Radiant flat flame burner.

Proprietor: ITALIMPIANTI Società Italiana Impianti P.a.
Piazza Piccapietra, 9
1-18124 Genova (IT)

Inventor: Bocci, Giorgio
Viale Quartara 39/L/6
Genova (IT)
Inventor: Dardano, Alberto
Via Cantore 17/9
Genova (IT)
Inventor: Levaggi, Vittorio
Via Parma 27
Chiavari (Genova) (IT)
Inventor: Milani, Ambrogio
10, Salita Inferiore San Barnaba
1-16136 Genova (IT)

Representative: Persia, Dino, Dr.
c/o Suc. Ing. Fischetti & Weber Via Caffaro 3
1-18124 Genova (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).
Description

The present invention relates to a radiant flat flame burner, comprising an outlet nozzle for the fuel and an annular conduit for the combustion air provided around the said outlet nozzle for the fuel and connected to a cylindrical rear portion of a burner fire port, which latter presents a flaring fore portion widening continuously towards its outlet end, a combustion air swirling device being provided around the fuel outlet nozzle, in the annular conduit for the combustion air, said combustion air swirling device being adapted for imparting to the combustion air a vortical motion, while a delivery bore of the fuel outlet nozzle is provided at the end of a central conduit, into which central conduit there open a terminal nozzle for a fuel feeding duct and a duct for feeding a fuel atomizing fluid.

A burner of this type is known from FR-A-523,771 where a burner of this type presents a radiant flat flame which is very stable, without the need of arranging any concave body in front of the fuel outlet nozzle.

This problem is solved according to the invention by providing a burner in which the terminal nozzle of the fuel feeding duct extends and opens at the interior of a diverging portion of the central conduit of the fuel outlet nozzle, said central conduit being constructed initially convergent and then divergent in the direction of the delivery bore of the fuel outlet nozzle and incorporating in its terminal portion a swirling device which is adapted for imparting to the already atomized fuel a swirling motion which is directed in the same direction of rotation of the vortical motion imparted to the combustion air by the respective swirling device, while the flaring portion of the burner fire port presents a profile in the form of a sector of a circle extending over an angle of 90° and the ratio h:D:R between the axial length h of the rear cylindrical portion of the burner fire port, the diameter D of the said portion and the radius R of the profile in form of a sector of a circle of the fore portion of the burner fire port corresponds to 1:3 to 5:7 to 9 and preferably 1:4:3.

In the burner according to the invention, the convergent-divergent construction of the central conduit of the fuel outlet nozzle and the construction of the respective terminal nozzle of the fuel feeding duct constitute an ejector atomizing device which causes the atomization of the fuel even before the swirling device, arranged in the terminal portion of the said conduit, imparts to the already atomized fuel a swirling motion which is directed in the same direction of rotation of the vortical motion imparted to the combustion air by the respective swirling device. The already atomized fuel flowing out of the fuel outlet nozzle presents therefore a rotational movement in the same direction as the rotational movement in the same direction as the rotational movement of the combustion air flowing out of the annular conduit. In this manner, the desired radiant flat flame is obtained just thanks to fluidodynamic parameters. In order to stabilize the thus obtained flat flame, it is necessary that the burner fire port presents a rear cylindrical portion and a fore portion having the profile in the form of a sector of a circle extending over an angle of 90° and that the ratio between the dimensions of the said burner fire port corresponds to the claimed ratio.

According to a preferred embodiment of the invention, the swirling device provided in the central portion of the central conduit of the fuel outlet nozzle consists of two fixed cylindrical members which are set in coaxial and spaced apart relation, interconnected by means of a stem presenting a smaller diameter and provided with peripheral helical grooves opening at the upper and lower surface of each cylindrical member, while the opposite head surfaces of the two cylindrical members have a pointed conical shape and the delivery bore of the fuel outlet nozzle presents a thin edge. This construction presents the advantage that the swirling motion of the already atomized fuel is stabilized and uniformed thanks to the annular chamber formed between the two cylindrical members presenting the helical peripheral grooves, and is not disturbed upon its outflow from the delivery bore, thanks to the thin edge of said delivery bore.

