Booster valve for assisting the flow of material in a conveyor tube.

Priority: 31.01.80 US 117379

Date of publication of application: 23.09.81 Bulletin 81/38

Publication of the grant of the patent: 09.04.86 Bulletin 86/15

Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

References cited:
DE-A-1 946 833
DE-A-2 150 403
DE-B-2 116 972
US-A-1 733 302
US-A-2 897 005
US-A-2 946 828
US-A-3 179 124
US-A-3 499 461
US-A-3 604 758
US-A-3 708 207
US-A-3 876 259

Proprietor: Dynamic Air Inc.
P.O. Box 43074
St. Paul Minnesota 55164 (US)

Inventor: Steele, James R.
14595 Square Lake, Trail North
Stillwater, Minnesota 55082 (US)

Representative: Modiano, Guido et al
MODIANO & ASSOCIATI S.A.S. Via Meravigli, 16
I-20123 Milan (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention.)

Description

This invention relates generally to booster valves and, more specifically, to booster valves which can be quickly and easily attached to existing conveyor lines.

Pneumatic conveyors are often employed for a wide variety of applications including the transfer of dry granular material such as sand, salt, flour and cement. Two types of systems are in general used for the transfer of granular materials. The first type depends upon a high velocity air stream to carry a relatively small amount of material at high speeds. Serious disadvantages accompany this method. The high speed of the particles tend to abrade the interior surfaces of the conveyor tubes. Hence, continual maintenance is a necessity and frequent operational shutdowns are required to repair and replace parts. In addition, the high velocity impacts which are unavoidable in this type of system destroy the transported material or reduce it to an undesirably low grain size.

A preferred type of pneumatic conveyor which avoids the above problems is the slow speed variety in which the conveyor tube is practically full of material and the material is moved by air pressure applied to it at its source and at a number of successive locations along the conveyor tube. Although the speed of the material is less, the density is so much higher that the net volume moved per unit time is much higher. Furthermore, wear is reduced both on the conveyor tube and on the material.

The present invention pertains to the booster valves which can be easily and quickly positioned along the conveyor tube. The boosters are controlled by a pilot valve which controls the pressure as required to keep the material moving. Some prior art booster valves are extremely difficult to adjust. If too much pressure is applied, the material in the conveyor tube is blocked. On the other hand, if the pressure is too low, the material is not properly transported. Since the proper applied pressure depends on the pressure inside the tube and since the pressure in the tube varies with the material density, flow rate, consistency, and the pressure applied by adjacent booster valves, it is readily apparent how difficult it is to achieve the correct pressure. Continual adjustments are necessary to maintain the careful balance of the system. One method of simplifying this type of pneumatic conveyor system is to employ one-way valves in the booster stations which operate to release pressurized gas into the tube when the pressure in the tube drops below a predetermined value.

Typical of the prior art patents on such devices are the following patents:

US—A—2 897 005 discloses a booster valve as defined in the pre-characterizing part of claim 1.

US—A—3 179 124 discloses a cylindrical resilient closure member or seal in a check valve, the seal being responsive to pressure differential across the seal.

Most of the prior art valves show permanently mounted units having a mechanism for introducing the air which are located adjacent or near the pressurized line. Also, it is often desired to be able to quickly replace a booster valve if the valve should become faulty. In certain applications it is also desired to have a controllable, adjustable air pressure supply with no back flow and which is remotely located from the material being transported and which can be readily cleaned and is relatively free of clogging.

The aim of the present invention is to achieve such objective and in particular to solve the problem of maneuverability of the mechanism for adjustable pressure supply and correlated sealing.

Such aim is accomplished by a booster valve for assisting the flow of material, in particular granular material, in a conveyor tube (9) with a fluid under high pressure, comprising:

— a housing (11, 72) having a fluid inlet (19) for attachment to a fluid source and an outlet (30) for discharging a fluid into a conveyor tube (9), and fluid passages providing communication between said inlet and said outlet, said outlet (30) having means (17, 22) for attachment to the exterior of a conveyor tube (9) to thereby discharge fluid into a conveyor tube (9) at a specified location on a conveyor tube;

