weight to provide optimum swinging-in. Without such compensation, the swinging-in process would be slow.

A corresponding compensation can occur if \(\Delta x \) is relatively large and \(\phi \) is small but has an opposite sign. This is due to the fact that, with suitable normalization of \(\phi \) and \(\Delta x \), \(a \) should be given a larger weighting factor than \(c \) in equation (2). For the case where \(\Delta x \) is relatively significant and \(\phi \) is small, the swinging-in will start with an initially increasing \(\phi \).

The linear detector used can be an optical detector, and in this case what is intended is a unit consisting of a row of photodiodes, onto which a slot-shaped surface on the floor is projected by means of optical instrument components such as lenses and mirrors. Thus the light-sensitive photodiodes each read an individual portion of the slot-shaped detection area, and it is preferable to use a commercially available diode arrangement where the response signal of the diodes can be read in series, thus facilitating computerized reading. Such a system of optical lines makes the construction of a path very simple.

If one wishes to use electromagnetic markings instead, this is also possible. A conductor is arranged in the floor in a known manner, and emits electromagnetic signals by alternating current being fed through it. The linear detector can then consist of two receiving coils (antenna) placed on either side of the longitudinal centreline of the vehicle. When the two coils receive equally strong signals, \(\Delta x \) is zero, while \(\Delta x \) differs more or less from zero if one coil senses the signals more strongly than the other. This also provides a quantitative measure of \(\Delta x \), albeit as a rule with somewhat poorer precision than that which is possible with optical sensing of a painted line. It is also possible to work analogously with passive electromagnetic markings such as permanent-magnetic elements, magnetic tape etc. if the positions thereof are designed to be measured more or less quantitatively along a linear detector suited thereto.

The invention will now be described with reference to a non-limiting embodiment shown in the figures.

Fig. 1, which has already been referred to, shows in principle a marking and a vehicle path.

Fig. 2 shows an electronic diagram for a linear detector with recognition circuits.

Fig. 3 shows a steerable truck.

Fig. 2 shows schematically an example of a device for recognizing the position on the floor of a line pattern. A video camera 1 is directed towards the floor, which displays the linear pattern \(P \) transverse to the camera. The video camera 1 is suitably a single-row photodiode matrix, e.g. manufactured by Reticon, and divides a line image into 256 elements. A video signal is emitted, consisting of an analog signal for each element. The video signals are conducted to a threshold detector 2, which emits binary signals; i.e. 256 bits are emitted, which are 0 or 1 depending on if the intensity is sufficient to indicate the presence of the marking in the photo-element. 3 represents a video signal prior to digitalization, with the threshold value T drawn in, and 4 shows the resulting binary video signal.

This signal, designated BV, is read in via a gate system into a binary shift register 5 with 256 bits. An ideal pattern, corresponding to the expected configuration (here two lines of different width) is read into a pattern memory 7. To determine lateral deviation, a correlation operation is now carried out.

If the pattern of the video signal is ‘centered’ in the camera, shift register 5 and shift register 7 should in principle contain identical bit series. Through a special comparison which will be described, a lateral deviation can be determined.

As can be seen from Fig. 2, there are two different clock signals, namely the signal CL coming from the camera 1 and synchronized with the video signal, and a fast clock signal FCL which is used for transferring and coordinating purposes. For reading the video signal BV into the shift register 5, the signal CL is used, which is introduced via the switch 9, and under the control of a shift-pulse counter 11, which shuts off when all of the 256 bits have been read in, and under the control of a control signal \(R \).

For comparison, the fast clock signal FCL is led under the control of the shift-pulse counter 11 to the clock input on the shift register 5 and under the control of the shift-pulse counter 10 to the clock input on the shift register 6. The signals coming from the shift registers each go to an individual input of a comparator 8, and are also recirculated under the control of a recirculating signal RC, so as to circulate the respective shift registers. For each bit pair, the comparator sends a signal upon agreement, and the agreement signals are counted in a counter 12, which is provided with parallel outputs coupled to a...
comparator 14, which is also coupled to a memory 13.

