EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 19.10.83
Application number: 79102616.4
Date of filing: 24.07.79

Int. Cl.2: C 07 C 103/46, C 07 C 103/48, C 07 C 103/737, C 07 C 103/84, C 07 C 149/23, C 07 C 147/05, C 07 F 9/38, C 07 D 333/24, A 61 K 31/19, A 61 K 31/215

Novel Z-2-acylamino-3-mono- or di-substituted propionic acids and their esters and salts, and processes for preparing them.

Priority: 24.07.78 US 927212
22.06.79 US 50233

Date of publication of application: 14.05.80 Bulletin 80/10

Publication of the grant of the patent: 19.10.83 Bulletin 83/42

Designated Contracting States: AT BE CH DE FR GB IT LU NL SE

References cited:
DE - A - 2 805 701
DE - A - 2 805 724
US - A - 2 569 801
US - A - 2 622 074
US - A - 3 950 367

Proprietor: MERCK & CO. INC.
126, East Lincoln Avenue P.O. Box 2000
Rahway New Jersey 07065 (US)

Inventor: Graham, Donald W.
294 Old Tote Road
Mountainside, N.J. 07092 (US)
Inventor: Kahan, Frederick M.
2022 Brookside Avenue
Scotch Plains, N.J. 07076 (US)
Inventor: Rogers, Edward F.
61 Kings Highway
Middletown, N.J. 07748 (US)

Representative: Abitz, Walter, Dr.-Ing. et al,
Abitz, Morf, Gritschneider P.O. Box 86 01 09
D-8000 München 88 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

OO10 573

Novel 2-2-acylamino-3-monomethylated propenec acids and their esters and salts, and processes for preparing them

INTRODUCTION:

A new class of fused ring β-lactam antibiotics, including thienamycin and its semi-synthetic derivatives, epiphenamycins, and olivicic acids, has recently been described. These compounds which will be defined more extensively below, are herein referred to as the "thienamycin class of compounds". These compounds have a high level of antibacterial activity, but are subject to extensive metabolism by mammalian species.

The kidney was identified as the primary site of metabolism, and an enzyme was purified from renal extracts which catalyzed the inactivation of thienamycin by hydrolysis of the β-lactam. By such criteria as cytological localization, substrate specificity and susceptibility to enzyme inhibitors, this enzyme is very similar if not identical to a widely studied renal dipeptidase (EC.3.4.13.11), also referred to in the literature as "dehydropeptidase-I". However, the β-lactamase activity is exhibited only toward the thienamycin class of compounds. Indeed, there exists no precedent example of the mammalian metabolism via β-lactam cleavage of any representative of the classical β-lactam antibiotics, the penicillins and cephalosporins.

DETAILED DESCRIPTION OF THE INVENTION:

The chemical substances which selectively inhibit the metabolism of the dipeptidase (EC.3.4.13.11), also called "dipeptidase inhibitors", include chemical compounds which are 2-2-acylamino-3-monomethylated propenoates having the following formula

\[
\begin{array}{c}
\text{R}^1 \\
\text{CONH} \\
\text{COOR}^2 \\
\end{array}
\]

wherein

\(\text{R}^1 \) and \(\text{R}^2 \) are hydrocarbon radicals in the range respectively of 3—10 and 1—15 carbon atoms.

In either of these hydrocarbon radicals \(\text{R}^2 \) and \(\text{R}^3 \), up to 6 hydrogens may be replaced by halogens, or a non-terminal methylene may be replaced by oxygen or sulfur, including oxidized forms of the latter.

A terminal group in \(\text{R}^3 \) can also be replaced by a hydroxy or thiol group, which may be acylated, such as with an alkanoyl acid of 1—8 carbon atoms, or carbamoylated, including alkyl and dialkyl carbamate derivatives; or the hydrogen can be replaced by an amino group, which may be derivatized as an acylamino, ureido, amidino, guanidino, or alkyl or substituted alkyl amino group, including quaternary nitrogen groupings; or, alternatively, there may be replacement by acid groups such as carboxylic, phosphonic or sulfonic acid groups or esters or amides thereof, as well as cyano; or combinations thereof, such as a terminal amino acid grouping.