— a closure member (23) having a check valve function located in the housing (11, 72) and being responsive to a pressure differential across the closure member (23) so that a higher pressure on said inlet (19) than said outlet (30) permits flexing of said closure chamber (23) to permit flow of fluid past said closure member (23) through said outlet (30) and into a conveyor tube (9) and where a higher pressure in said outlet (30) than in said inlet (19) permits the resiliency of said closure member (23) to return to its original shape to prevent back flow of material from said outlet (30) to said inlet (19); and

— means (61) to permit quick mounting of the booster valve to the conveyor tube (19), characterized in that:

— the closure member (23) is a cylindrical resilient member whose exterior or interior surface is located on a closure member retaining guide (16, 100),

— a cylindrical member (72) of the housing (11) has a plurality of radial fluid passages (42) providing communication between said inlet (19) and said outlet (30),

— a chamber (50) is formed between the hollow cylindrical member (72) mounted within the interior of said housing and a cylindrical outside wall portion of said housing;

— a pressure adjusting cap (12) surrounds a top portion of said housing (11) and is in slidable engagement with said housing and having at least one component part (70, 40, 12A) adjustably extending into the chamber (50) for adjusting the flow of fluid through said booster valve (10).

The strap attached booster valve can quickly be attached to a conveyor tube and does not clog.
and injects air into the conveyor tube at one or more points along the top of the conveyor tube. An annular tapered rubber sleeve is positioned within the booster valve which is remotely spaced from the conveyor tube. A positionable cap encloses the section of tube containing the rubber sleeve so that one can control the amount of air introduced into the conveyor tube. A pilot valve provides control of the air flow into the booster valve inlet.

Preferred embodiments of the invention will be described hereinafter with reference to the drawings, in which:

Fig. 1 is a cross sectional view of a booster valve in the closed position;

Fig. 2 is a portion of a cross sectional view of the booster valve in the open position; and

Fig. 3 shows our booster valve mounted to a conveyor tube.

Referring to Fig. 1 and Fig. 3, reference numeral 10 generally designates the booster valve of the present invention. Booster valve 10 comprises a main body 11 which attaches to a top portion of a conveyor tube side wall 9 through a strap 60.

Fig. 3 shows how a booster valve 10 is fastened to conveyor tube 9. A strap 60 having a loop 60A on one end and a loop 60B on the opposite end loop respectively around ears 61 and 62 that project from valve 10. Located at the bottom of conveyor tube 9 is a tightening device that permits one to secure booster valve 10 against conveyor tube 9.

Attached to booster valve main body 11 is an annular seal 20 which forms an air-tight seal between the outside of main body 11 and the inside of cap 12.

Main body 11 has a set of threads 11A which engage threads 12A on cap 12. The threads coat to permit raising or lowering cap 12 with respect to main body 11. Located centrally within cap 12 is an inner chamber 14 which is sealed to the outside atmosphere through a pressure release screw 25. Pressure release screw 25 contains a threaded section 25A that mounts into a threaded opening 12B in cap 12 and includes a ring seal 24 located between the inside of cap 12 and head 25B of pressure release screw 25. The purpose of seal 24 is to prevent air from escaping from between threads 12B and threads 25A during operation of booster valve 10.

Loosening screw 25 permits one to bleed pressurized air from chamber 14, i.e., the air flows past seal 24 and around threaded pressure relief screw 25. Typically, to quickly bleed the pressure chamber 14 the threads 12B and 25A are loosely fitting or a slot is located along the threads to permit one to rapidly bleed chamber 14. Pressure build up in chamber 14 occurs from air leakage around the threads 15A on inner chamber plug 15. Inner chamber plug 15 is a removable plug which allows one to replace valve seal 23 when needed.

