EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 05.03.86
Application number: 80107621.7
Date of filing: 04.12.80

Priority: 28.12.79 US 109000
Date of publication of application: 08.07.81 Bulletin 81/27
Publication of the grant of the patent: 05.03.86 Bulletin 86/10
Designated Contracting States: DE FR GB IT

References cited:
US-A-3 618 016
US-A-3 651 459
US-A-3 952 184
US-A-3 969 698
US-A-3 969 700
US-A-3 995 254

J.J. GIANGARELDELLA et al.: "Spelling correction by vector representation using a digital computer"
Description

Technical field
This invention relates to text processing and, more particularly, to a method and a system for automatic spelling error correction, for prompting an operator with the correct spelling of a misspelled word.

Background art
In implementing a practical automatic spelling aid system the ultimate number of words that must be examined by a high resolution match algorithm which adjusts for aliased characters and dropped or added characters/syllables determines the practicality of the system in terms of both cost and efficiency of operation.

Procedures have been evolved in the prior art for reducing the number of candidate words that must be examined relative to a target misspelled word to find the best matched candidate or candidates. One technique involves only looking at those words which match the misspelled word in its first character and are not greater or less in length than it by more than two characters. This approach is based on the supposition that the most reliable character in a misspelled word is always the first character and that normal misspelling would not yield more than a two-character addition or deletion. This technique, although effective, leads to non-recoverable errors when the first character is in error and normally does not have a discrimination potential greater than 90%.

A second technique for reducing the number of candidates that must be examined relative to a target misspelled word to determine the best matched candidate requires use of a vector fetch approach which assigns to each word in the dictionary a magnitude value based on the confusability of the characters in the word where a character’s weight in the magnitude computation is clustered close to those characters that it could be aliased as. Only those words in the magnitude “range” of the misspelled word are retrieved. This technique disclosed in US patent 3 969 698 has a higher average discrimination potential, but still yields more that 1% of the dictionary for final review.

A third technique for reducing the number of candidates that must be examined relative to a target misspelled word to determine the set of best matched candidates is to examine all words of equal length to the misspelled word or within plus or minus two character positions regardless of first character.

The combination of the first and second techniques with the double storing of words that have highly ambiguous or silent first characters (e.g., “philosophy” under the “P” and under “F”, “knot” under “K” and under “N”); together yields a discrimination potential of roughly 99%.

However, because the dictionary size may be quite large (i.e., many times over 50,000 words), even a discriminant which will preclude 99% of the dictionary from review will still lead to a large set of words which must be examined to determine the best candidates relative to a misspelled word.

The further discrimination using an independent criteria not used above in required to additionally reduce the word list down to a size that can be conveniently processed in a real-time manner to determine the best candidate match(es) against a target misspelled word. This problem is further accentuated by the fact that after 99% of the words have been discriminated, the remaining one percent tend to be more homogeneous in content and therefore, less amenable to cursory methods of examination and further culling.

Summary of the invention
It has been discovered that the alpha content of words resulting from a fetched discrimination using match on first character and vector magnitude range can be further discriminated by inventorying, without regard to position, the respective characters in the misspelled words and in each of the dictionary candidate words where a candidate word is dismissed from additional processing if there is not a predetermined percentage match between its character content and that of the misspelled word.

In a first stage disclosed in US patent 3 969 698, the method of the invention as claimed in claim 1 consists in initially converting the text word to be checked to a vector representation and inputting it for matching into the digital reference matrix. If there is no matching indicating that the text word is misspelled, the characters from the text word are passed to the cluster storage apparatus for determining a list of target words in a dictionary memory, candidates for the correct version of the text word. Then, the second stage of the method which characterizes the invention, comprises the following steps repeated for each word of the list of target words: defining a set of alpha counters for each character of the text word, incrementing each alpha number to accumulate a count of each respective character in the word, decrementing each alpha counter for each respective character in a target word of the list of target words in dictionary memory, calculating an absolute value for the remainders in the set of alpha counters, calculating a threshold value using the combination of the number of characters in the text word and the target word, using the absolute value for calculating a match value for the target word based upon the common characters between the text word and the target word, and selecting the target word if its match value exceeds the calculated threshold value.