The above and other characteristic features of the invention, and the advantages deriving therefrom, will appear evident from the following specification of a preferred embodiment thereof, which is diagrammatically shown by way of a non-limiting example in the accompanying drawings in which:

Figure 1 shows a longitudinal section through a radiant burner according to the invention; Figures 2 and 3 are a plan view and a side elevational view of the combustion air swirling device provided with blades; Figure 4 shows in longitudinal section and in an enlarged scale the liquid fuel atomizing nozzle; Figure 5 is an axial view showing in an enlarged scale the helically grooved swirling device provided in the atomizing nozzle according to Figure 4.
The radiant or flat flame burner shown in Figure 1 is a burner of the type illustrated in FR—A—2 377 576, which corresponds to US—A—4,203,717 (FACCO et al.) that is to say, a radiant burner which can be operated alternatively with liquid or gas fuel, or with a mixed feed operation. However, it should be appreciated that the invention is not limited to the above mentioned type of burners, and that all the features of the invention are applicable also to burners only for gas fuels or only for liquid fuels.

The burner consists of a duct 1 for the gas fuel, which is fed through the intake opening 101. Duct 1 is tightly passed through a hollow body or box 2 and through an adjoining cylindrical tubular boss 3 fitted in the burner fire port 4.

The combustion air, preferably pre-heated, is supplied to box 2 through the inlet port 102. Box 2 is attached, for example by means of flange 5 and bolts 6, and also by means of plate 7 and studs 8, or in any other suitable way, to the ceramic block 9 in which the burner fire port 4 is formed. The gas fuel duct 1 is coaxially fitted in the tubular boss 3 and may project slightly from said boss 3 into the burner fire port 4. The combustion air penetrates into the fire port 4 through the annular conduit 10 formed in the tubular boss 3 all around the gas fuel duct 1. Within the gas fuel duct 1, coaxially thereto, there extends the lance 11 for delivering and atomizing the liquid fuel, which may, for example, be fuel oil. The said lance 11 comprises an outer duct 12 for the atomizing fluid, such as air or steam, which is fed under pressure through the connection 112. Inside the outer duct 12 of lance 11 there extends a coaxial inner duct 13 which is connected to the liquid fuel supply. The lance 11 is passed in a tight manner into box 2 through union 111, and terminates with a liquid fuel atomizing nozzle 14 which might project slightly from the gas fuel duct 1 and/or from the tubular boss 3. The end of the gas fuel duct 1 might be just left open, or might be provided with any kind of gas fuel injection nozzles, well known to those skilled in the art.

At the interior of the combustion air annular conduit 10, in the tubular boss 3 all around the gas fuel duct 1, there is arranged a combustion air swirling device which is adapted for imparting to the combustion air a vortical motion. This combustion air swirling device consists of a set of inclined flat blades 15 arranged in circle in the annular conduit 10 and secured to an intermediate sleeve 16 which is fitted and secured on the gas fuel duct 1, as shown particularly in Figures 2 and 3. The outward side edges of the blades adhere against the inner surface of the tubular boss 3, and can be fixed thereto. If the burner is constructed for an operation with liquid fuels only, there is no gas fuel duct 1, and the intermediate sleeve 16 for the blades 15 of the combustion air swirling device can be tightly fitted and secured on the outer duct 12 of the liquid fuel lance 11.

The fire port 4 formed in the ceramic block 9 is composed of a rear-cylindrical portion 104 which is coaxial to the burner, i.e., to the tubular boss 3, to the gas fuel duct 1, and to lance 11 with the liquid fuel atomizing nozzle 14, and of a fore, flaring portion 204 which from the cylindrical portion 104 widens continuously towards its outlet region which is coplanar to the furnace crown or wall 17. Preferably however, according to one preferred embodiment of the invention, the flaring fore portion 204 of the burner fire port 4 is delimited by a surface of revolution around the burner axis. This surface of revolution has a profile in the form of a sector of a circle, extending, for example, over an angle of 90°, and to which the cylindrical rear portion 104 and the surface 17 of the furnace wall or crown are tangentially connected. In one particularly advantageous embodiment, the ratio between the parameters h, D, and R is the following:

\[h : D : R = 1 : 3 \text{ to } 5 : 7 : 9 \]

and preferably

\[h : D : R = 1 : 4 : 8 \]

D being the diameter of the cylindrical rear portion 104, h the length (for example from the front edge of the tubular boss 3) of this portion 104 in the direction of the burner axis, and R the radius of the profile shaped like a sector of a circle of the front portion 204 of the fire port 4.