Due to the fact that the shift-pulse counter 10 has the division factor (256+1), it will send an out-signal one pulse later, so that the shift register 6 will be shifted one pulse for each circulation. This pulse number 257 continues to a pulse counter 15 which counts the number of separate comparisons, and after 258 cycles sends a stop signal.

For each loop, the number of agreements signalled from the comparator 8 is counted, and if the number of agreements exceeds the number stored in the memory 13, the circuit 14 will bring the higher number to the memory 13. At the same time the number in the counter 15 is taken into the memory 16. When the pulse counter 15 is full, when 256 comparisons have been made, there will be a number in the memory 16 which corresponds to the displacement between the shift registers 5 and 6 which produces the best agreement. It is then known how the pattern P lies in relation to the scanning field of the camera 1, at the same time as a ready-signal N is emitted from the pulse counter 15.

It is obvious that the control signals must be taken from a separate control unit which determines the operational sequence by sending signals R and LP at the beginning of each sampling sequence and then requesting a comparison by the signal RC. The sampling result can then be taken from the memory 16 as a measure of the lateral error; for example so that the number 128 designates that the camera/vehicle is directly over the marking (the position of the index point), a lower number indicating a lateral deviation to the left and a higher number a lateral deviation to the right of the index point.

Although this description of the sequence is quite schematic, it will enable the electronics engineer familiar with microcircuits to construct with standard components a suitable apparatus. After having described the principle method for recognition of markings, a few words should be said concerning redundancy methods. It is obvious that the pattern may be misread at some time, sometimes because something else is mistaken for the pattern. One should note, however, that in the circulation according to Fig. 2, after comparison between the pattern in the memory 7 and the image in the memory 5, a number will be stored in the counter 13, which will be a sort of quality factor number. It is then possible to reject or accept measurements depending on whether this quality factor number exceeds a certain threshold value. In a compensation method based on the least-squares method, it is also possible to use the quality factor numbers as weighting numbers.

Instead of using successively incoming measured values, it is also possible to use sliding averages, both for determining the lateral deviation of the vehicle and its attitude. A person skilled in statistical methods will be able to use such principles to formulate suitable computer programs without difficulty, when he has knowledge of the principle of the invention. The principle chosen depends largely on the computer capacity which one wishes to incorporate into the apparatus. Significant savings can be achieved in this respect by taking sliding averages.

Fig. 3 shows a steerable wheeled vehicle in the form of a fork-lift truck which runs on wheels 30, 31 and 33, of which wheel 33 is steerable by means of arrangements 34 and 35. The linear detector 1 according to the invention is mounted so that it senses the path marking L. Sensors 32 are placed at the unsteered wheels, to sense the rotation of the respective wheels. The sensors are magnetic and sense the passage of teeth on toothed rims on the wheels, whereby the distance travelled can be determined. The steering according to the invention is effected by setting a steering angle, computed according to equation (2), for the wheel 33 by means of the arrangements 34 and 35.

When, as in the example shown, the rolled-off measurement is arranged on two different wheels, it is suitable to take, as a measure of the distance between two positions of the vehicle, an average between the measured distances from the wheels 30 and 31.

Claim

A method for steering a steerable vehicle along a guide line marking (L), there being arranged in the vehicle a linear detector (1) rigidly mounted in the vehicle essentially perpendicular to the principal direction of movement of the vehicle, and whereby the detector is made to sense the guide line marking for determining the deviation of the marking from an index point in the linear detector, constituting a lateral deviation Δx, two such determinations Δx₁ and Δx₂, being made at successive different positions along the path, whereby a distance s₁ is measured between the different positions, and the attitude angle φ₁ between the marking and the vehicle is calculated from the difference Δx₂−Δx₁, divided by the travelled distance s₁, and said steering is performed by counteracting said lateral deviation and attitude angle, characterized in that a third determination Δx₃ of the lateral deviation is made at a measured distance s₂ further travelled that a new attitude angle φ₂ is calculated using Δx₃−Δx₂ and s₂, and that said values φ₁, φ₂, Δx₁, Δx₂ and a value Δt₂ for the time passed in traversing distance s₂ are entered as values in a steering equation

\[δ = aφ₂ + b + cΔx₁ + dΔx₂ + \epsilonφ₂\]

where a, b, c, and d are constants and e is a constant e when Δx₁ and φ₁ have the same sign and is otherwise zero, and the calculated value δ
is a steering angle used for setting a steered wheel (33) of the vehicle.