To obtain a flow condition in valve 10 it is necessary for an operator to rotate cap 12 about main body 11 thus raising section 12A and a ring seal 40 with respect to main body 11. Fig. 1 shows booster valve 10 in the closed position while Fig. 2 shows the booster valve in the open position. The opening and closing is accomplished by an annular seal 40 which is mechanically locked to cap 12 through a cylindrical lip 70 that extends around the periphery of member 12A. Thus, annular seal 40 is operable for sliding upward and downward along the outside of a cylindrical member 72 in response to rotation of cap 12. As seal 40 is raised it rotates upward past openings 42 in cylindrical member 72 to the open position shown in Fig. 2. In the open position there is provided a path for air flow from an outer annular cylindrical plenum chamber 50 into an inner annular cylindrical plenum chamber 43 which is centrally located inside of cylindrical member 72. Concentratically located inside of annular cylindrical plenum chamber 43 is an annular cylindrical seal retainer 16 having lower air passage slots 46. Located on the inside of valve retainer 16 is an annular cylindrical flexible valve closure member or seal 23. Valve seal 23 is made from a flexible yet resilient material which flexes radially inwardly in response to a pressure differential across seal 23. The inward flexing allows air to flow through slots 46 and past seal 23. Although only two slots are shown, more slots can be used so that the flow area of slots is at least as great as the flow area defined by holes 42.

Typically, valve seal 23 is made from materials such as rubber or the like. The flexibility permits air to flow from chamber 43 into tube 30 through slots 46 while the resilience permits valve seal 23 to close off slots 46 to prevent back flow from tube 30 into chamber 43. Such a condition could occur if the conveyor line pressure should exceed the inlet pressure.

Thus, in response to higher pressure in inlet 19 then in conveyor 9, air flows into conveyor tube 9. The air is used to assist materials through the conveyor tube. Conversely, if the air pressure in conveyor tube 9 is higher, the natural resiliency of valve seal 23 causes the sides of valve seal 23 to seal slots 46 and thus prevent any materials in the conveyor tube 9 from entering booster valve 10.

To monitor the pressure in chamber 43 there is provided a pair of pilot valve attachment members 18 that connect to chamber 43 through an annular plenum chamber 32 and passages 38.

Located beneath annular plenum chamber 32 is a base 17 and a seal 22 that prevents leakage between booster valve 10 and the outside of conveyor 9. Base 17 and seal 22 have an arcuate shape that conforms to the outside surface of the conveying tube.

Fig. 4 shows a fluid supply line 66 connected to booster valve 10 and an air source 65 supplies fluid to booster valve 10 through pivot valve 64 and air line 66.

To control the air flow into valve 10 there can be provided a pressure responsive pilot valve 64 which monitors the pressure in chamber 32 through pressure line 67. If the pressure is below a predetermined value pilot valve 64 can be made
5 responsive to supply air at higher pressure to booster valve 10 through inlet 66.

In summary, in operation of our system high pressure air introduced at hose connector 19 flows through valve 10 and pushes annular seal 23 inward thereby permitting air to flow into conveyor 9 through pipe 30. Thus, air entering conveyor tube 9 is usable to assist in forcing material to flow through conveyor tube 9.

Fig. 1 illustrates that booster valve 10 can be quickly mounted to an existing conveyor line by merely drilling a hole in a conveyor line and inserting member 30 into the opening. The base 17 and seal 22 coat to form a seal between booster valve 10 and conveyor tube 9. Tightening strap 60 (Fig. 3) forces booster valve 10 tightly against conveyor tube 9.

Another feature of the present invention is that by installation of the openings in the top portion of a conveyor tube gravity aids in preventing any conveyed materials from plugging the inlet, i.e., any materials that may enter tube 30 usually fall back into the conveyor tube without clogging tube 30.

A further feature of the invention is that valve 10 can be adjusted for the volume of air flow entering the system by raising or lowering cap 12 thereby increasing or decreasing the flow area.

Claims

1. A booster valve for assisting the flow of material, in particular granular material, in a conveyor tube with a fluid under high pressure, comprising:
 — a housing having a fluid inlet for attachment to a fluid source and an outlet for discharging a fluid into a conveyor tube, and fluid passages providing communication between said inlet and said outlet, said outlet having means for attachment to the exterior of a conveyor tube to thereby discharge fluid into a conveyor tube at a specified location on a conveyor tube;
 — a closure member having a check valve function located in the housing and being responsive to a pressure differential across the closure member so that a higher pressure on said inlet than said outlet permits flexing of said closure member to permit flow of fluid past said closure member through said outlet and into a conveyor tube and where a higher pressure in said outlet than in said inlet permits the resiliency of said closure member to return to its original shape to prevent back flow of material from said outlet to said inlet; and
 — means to permit quick mounting of the booster valve to the conveyor tube, characterized in that
 — the closure member is a cylindrical resilient member whose exterior or interior surface is located on a closure member retaining guide;
 — a cylindrical member of the housing has a plurality of radial fluid passages providing communication between said inlet and said outlet;
 — a chamber is formed between the hollow cylindrical member mounted within the interior of said housing and a cylindrical outside wall portion of said housing;
 — a pressure adjusting cap surrounds a top portion of said housing and is in slidable engagement with said housing and having at least one component part adjustably extending into the chamber for adjusting the flow of fluid through said booster valve.