The liquid fuel atomizing nozzle 14 provided at the extremity of lance 11, may be constructed in various manners. In Figures 4 and 5 there is shown a particularly advantageous embodiment of said nozzle, which is especially adapted for heavy oil or mazout, of which it guarantees a perfect, very fine preliminary nebulization by directing the small liquid fuel drops into the whirling combustion air stream flowing out of the annular conduit 10, while preventing the formation of any carbon deposits. This liquid fuel atomizing nozzle 14 substantially consists of an ejector with a liquid fuel outflow nozzle 18 connected to the end of the inner duct 13 of lance 11. This nozzle 18 extends coaxially into a convergent-divergent conduit 19 connected to the outer duct 12 of lance 11, and has a set of radial, liquid fuel outflow bores 118. Inside the end portion of the convergent-divergent conduit 19, a swirling device 20 is arranged. The swirling device 20 is held in place by a cap 21 which is screwed onto the end of the atomizing nozzle 14, and has a central bore 22 with a thin edge.

The device 20 which is incorporated in the liquid fuel atomizing nozzle 14, preferably consists of two cylindrical members 23 of small height, which are interconnected by means of a tapered stem 24. The cylinders 23 are each pro-
vided with a plurality of peripheral helical grooves opening into their respective top and bottom surfaces and preferably having a relatively small pitch. Both cylinders 23 terminate with a pointed conical head surface 25.

The auxiliary atomizing fluid (such as air, any suitable gas, steam, or the like) is fed under pressure through the outer duct 12 of lance 11 to the convergent-divergent conduit 19 in the liquid fuel atomizing nozzle 14. This atomizing fluid increases its rate of flow in the convergent and in the adjoining tapering portion of said conduit 19 and flows around the liquid fuel outflow nozzle 18, whereby it drives along the liquid fuel coming out from the radial bores 118 in nozzle 18, connected to the inner duct 13 of lance 11. The liquid fuel is thus finely atomized in the auxiliary atomizing fluid. At the end of the convergent-divergent conduit 19, the mixture of atomized liquid fuel and atomizing fluid passes through the helical grooves in the two cylinders 23 of the swirling device 20, whereby it picks up a whirling motion, preferably in the same direction as the vortical motion imparted to the combustion air by blades 15. The mixture of atomized liquid fuel and atomizing fluid finally flows out through the central bore 22 in cap 21 of the liquid fuel atomizing nozzle. In correspondence of said bore 22 the atomization of the liquid fuel is completed.

The jet of atomized liquid fuel streaming out of the atomizing nozzle 14 is per se a straight jet. However, owing to a phenomenon of aerodynamic instability, this jet fans out when it is injected in the middle of the swirling combustion air stream. This fanning out of the jet of atomized liquid fuel issuing from its atomizing nozzle 14 is at least in part due also to the axial position of the atomizing nozzle bore 22 inside the swirling combustion air stream. In this connection, particularly advantageous results are attained, according to the invention, when the nozzle 14 extends for 15 to 50 mm, preferably for 25 to 40 mm, beyond the blade arrangement 15 of the combustion air swirling device and/or beyond the edge of the tubular boss 3.

When the burner of the invention is operated with a liquid fuel, the second fanning out of the jet of atomized liquid fuel, and the tendency of the swirling combustion air stream to flow very close to the walls of the burner fire port 4, give rise to a uniform, regular and strong flame of the radiant or flat type, with a very favourable fuel distribution, whereby the best combustion is achieved, with no carbon deposits, and in any case with a very great flexibility in operation (useful adjustment ratios), quite profitable for industrial uses. Such an excellent performance of the burner is obtained also, and above all, when using heavy fuel oil as liquid fuel, with no risk of the atomizing nozzle becoming obstructed and/or damaged, and therefore without the need of a frequent servicing of said nozzle. The aforementioned advantages are attained with a very reduced pressure of combustion air, and therefore with a considerable saving in driving power, since the pressure energy of the atomizing fluid (air or steam) is partly used for producing the vortical motion required for the combustion. The advantages attained with the construction according to the invention are due to the particular combination of the swirling motions of the atomized liquid fuel and of the combustion air, in association with the decreased profile of the burner fire port and the perfect atomization of the liquid fuel.

Even when the burner is operated with gas fuel, supplied through duct 1, the particular construction of the burner fire port 4, possibly in combination with the combustion air swirling device, permits to attain a number of considerable advantages. In this case, with the construction according to the invention, a very intense combustion is obtained, so that the flame extends only up to the border of the flaring portion 204 of the burner fire port 4, or little beyond said border. In order to obtain such an intense combustion, very reduced combustion air and gas fuel pressures are used, as compared to those which were required up to now for this kind of burner, thus achieving a profitable economy, and also a lesser noise and a reduced formation of noxious combustion by-products.