\(\text{R}^2 \) is preferably a branched alkyl or cycloalkyl radical \((\text{C}_{3-10}) \), with a limitation that the carbon adjacent to the carbonyl cannot be tertiary. \(\text{R}^1 \) is hydrogen, loweralkyl \((\text{C}_{1-8}) \) or dialkylaminoalkyl \((\text{e.g.,} \quad -\text{CH}_2\text{CH}_2\text{N(C}_3\text{H}_7)\text{)} \).

Some of the compounds with formula I above have asymmetric forms. Racemic 2,2-dimethylcyclopropanecarboxamido)-2-octenolic acid has been resolved. The activity resides in the dextrorotatory isomer, which has the S-configuration.

Within the definition of \(\text{R}^4 \), the following sub-groups are included:

\[\text{R}^4 \]

wherein

\(\text{R}^4 \) is a straight, branched, or cyclic hydrocarbon radical of 3—10 carbon atoms which may be substituted as specified above in the definition of \(\text{R}^2 \);

\[\text{R}^4 \text{R}^6 \]

wherein

\(\text{R}^6 \) is cycloalkyl of 3—6 carbon atoms and \(\text{R}^6 \) is either 1 or 2 alkyl substituents which may be joined to form another ring on the cycloalkyl group, or \(\text{R}^6 \) and \(\text{R}^8 \) may be substituted as specified above in the definition of \(\text{R}^2 \);

\[\text{R}^7 \text{R}^8 \]

wherein

\(\text{R}^7 \) is an alkylene group of 1—3 carbon atoms and \(\text{R}^8 \) is cycloalkyl of 3—6 carbon atoms which may be substituted as specified above in the definitions of \(\text{R}^7 \) and \(\text{R}^8 \); within these sub-groups, the following specific compounds are included:

Particularly preferred substituents within the definition of R² above include the 2,2-dimethylcyclopropyl and the 2,2-dichlorocyclopropyl groups.
0010 573

Within the definition of R³, particularly preferred groups of compounds include N-alkyl (1—9 carbons) and N-methyl (1—9 carbons), having a terminal substituent which is a quaternary nitrogen, amine derivative, or amino acid derived group.

By the term “quaternary nitrogen” is meant a tetrasubstituted or heteroaromatic nitrogen which is positively charged. An ammonium moiety, substituted with hydrocarbon groups having 1—7 carbon atoms, which can be the same or different, is significant.

By the term “amine derivative” is meant a group such as amino, acylamino, ureido, amidino, guanidino and alkyl derivatives thereof.

By the term “amine acid derived group” is meant a moiety such as cysteinylic (—SCH₂CH(NH₂)COOH) or sarcosyl (—N(CH₃)₂CH₂COOH) in which a hydrogen joined to O, N or S of known amino acids is replaced.

Particularly preferred compounds from the most preferred groups of substituents of R² and R³ are those wherein R² is 2,2-dimethylcyclopropyl or 2,2-dichlorocyclopropyl, and R³ is a hydrocarbon chain of 3 to 7 carbon atoms without a terminal substituent, or having a terminal substituent which is trimethylammonium, amidino, guanidino, 2-amino-2-carboxyethylthio, or ureido. Names of specific examples of these include:

Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt;
Z-2-(2,2-dichlorocyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt;
Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-amidino-2-octenoic acid;
Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-guanidino-2-octenoic acid;
Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-ureido-2-octenoic acid;
Z-8-(L-2-amino-2-carboxyethylthio)-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid;
Z-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid (racemic and dextrotratory forms); and
Z-2-(2,2-dichlorocyclopropanecarboxamido)-2-octenoic acid.

The Z configuration (J.E. Blackwood et al., J. Am. Chem. Soc., 90, p. 509 (1968)) is assigned to the above compounds on the basis of their NMR spectra by analogy with the work of A. Srinivasan et al. [Tetrahedron Lett., 891 (1976)].

Although these compounds of Formula I, when R¹ is H, are described and named as the free acids, it will be apparent to one skilled in the art that various pharmaceutically acceptable derivatives such as alkali and alkaline earth metal, ammonium, or amine salts, or the like can be employed as equivalents thereto. Salts such as the sodium, potassium, calcium, or tetramethylammonium salts are suitable.