Another aspect of the invention as claimed in claim 3 is a system for automatically selecting a small set of correctly spelled words that approximate the correct spelling of an input misspelled word comprising a dictionary memory storing a vocabulary of words a digital reference matrix receiving an input word converted to a
vector representation, for determining by matching if the input word is correctly spelled; a cluster storage apparatus for determining, in response to the characters of an input word determined misspelled by no matching in the digital reference matrix, a list of correctly spelled words in the dictionary memory candidates for the correct version of the misspelled word; an alpha counter means for each text character the contents of each counter means being incremented for each respective character of the misspelled word and decremented for each respective character of a target word of the list of correctly spelled words from the cluster storage apparatus; processing means for calculating an absolute value for the remainders in the alpha counter means, calculating a threshold value using the combination of the number of characters in the misspelled word and the target word, calculating a match value for the target word based upon the common characters between misspelled word and the target word, and selecting the target word if its match value exceeds the calculated threshold value; and an output register for storing the selected target word and transmitting it to an output device for analysis on a character-by-character basis.

It should be noted that the combination of the dictionary memory, the digital reference matrix and the cluster storage apparatus are known from US Patent 3,969,698. But the regional context apparatus used in the latter patent for processing the candidate words provided by the cluster storage apparatus is a special purpose processor (described in US patent 3,969,700) allowing only restricted programming and which cannot be assimilated to the combination of alpha counter means and processing means which characterizes the invention.

Brief description of the drawings

Figure 1 is a block diagram of some components in the Alpha Content Match System. Figure 2 is a flow chart of the operation of the Alpha Content Match method of this invention.

Description of the preferred embodiment

Referring to Fig. 1, there is shown a block diagram of the Spelling Correction System which includes a processor or CPU 10 of the general purpose type which is in two-way communication over a bus 13 with a memory 14 containing the instructions which control its operation and define the present invention. The processor 10 is also in two-way communication with the dictionary memory 12 over bus 11 wherein a vocabulary of words is stored.

The processor 10 is also in two-way communication over data bus 1 with cluster storage apparatus 2 and in communication with digital reference matrix 16 over bus 15. The cluster storage apparatus 2 is disclosed in U.S.—A 3,969,698. The digital reference matrix 16 is fully disclosed in U.S.—A 3,995,254.

Text words are input to the system over bus 17 from a conventional data source such as a keyboard or character recognition device. The digital reference matrix 16 has stored therein a dictionary of words in the form of vector representations consisting of a magnitude and an angle for each word. An input word is converted to a vector representation and the magnitude factor is used as an address to access the digital reference matrix memory to determine if an angle is stored therein for the word. If an angle is found in the digital reference matrix 16, at the magnitude address which matches the angle calculated for the input word, then an indication is provided to the processor over bus 15 and the word is output to the output register 18 over bus 9. If no matching angle is found in the digital reference matrix 16, at the magnitude address, or if the calculated magnitude address does not match an address in the digital reference matrix memory, then the input word in considered misspelled and an indication is provided to the processor 10 over bus 15. If the digital reference matrix 16 determines that the word is misspelled, then the characters from the word are passed to the cluster storage apparatus 2 over bus 3 and to the processor 10 over bus 15. The cluster storage apparatus contains groups of characters arranged such that adjacent locations contain characters having similar character recognition misread propensities and keyboard substitution mistroke error propensities. The theory for grouping characters in the cluster storage apparatus is fully disclosed in U.S.—A 3,969,698. The cluster storage apparatus examines the characters of the input word and outputs a number of words over bus 1 to the processor 10 which are likely candidates for the correct version of the input word. However, as was previously stated in the background section of this application and as is stated in U.S.—A 3,969,698, the number of words output by the cluster storage apparatus will average about 1% of the words stored in the dictionary. The processor 10 under control of the instructions in instruction memory 14 that define the present invention will further process the output of the cluster storage apparatus using the contents of dictionary memory 12 to produce a number of output candidate words an order of magnitude less than the candidate words produced by the cluster storage apparatus 2. Referring now to Fig. 2 there is shown a flow chart of the operation of the prescan alpha content match algorithm of the present invention. At block 20 a series of counters called "alpha" counters is set up in memory, one counter for each letter in the alphabet. Additional counters may be set up for special characters that could form a part of the word such as apostrophe. A one is added to each counter that corresponds to a character in the word at block 21. At block 22, each word in a dictionary memory is fetched in turn and its corresponding character values are subtracted from the character counters containing the character values for the input word.
at block 23. At block 24, a length counter is set with a value equal to the sum of the length of the input word and the dictionary word. The absolute value of each alpha counter, is then subtracted from the word length counter at block 25. It must be noted that, in a general way, at block 24 a value is calculated using a combination of the number of characters of the input word and the dictionary word, and at block 25 a value is calculated using the common characters between the input word and the dictionary word. At block 26, the remainder from the counter containing the word length values minus the alpha counter values is multiplied by a predetermined factor and the length counter value for the total characters in the two words are multiplied by another predetermined factor at block 27. The predetermined factors are selected to set a threshold for which a word is selected from the dictionary memory if it has a number of characters matching the characters of input word. The threshold value may be arbitrarily set. However, it has been discovered that a threshold value of 40% will reduce the number of words output by the cluster storage apparatus by a factor of 10. At block 28 the calculated percentage values are tested to determine if the character match between the input word and the dictionary word exceeds the threshold. The words which exceed the threshold value are output by the processor at block 29 to output register 18 over bus 9 where they are available for analysis on a character by character basis to determine the most likely candidate that is the correct spelling of the input word. The words that do not match the threshold are discarded at block 30. This process is executed for each word in the dictionary as shown at block 31. Table 1 sets out the algorithm for implementing the prescan alpha content match method of this invention.