Of course, the same above-stated advantages, or a combination of these advantages, is obtained also in the case of a mixed-feed operation of the burner, i.e., when this burner is simultaneously operated with the liquid fuel, delivered and atomized by lance 11, and with gas fuel, supplied coaxially all around lance 11 through duct 1. On the other hand, as mentioned hereinafore, the invention is applicable also to burners running with liquid fuel only (by eliminating duct 1), or with the gas fuel only (by eliminating lance 11).

Claims

1. A radiant flat flame burner, comprising an outlet nozzle (14) for the fuel and an annular conduit (10) for the combustion air provided around the said outlet nozzle (14) for the fuel and connected to a cylindrical rear portion (104) of a burner fire port (4), which latter presents a flaring rear portion (204) widening out continuously towards its outlet end, a combustion air swirling device (15) being provided around the fuel outlet nozzle (14), said combustion air swirling device (15) being adapted for imparting to the combustion air a vortical motion, while a delivery bore (22) of the fuel outlet nozzle (14) is provided at the end of a central conduit (19), into which central conduit (19) there open a terminal nozzle (18) of a fuel feeding duct (13) and a duct (12) for feeding a fuel atomizing fluid, characterized by the fact that the terminal nozzle (18) of the fuel feeding duct (13) extends and opens at the interior of a
diverging portion of the central conduit (19) of the fuel outlet nozzle, said central conduit (19) being constructed initially convergent and then divergent in the direction of the delivery bore (22) of the fuel outlet nozzle (14) and incorporating in its terminal portion a swirling device (20) which is adapted for imparting to the atomized fuel a whirling motion which is directed in the same direction of rotation of the vortical motion imparted to the combustion air by the respective swirling device (15), while the flaring bore portion (204) of the burner fire port (4) presents a profile in the form of a sector of a circle extending over an angle of 90° and the ratio h:D:R between the axial length h of the rear cylindrical portion (104) of the burner fire port (4), the diameter D of the said portion (104) and the radius R of the profile in the form of a sector of a circle of the bore portion (204) of the burner fire port (4), corresponds to 1:3 to 5:7 to 9 and preferably 1:4:8.

2. A burner according to claim 1, characterized by the fact that the swirling device (20) provided in the terminal portion of the central conduit (19) of the fuel outlet nozzle (14) consists of two fixed cylindrical members (23) which are set in coaxial, spaced apart relation, interconnected by means of a stem presenting a smaller diameter, said fixed cylindrical members (23) being provided with peripheral helical grooves opening at the upper and lower surface of each cylindrical member (23) while the opposite head surfaces (25) of the two cylindrical members (23) have a pointed conical shape and the delivery bore (22) of the fuel outlet nozzle (14) presents a thin edge.

Patentansprüche

1. Strahlungsbrenner mit flacher Flamme, beinhaltend eine Ausläuferdüse (14) für den Brennstoff und eine ringförmige Leitung (10) für die Verbrennungsluft, die um die genannte Ausläuferdüse (14) für den Brennstoff herum angeordnet ist und mit einem zylindrischen rückwärtigen Abschnitt (104) eines Brennraumes (4) verbunden ist, welcher letzterer einen sich aufweitenden vorderen Abschnitt (204) aufweist, bei den sich kontinuierlich zum Ausläuferende hin aufweitet, wobei eine Verbrennungsluftverwirbelvorrichtung (18) um die Brennstoffausläuferdüse (14) herum angeordnet ist, welche Verbrennungsluftverwirbelvorrichtung (15) darauf ausgelegt ist, der Verbrennungsluft eine kreisende Bewegung zu erteilen, während eine Abgabeböhrung (22) der Brennstoffausläuferdüse (14) an dem Ende einer zentralen Leitung (19) vorgesehen ist, in welche zentrale Leitung (19) sich eine Enddüse (18) einer Brennstoffzuführungsleitung (13) sowie eine Leitung (12) zur Zuführung einer den Brennstoff atomisierenden Flüssigkeit öffnen, dadurch gekennzeichnet, daß die Enddüse (18) der Brennstoffzuführungsleitung (13) sich in das Innere eines divergierenden Abschnittes der zentralen Leitung (19) der Brennstoffausläuferdüse erstreckt und öffnet und die zentrale Leitung (19) anfänglich konvergierend und dann in Richtung auf die Abgabeböhrung (22) der Brennstoffausläuferdüse (14) divergierend ausgebildet ist und in ihrem Endbereich eine Verwirbelvorrichtung (20) beinhaltet, die darauf ausgelegt, ist, dem atomisierten Brennstoff eine Wirbelbewegung zu erteilen, die in die gleiche Drehrichtung gerichtet ist wie die kreisende Bewegung, die der Verbrennungsluft durch die entsprechende Verwirbelvorrichtung (15) erteilt ist, während der vordere sich aufweitende Abschnitt (204) des Brennraumes (4) eine Profil in Form eines Kreissektors hat, der sich über einen Winkel von 90° erstreckt und ein Verhältnis von h:D:R zwischen der axialen Länge h des zylindrischen Abschnitts (104) des Brennraumes (4), dem Durchmesser D des genannten Abschnittes (104) und dem Radius R des Profiles in Form eines Kreissektors des vorderen Abschnittes (204) des Brennraumes (4) im Verhältnis 1:3 bis 5:7 bis 9, vorzugsweise 1:4:8, entspricht.