2. A system according to claim 1, characterized in that said one component part (12A) has a bell-like shape and near the top thereof a chamber (14) is formed between said top and said hollow cylindrical member (72), the end of said hollow cylindrical member (72) facing said top being closed by a removable plug (15) and wherein said closure member (23) is arranged near said plug (15) to permit replacement of said closure member (23).

3. A system according to claims 1, 2, characterized in that said pressure adjusting cap (12) has a pressure relief member (25) in communication with said chamber (14) to bleed the pressure built up in said chamber.

4. A system according to claims 1—3, characterized in that said booster valve (10) includes a strap (60) for fastening said booster valve (10) to a conveyor tube (9).

5. A system according to claims 1—4, characterized in that said booster valve (10) is located on the top of a conveyor tube (9) to thereby permit any material that may enter said outlet (30) to fall into a conveyor (9) under the influence of gravity.

Revendications

1. Soupape de surpression pour faciliter le transport d’un matériau, en particulier un matériau granulaire, dans un tube par un fluide sous pression élevée, comprenant:
 — un logement ayant une entrée de fluide reliée à une source de fluide et une sortie pour évacuer un fluide dans le tube de transport, et des passages de fluide pour la communication entre ladite entrée et ladite sortie, ladite sortie ayant des moyens de fixation à l’extérieur d’un tube de transport pour ainsi décharger le fluide dans un tube de transport en un endroit précis de celui-ci;
 — un organe de fermeture ayant une fonction de soupape d’arrêt situé dans le logement et étant sensible à une différence de pression à travers l’organe de fermeture de sorte qu’une pression plus élevée à ladite entrée qu’à ladite sortie permet la flexion dudit organe de fermeture pour autoriser l’écoulement de fluide au-delà de l’organe de fermeture à travers ladite sortie et dans un tube de transport, et qu’une pression plus élevée à ladite sortie qu’à ladite entrée permet audit organe de fermeture de reprendre sa forme initiale du fait de son élasticité pour éviter le retour du matériau de ladite sortie à ladite entrée; et
 — des moyens permettant un montage rapide de la soupape de surpression sur le tube de transport,
 caractérisée en ce que:
— l’organe de fermeture est un organe élastique cylindrique dont la surface interne ou la surface externe est située sur un guide de retenue de l’organe de fermeture;
— un organe cylindrique du logement présente une pluralité de passages de fluide radiaux pour la communication entre ladite entrée et ladite sortie;
— une chambre est formée entre l’organe cylindrique creux monté à l’intérieur dudit logement et une partie de paroi extérieure cylindrique dudit logement;
— un capuchon de réglage de pression entoure une partie supérieure dudit logement et est en engagement coulissant avec ledit logement en ayant au moins une partie constitutive s’étendant, de façon réglable, dans la chambre pour régler l’écoulement du fluide à travers ladite soupape de surpression.

2. Système selon la revendication 1, caractérisé en ce que ladite partie constitutive (12A) est en forme de cloche et, près de son extrémité supérieure, une chambre (14) est formée entre ladite extrémité supérieure et ledit organe cylindrique creux (72), l’extrémité dudit organe cylindrique creux (72) faisant face à ladite extrémité supérieure étant fermée par un bouchon amovible (15), et en ce que ledit organe de fermeture (23) est disposé près dudit bouchon (15) pour permettre le remplacement dudit organe de fermeture (23).

3. Système selon les revendications 1, 2, caractérisé en ce que ledit capuchon de réglage de pression (12) présente un organe (25) de réduction de pression en communication avec ladite chambre (14) pour drainer la pression accumulée dans ladite chambre.

4. Système selon les revendications 1—3, caractérisé en ce que ladite soupape de surpression (10) comporte une courroie (60) pour fixer ladite soupape de surpression (10) à un tube de transport (9).