UTILITY OF THE INVENTION:

As noted above, the compounds of this invention are dipeptidase (EC.3.4.13.11) inhibitors, and can be used in combination with antibacterial compounds which are subject to renal degradation. The group of antibiotics of present primary importance for use in combination with the Z-2-acylamino-3-mono-substituted propenoates of this invention are the “thienamycin class of compounds”.

The term “thienamycin class of compounds” is used to identify any of a number of naturally occurring, semi-synthetic, or synthetic derivatives or analog compounds having a common fused ring β-lactam nucleus. These compounds can be generally classified as 6- and (optionally) 2-substituted pen-2-em-3-carboxylic acids and 1-carbadethia-pen-2-em-3-carboxylic acids or 1-azabicyclo[3.2.0]hept-2-ene-7-one-2-carboxylic acids.

Specific compounds particularly useful in this invention are represented structurally in the following formula II:

\[
\begin{align*}
\text{O} & \quad \text{COOH} \\
\text{R}^2 & \quad \text{N} \\
\text{X} & \quad \text{R}^2 \\
\text{R}^6 & \quad \text{R}^7
\end{align*}
\]

wherein

X can be CH₂ or S; R² can be hydrogen; —S—CH₂CH₃NHR³, wherein R³ is hydrogen, acetyl, formimidoyl, acetimidoyl; —S(O)—CH═CHNHCOCH₃ and —S—CH═CHNHCOCH₃; and R⁶ is

—CHCH₃

wherein

R⁷ is hydrogen, hydroxy or hydroxysulfonyloxy, or R⁷ is H. All possible stereoisomeric forms are included within the above structural definition.

All of these compounds within Formula II are described in the literature. When X is CH₂, and R² is
SCH₂CH₃NH₂ and R⁴ is CH₃OCH₃, the compound is known as thienamycin, an antibiotic produced by fermentation of S. cattleya, deposited as NRRL 8057 at Northern Regional Research Laboratories, U.S. Department of Agriculture, Peoria, Illinois, U.S.A., on November 18, 1974 described and claimed in U.S. Patent 3,950,357, issued April 13, 1976. The N-substituted derivatives of thienamycin, i.e., in the formula II above wherein R² is other than hydrogen, are disclosed and claimed in co-pending U.S. applications and their published foreign equivalents. The fermentation product N-acetyl thienamycin (R⁴ is CH₃OCH₃, and R² is acetylated), also called 924A, is claimed in Belgian Patent No. 848,346, issued May 16, 1977. The N-imidoyl derivatives are covered in Belgian Patent No. 848,545, issued May 20, 1977. The unsaturated side-chain-containing compound, also called N-acetylhydrothienamycin or 924A, is a fermentation product of S. cattleya, NRRL 8057 claimed in U.S. Patent 4,162,323, issued July 24, 1979 and also in Belgian Patent No. 866,035, issued October 17, 1979. Epimeric forms of N-acetyl thienamycin, also called 890A and 890A, as well as the desacetyl 890A and desacetyl 890A are disclosed, respectively in Belgian Patent 848,349, issued May 16, 1977. Epimeric forms of the unsaturated thienamycin, also called 890A and 890A, are claimed in published French Patent 7,711,891 granted April 20, 1977. The 6-hydroxy sulfonamidomethyl-containing N-acetyl compounds, also called 890A or 890A, are claimed respectively, in published French Patent 7,734,456, granted June 23, 1980 and published French Patent 7,734,457, granted March 3, 1980. Desacetyl analogues of 890A and 890A are claimed in DE—OS 28 05 701, and also in French Patent 7,803,666, filed February 9, 1978; and DE—OS 28 05 724, and also in French Patent 7,803,667, filed February 9, 1978. Some of these latter compounds in the 890A and 890A series are also known as derivatives of olivamic acid (see Corbett et al., J. Chem. Soc. Chem. Commun. 1977, No. 24, pp. 953–954). Compounds of the Formula II above when R² is hydrogen, also called descestryaminyl thienamycins, are claimed in French Patent 7,814,597, granted October 27, 1980 and also in Belgian Patent 867,227, issued November 20, 1978.

When R⁴ is hydrogen, and X is CH₂, these compounds are disclosed in Belgian Patent 860,962 and in DE—OS 2,751,624, filed November 18, 1977.