2. Brenner nach Anspruch 1, dadurch gekennzeichnet, daß die Verwirbelvorrichtung (20) im Endbereich der zentralen Leitung (19) der Brennstoffausläuferdüse (14) aus zwei ortsfesten zylindrischen Teilen (23) besteht, die coaxial und abständig voneinander angeordnet sind und untereinander mittels eines Stößels verbunden sind, der einen geringeren Durchmesser hat, wobei die genannten ortsfesten zylindrischen Teile (23) am Umfang mit schraubenlinienförmigen Ausnehmungen versehen sind, die sich an der oberen und unteren Fläche eines jeden zylindrischen Teiles (23) öffnen, wobei die abgewandt voneinander liegenden Stirnflächen (25) der beiden zylindrischen Teile (23) eine Kegelspitzenform haben und die Abgabeböhrung (22) der Brennstoffausläuferdüse (14) eine schmale Kante aufweist.

Revendications

1. Brûleur radiant à flamme plate comprenant une buse (14) de sortie du combustible et un conduit annulaire (10) à air combustant prévu autour de cette buse de sortie de combustible (14) et relié à une partie postérieure cylindrique (104) d’un orifice de flamme (4) du brûleur, cet orifice présentant une partie antérieure évasée (204) s’élargissant de façon continue vers son extrémité de sortie, un dispositif de tourbillonnement d’air combustant (15) étant prévu autour de la buse de sortie de combustible (14), ce dispositif de tourbillonnement d’air combustant (15) étant conçu pour communiquez à l’air combustant un mouvement vertical, tandis qu’une perforation d’arménée (22) de la buse de sortie de combustible (14) est prévue à l’extrémité d’un conduit central (19) dans lequel s’ouvrent une buse terminale (18) d’un tuyau d’alimentation en combustible (13) et un tuyau (12) servant à amener un fluide
d'atomisation de combustible, caractérisé en ce que la buse terminale (18) du tuyau d'alimentation en combustible (13) s'étend et s'ouvre à l'intérieur d'une partie divergente du conduit central (19) de la buse de sortie de combustible, le conduit central (19) ayant une structure initialement convergente et ensuite divergente en direction de la perforation d'aménée (22) de la buse de sortie de combustible (14) et comportant en sa partie terminale un dispositif de tourbillonnement (20) qui est conçu pour communiquer au combustible atomisé un mouvement de tourbillonnement qui est dirigé dans le même sens de rotation que le mouvement de tourbillonnement communiqué à l'air comburant par le dispositif de tourbillonnement respectif (15), tandis que la partie antérieure évasée (204) de l'orifice de flamme (4) du brûleur présente un profil en forme de secteur circulaire s'étendant sur un angle de 90\(^\circ\) et que le rapport \(h:D:R\) entre la longueur axiale \(h\) de la partie cylindrique postérieure (104) de l'orifice de flamme (4) du brûleur, le diamètre D de la dite partie (104) et le rayon R du profil en forme de secteur circulaire de la partie antérieure (204) de l'orifice de flamme (4) du brûleur correspond à 1:(3 à 5):(7 à 9) et de préférence à 1:4:8.

2. Brûleur selon la revendication 1, caractérisé en ce que le dispositif de tourbillonnement (20) prévu dans la partie terminale du conduit central (19) de la buse de sortie de combustible (14) est formé de deux éléments cylindriques fixes (23) qui sont placés coaxialement et avec espacement entre eux et reliés au moyen d'une tige présentant un plus petit diamètre, ces éléments cylindriques fixes (23) étant munis de gorges hélicoïdales périphériques s'ouvrant aux surfaces supérieure et inférieure de chaque élément cylindrique (23), tandis que les surfaces de tête opposées (25) des deux éléments cylindriques (23) présentent une forme conique pointue et que la perforation d'aménée (22) de la buse de sortie de combustible (14) présente un bord mince.