TABLE 1

Alphabetic—Content match algorithm

Enter

Clear to zero 26 alpha counters (A—Z called the Alpha-Content—Table 1 (Act 1))

Get the input word for analysis (candidate)

Do for each letter in the candidate

Add one to alpha counter for this letter in the candidate

Point to the next letter in the candidate

Enddo

Point to the start of the dictionary word list to compare with the candidate

Move Act I to an Act work-area namely a duplicate copy of Act I (actwork)

Point to dictionary word list word to be tested

Do for each letter in the dictionary word list word

Subtract one from the actwork counter for this letter in the dictionary word list word

Point to the next letter in the dictionary word list word

Enddo

Put into size counter 1 the sum of the length of the candidate and the length of the dictionary word list word

Copy size counter 1 to size counter 2

Do for each of the 26 counters in the actwork

Subtract absolute value of the counter contents from size counter 2.

Point to next counter in actwork

Enddo

Multiply size counter 1 by 6

Multiply size counter 2 by 10

If size counter 2 is not less than size counter 1

Then

Flag dictionary word list word as passing the Alpha-Content Match Algorithm and save

Else

Flag Dictionary word list word as failing the Alpha-Content Match Algorithm and discard

Endif

Enddo

Leave

Claims

1. Method for automatically selecting a small set of correctly spelled words that approximate the correct spelling of an input misspelled word, in a text processing system including a processor (10), an instruction memory (14) containing the instructions for controlling the operation of the processor, a digital reference matrix (16) a cluster storage apparatus (2) and a dictionary memory (12); said method comprising the following steps: the text word to be checked is converted to a vector representation and input for matching into said digital reference matrix (16),

if there is no matching at the preceding step indicating that the text word is misspelled, then the characters from said word are passed to said cluster storage apparatus (2) for determining a list of target words in said dictionary memory (12) candidates for the correct version of said text word.
sied method being characterized by the following sequences of steps repeated for each word of said list of target words:

a) defining a set of alpha counters for each character of said text word;

b) incrementing each alpha counter to accumulate a count of each respective character in said text word;

c) decrementing each alpha counter for each respective character in a target word of the list of target words in said dictionary memory;

d) calculating an absolute value for the remainders in the set of alpha counters;

e) calculating a threshold value using the combination of the number of characters in said text word and said target word;

f) using said absolute value for calculating a match value for said target word, based upon the common characters between said text word and said target word; and

g) selecting said target word if its match value exceeds the calculated threshold value.

2. Method according to claim 1 in which:

step e) consists in calculating the sum of the length in characters of said text word and said target word in a length counter and multiplying this sum by a predetermined factor to obtain said threshold value, and

step f) consists in subtracting said absolute value of the alpha counters obtained at step d) from said length counter and multiplying the obtained value by a predetermined factor to obtain said match value.