Patentanspruch

Verfahren zum Steuern eines steuerbaren Fahrzeuges entlang einer Leitlinienmarkierung (L), wobei im Fahrzeug ein Lineardetektor (1) angeordnet ist, der im wesentlichen senkrecht zur Hauptbewegungsrichtung des Fahrzeuges starr befestigt ist, wodurch der Detektor die Leitlinienmarkierung abtastet, um die Abweichung der Markierung von einem Indexpunkt im Lineardetektor zu bestimmen, wobei für den Fall des Einsetzens einer Seitenabweichung Δx zwei solcher Bestimmungen Δx₁ und Δx₂ und aufeinanderfolgenden unterschiedlichen Stellen entlang des Weges vorgenommen werden, wodurch ein Abstand s₁ zwischen den unterschiedlichen Stellen gemessen wird, und wobei der Lagewinkel φ₁ zwischen der Markierung und dem Fahrzeug aus der Differenz Δx₂−Δx₁ geteilt durch die gefahrene Wegstrecke s₁ berechnet wird, wodurch das Lenken durch Zusammenwirken der seitlichen Abweichung und Lage- winkels vorgenommen wird, dadurch gekennzeichnet, dass eine dritte Bestimmung Δx₃ der Seitenabweichung bei einer gemessenen Weiterbewegungstrecke s₂ vorgenommen wird, dass der neue Lagewinkel φ₂ unter Verwendung der Differenz Δx₃−Δx₂ und s₂ berechnet wird, und dass die Werte φ₁, φ₂, Δx₃, Δx₂ und ein Wert Δt₂ für die für die Bewegungstrecke s₂ benötigte Zeit als Werte in einer Lankgleichung eingegeben wird.

\[\delta = a\varphi_2 + b + c\Delta x_3 + d \]

worin a, b, c und d Konstanten sind und e eine Konstante eₐ ist, wenn Δx₃ und φ₂ dasselbe Vorzeichen haben und ansonsten Null ist, und worin der berechnete Wert δ ein Lenkwinkel ist, der für das Einstellen des gelenkten Rades (33) des Fahrzeuges verwendet wird.

Revendication

Procédé pour diriger un véhicule qui peut être dirigé, suivant un marquage d’une ligne guide L, un détecteur linéaire (1) étant disposé dans le véhicule monté de façon rigide dans le véhicule de façon à être sensiblement perpendiculaire à la direction principale de mouvement du véhicule et dans lequel le détecteur est conçu pour détecter le marquage de la ligne guide pour déterminer la déviation du marquage par rapport à un point de référence dans le détecteur linéaire, constituant une déviation latérale Δx₃ de telles déterminations Δx₁ et Δx₂ étant réalisées en des positions successives différentes le long du parcours, dans lequel une distance s₁ est mesurée entre les différentes positions et l’angle d’orientation φ₁ entre le marquage et le véhicule est calculé à partir de la différence Δx₂−Δx₁, divisée par la distance parcourue s₁, et dans lequel ladite direction du véhicule est assurée en agissant contre ladite déviation latérale et l’angle d’orientation, caractérisé en ce qu’une troisième détermination Δx₃ de la déviation latérale est effectuée à une distance mesurée s₂ parcourue ultérieurement, en ce qu’un nouvel angle d’orientation φ₂ est calculé en utilisant Δx₃−Δx₂ et s₂, et en ce que lesdites valeurs φ₁, φ₂, Δx₃, Δx₂ et une valeur Δt₂ du temps nécessaire pour parcourir la distance s₂ sont entrées comme valeurs dans une équation de direction:

\[\delta = a\varphi_2 + b + c\Delta x_3 + d + e\varphi_2 \]

où a, b, c et d sont constants et e est une constante eₐ quand Δx₃ et φ₂ ont le même signe et est égal à zéro dans les autres cas, et la valeur calculée δ est un angle de direction utilisé pour mettre en position une roue dirigée du véhicule.
FIG. 1
FIG. 2