5. Système selon les revendications 1—4, caractérisé en ce que ladite soupape de surpression (10) est située à la partie supérieure d’un tube de transport (9) pour ainsi permettre à tout matériau qui peut entrer dans ladite sortie (30) de tomber dans le tube (9) sous l’influence de la gravité.

Patentansprüche

1. Hilfsventil zur Unterstützung des Transports eines Materials durch eine Rohrleitung, insbesondere von körnigem Material, mit einem unter Hochdruck stehenden Fluid, aufweisend:
— ein Gehäuse mit einem Fluidleinaussatz zum Anschluss an eine Quelle des Fluids und einem Auslass zur Abgabe des Fluids in ein Förderrohr, und Kanäle für das Fluid zur Schaffung einer Verbindung zwischen dem Einlass und dem Auslass, wobei der Auslass Einrichtung für den Aussenanschluss an ein Förderrohr aufweist, um das Fluid in ein Förderrohr an einer bestimmten Stelle auf einem Förderrohr abzugeben;
— ein Verschlussglied mit Rückschlagventil-

funktion, das in dem genannten Gehäuse angeordnet ist und auf ein Druckunterschied durch das Verschlussglied anspricht, so dass ein höherer Druck beim Einlass als beim Auslass ein Biegen des genannten Verschlussgliedes gestattet, um den Strom des Fluids am Verschlussglied vorbei durch den Auslass und in das Förderrohr zu ermöglichen, und ein höherer Druck im Auslass als im Einlass eine Rückkehr des Verschlussgliedes auf Grund seiner Elastizität in seine ursprüngliche Form gestattet, um einen Rückfluss von Material vom Auslass zum Einlass zu verhindern; und

— Einrichtungen zur raschen Montage des Ventils am Förderrohr,
dadurch gekennzeichnet, dass
— das Verschlussglied ein zylindrischer elastischer Teil ist, dessen Außenfläche oder Innenfläche auf einer Haltefahrung für das Verschlussglied angeordnet ist;
— ein zylindrischer Teil des Gehäuses eine Vielzahl von radialen Fluiddurchlässen aufweist, die eine Verbindung zwischen dem Einlass und dem Auslass herstellen;
— eine Kammer zwischen dem im Inneren des Gehäuses montierten hohlen zylindrischen Teil und einem zylindrischen Aussenwandteil des Gehäuses gebildet ist;
— eine Druckregulierungskappe den Oberbiet des Gehäuses umgibt und mit dem Gehäuse in Schiebeeingriff steht und wenigstens einen Bestandteil aufweist, der sich verstellbar in die Kammer erstreckt, um den Strom des Fluids durch das Hilfsventil zu regeln.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der genannte eine Bestandteil (12A) eine glockenartige Form besitzt und in der Nähe des oberen Endes desselben eine Kammer (14) zwischen dem genannten oberen Ende und dem hohlen zylindrischen Teil (72) gebildet ist, wobei das Ende des hohlen zylindrischen Teiles (72), das dem genannten oberen Ende gegenüberliegt, durch einen entfernbarer Stopfen (15) verschlossen ist und das Verschlussglied (23) in der Nähe des Stopfens (15) angeordnet ist, um einen Austausch des Verschlussgliedes (23) zu ermöglichen.

3. Einrichtung nach den Ansprüchen 1, 2, dadurch gekennzeichnet, dass die Druckregulierungskappe (12) ein Entlüftungssorgan (25), das mit der Kammer (14) in Verbindung steht, aufweist, um den in der Kammer aufgebaute Druck aufzuheben.

4. Einrichtung nach den Ansprüchen 1—3, dadurch gekennzeichnet, dass das Hilfsventil (10) ein Befestigungsband (60) zur Befestigung des Hilfsventils (10) an einem Förderrohr (9) aufweist.

5. Einrichtung nach den Ansprüchen 1—4, dadurch gekennzeichnet, dass das Hilfsventil (10) am oberen Ende eines Förderrohres (9) angeordnet ist, um jedeswem Material, das in dem Auslass (30) eintreten könnte, zu ermöglichen, unter dem Einfluss der Schwerkraft in einen Förderer (9) zu fallen.