3. System for automatically selecting a small set of correctly spelled words that approximate the correct spelling of an input misspelled word comprising:

a dictionary memory (12) storing a vocabulary of words

a digital reference matrix (16) receiving an input word converted to a vector representation, for determining by matching if said input word is correctly spelled,

a cluster storage apparatus (2) for determining, in response to the characters of an input word determined misspelled by no matching in said digital reference matrix, a list of correctly spelled words in said dictionary memory candidates for the correct version of said misspelled word; said system being characterized in that it comprises:

an alpha counter means for each text character the content of each counter means being incremented for each respective character of said misspelled word and decremented for each respective character of a target word of said list of correctly spelled words from said cluster storage apparatus,

processing means (10) for calculating an absolute value for the remainders in said alpha counter means, calculating a threshold value using the combination of the number of characters in said misspelled word and said target word, calculating a match for said target word based upon the common characters between said misspelled word and said target word, and selecting said target word if its match value exceeds the calculated threshold value.

an output register (28) for storing said selected target word and transmitting it to an output device for analysis on a character-by-character basis.

Patentansprüche

1. Methode für automatische Auswahl einer kleinen Gruppe richtig geschriebener Wörter, die sich der richtigen Schreibweise eines eingegebenen falsch geschriebenen Wortes annähern, in einem Textverarbeitungssystem mit einem Prozessor (10), einem Anweisungspeicher (14), der die Anweisungen für die Steuerung des Vorgangs auf dem Prozessor enthält, einer digitalen Bezugsmatrix (16), einem Bündelspeichergestät (2) und einem Wörterbuchspeichergestät (12); Methode, die folgende Schritte enthält:

das zu prüfende Textwort wird in eine vektorielle Darstellung umgewandelt und in die besagte digitale Bezugsmatrix (16) zum Vergleich eingegeben,

wenn kein passendes Wort im vorangehenden Schritt gefunden wird, was bedeutet, dass das Textwort falsch geschrieben ist, dann werden die Zeichen des besagten Wortes in den besagten Bündelspeicher (2) gegeben, um eine Liste von Zielwörtern im besagten Wörterbuchspeicher (12) zu ermitteln, welche für die richtige Ausführung des besagten Textwortes in Frage kommen; die besagte Methode ist durch nachstehende Schritfolgen gekennzeichnet, die für jedes Wort der besagten Zielwörterliste wiederholt werden:

a) Definition einer Gruppe von Buchstabenzählern für jedes Zeichen des besagten Textwortes;

b) Inkrementierung eines jeden Buchstabenzählers für die Zusammenstellung einer Zählung eines jeden Zeichens im besagten Textwort;

c) Dekrementierung eines jeden Alphazählers für jedes Zeichen in einem Zielwort aus der Liste der Zielwörter im besagten Wörterbuchspeichergestät;

d) Errechnung eines absoluten Wertes für den Rest in der Gruppe der Alphazähler;

e) Errechnung eines Schwellwertes unter Verwendung der Verbindung der Zeichenzahl im besagten Textwort und im besagten Zielwort; f) Wegwendung des besagten absoluten Wertes für die Errechnung eines passenden Wertes für das besagte Zielwort, beruhend auf den gemeinsamen Zeichen zwischen dem besagten Textwort und dem besagten Zielwort; und
g) Auswahl des Zielwortes, wenn sein Übereinstimmungswert den berechneten Schwellwert überschreitet.

2. Verfahren gemäss Anspruch 1, in dem:
der Schritt (e) darin besteht, die Summe der Länge in Zeichen des besagten Textwortes und des besagten Zielwortes in einem Längenzähler zu ermitteln und diese Summe mit einem vorgegebenen Faktor zu multiplizieren, um den besagten Schwellwert zu erhalten; und
Schritt (f) darin besteht, den besagten absoluten Wert von den in Schritt (d) erhaltenen Alphazählern vom besagten Längenzähler zu subtrahieren und den erhaltenen Wert durch einen vorgegebenen Faktor zu multiplizieren, um den besagten Übereinstimmungswert zu erhalten.

3. System für die automatische Auswahl einer kleinen Gruppe richtig geschriebener Wörter, die sich der richtigen Schreibweise eines eingegangen falsch geschriebenen Wörter nähern, mit:
 - einem Wörterbuchspeicher (12) für die Speicherung eines Wortschatzes,
 - einer digitalen Bezugsmatrix (16), welche ein in eine Vektordarstellung umgewandeltes Eingabewort erhält, um durch Vergleich festzustellen, ob das gesuchte Eingabewort richtig geschrieben ist;
 - einem Bündelspeichergerät (2) für die Ermittlung, in Antwort auf die Zeichen eines als unrichtig geschriebenen ermittelten Wortes, das keine Ent sprechung in der besagten digitalen Bezugsmatrix findet, einer Liste richtig geschriebener Wörter im besagten Wörterbuchspeicher, die für die richtige Fassung des besagten falsch geschriebenen Wortes in Frage kommen; wobei das besagte System dadurch gekennzeichnet ist, dass es enthält:
 - ein Mittel für die Zählung der Buchstaben für jedes Textzeichen, wodurch der Inhalt eines jeden Zählermittels für jedes Zeichen des besagten falsch geschriebenen Wortes inkrementiert und für jedes Zeichen einer Zielgruppe eines besagten Listens richtig geschriebener Wörter aus besagtem Bündelspeichergerät dekrementiert wird,
 - ein Verarbeitungsmittel (10) für die Berechnung eines absoluten Wertes für den Rest in besagten Buchstabenzähler, zur Errechnung eines Schwel- wertes, der die Kombination der Zeichenanzahl in besagtem falsch geschriebenen Wort und in besagtem Zielwort verwendet, und einen Entsprechungswert für das besagte Zielwort auf der Grundlage der gemeinsamen Zeichen zwischen dem besagten falsch geschriebenen und dem besagten Zielwort errechnet, und besagtes Ziel- wort auswählt, wenn sein Entsprechungswert den errechneten Schwelwert überschreitet,
 - ein Ausgaberegister (28) für die Speicherung des besagten Zielwortes und seine Weiterleitung an eine Ausgabevorrichtung für die Analyse auf Buchstabengrundlage.

Revendikations

1. Procédé pour sélectionner automatiquement un petit jeu de mots correctement orthographiés proches de l'orthographe correcte d'un mot d'entrée mal orthographié, comprenant:
 - une mémoire dictionnaire (12) emmagasinant un vocabulaire de mots,
 - une matrice de référence numérique (16) recevant un mot d'entrée converti en représentation vectorielle, pour déterminer, par comparaison, si ledit mot d'entrée est correctement orthographié,
 - une mémoire de groupe (2) pour déterminer dans ladite mémoire de dictionnaire, en réponse aux caractères d'un mot d'entrée déterminé comme étant mal orthographié par absence de correspondance dans ladite matrice de référence.
numérique, une liste de mots correctement ortho-
graphiés candidats à la version correcte dudit mot
mal orthographié,
ledit système étant caractérisé en ce qu’il
comprend:
un compteur alphabétique pour chaque
caractère du texte le contenu de chaque compteur
étant incrémenté pour chaque caractère respectif
dudit mot mal orthographié et décrémenté pour
cchaque caractère respectif d’un mot candidat de
la dite liste de mots correctement orthographiés
en provenance de ladite mémoire de groupe,
des moyens de traitement (10) pour calculer
une valeur absolue des restes présents dans
lesdits compteurs alphabétiques, calculer une
valeur de seuil utilisant la combinaison du
nombre de caractères dans ledit mot mal ortho-
graphié et ledit mot candidat, calculer une valeur
de correspondance pour ledit mot candidat, et
sélectionner ledit mot candidat si sa valeur de
correspondance dépasse la valeur de seuil
calculée,
un registre de sortie (28) pour emmagasiner
ledit mot candidat sélectionné et le transmettre
sur un dispositif de sortie pour l’analyser sur une
base de caractère par caractère.
FIG. 2

1. ENTER
 2. A
 20. SET UP CHARACTER COUNTERS
 21. INCREMENT CHARACTER COUNTERS FOR INPUT WORD CHARACTERS
 22. FETCH DICTIONARY WORD
 23. DECREMENT COUNTER FOR EACH CHARACTER IN DICTIONARY WORD
 24. SUM THE CHARACTERS IN THE INPUT WORD AND DICTIONARY WORD
 25. SUBTRACT ABSOLUTE VALUE OF CHARACTER COUNTERS FROM CHARACTER SUM
 26. B
 27. MULTIPLY CHARACTER SUM BY PERCENTAGE FACTOR
 28. REMAINDER %<SUM %
 29. NO
 30. DISCARD DICTIONARY WORD
 31. LAST DICTIONARY WORD
 NO
 YES
 END

MULTIPLY REMAINDER BY PERCENTAGE FACTOR

OUTPUT DICTIONARY WORD

DISCARD DICTIONARY WORD

NO

YES

END