A thienamycin-type antibiotic in which R² is —SCH₂CH₃NHAc and R⁴ is CH₃H₂ has been named PS—5 and is reported by K. Okamura et al., J. Antibiotics 37, p. 480 (1978), see also Belgian Patents 865,578.

Particularly preferred members within the thienamycin class of compounds are the N-formimidoyl and N-acetamidoyl derivatives of thienamycin. The crystalline form of N-formimidoyl thienamycin, which has recently been described, is also useful in the practice of this invention. An example illustrating a preferred way of making this compound follows:

ILLUSTRATIVE EXAMPLE

N-Formimidoyl thienamycin, crystalline

Step A. Benzyl formimidate hydrochloride

A 3 l. three-necked flask fitted with an addition funnel, overhead stirrer, and a reflux condenser, was charged with a mixture of benzyl alcohol (125 g., 1.15 mol) formamide (61 g., 1.12 mol) and anhydrous ether (1200 ml.). The mixture was stirred vigorously at room temperature (20—25°C) under a nitrogen atmosphere and benzyl chloride (157 g., 1.12 mol) in 50 ml. of anhydrous ether was added dropwise using the addition funnel. The addition required approximately 50 minutes. The reaction mixture was stirred an additional 30 minutes at room temperature. The ether was removed by decantation and 300 ml. of acetic anhydride in 500 ml. of anhydrous ether was added. The mixture was stirred 30 minutes at room temperature. The precipitate was allowed to settle and the ether-acetic anhydride was again removed by decantation. The solid was collected by filtration, washed with 500 ml. of ether and dried in vacuo over KOH at 25°C for 2 hrs. to give 130 g. (67%) of benzylformimidate hydrochloride as a white solid.

The product was assayed by NMR δ (DMSO) 5.7 (s, 2H, OCH₃), 7.5 (s, 5H, O), 9.0 (s, 1H, HC═N). The product is thermally unstable. It decomposes to formamide and benzyl chloride at 0°C and above. However, no appreciable decomposition was detected on storage at —20°C for 2 months.

Step B. Derivatization of Thienamycin

Thienamycin (in the form of a 6 l. aqueous solution, pH = 6.5, concentrate from the fermentation broth, containing 28 g. thienamycin) was placed in a large beaker (12 l.) and cooled to 0°C. The beaker was equipped with a pH meter and an efficient high speed stirrer. The pH was raised to 8.5 by the careful addition of 3N KOH (KOH was added dropwise via syringe to the stirred solution). The solution was treated with 6 equivalents of solid benzyl formimidate hydrochloride (~100 g.) in portions while maintaining the pH at 8.5 ± 0.3 by the addition of 3N KOH (200 ml.) using a syringe. The addition required 3—5 min. The reaction mixture was stirred for 6 min. at 0°C and then assayed by liquid
chromatography to insure completion of the reaction. The solution was adjusted to pH 7 with 1N HCl. The volume of the reaction mixture was measured, and the solution was assayed by UV. The neutralized reaction mixture was concentrated to 15 g./l. on the reverse osmosis unit at <10°C. The volume of the concentrate was measured and the pH was adjusted to 7.2—7.4, if necessary. The concentrate was filtered through a medium porosity sintered glass funnel to remove any solids present after concentration.

Step C. Dowex 50W × 2. Chromatography

The concentrate (750—1000 mL, 15—20 g.) was applied to 0°C. to a precooled 18 l. column of Dowex 50W × 2 in the potassium cycle (200—400 mesh resin) and the column was eluted at 0—5°C with distilled deionized water a flow rate of 90 ml/min. and a head pressure of 0—45 psig.

Forerun fractions of 4 l., 2 l., and one 1., were collected followed by 18 fractions of 450 ml. each, and one final fraction of 2 l. Each fraction was assayed by UV (1/100 dilution, NH₂OH extinction was omitted) and the total amount of NFT present in each fraction was calculated. The beginning and end fractions were assayed for liquid chromatography purity and the desired rich cut fractions were combined. The pH of the combined rich cuts was determined by both pH meter and bromothymol blue indicators. Solutions were adjusted to pH 7.2—7.4, if necessary. The combined rich cuts (3—4 l.) were then assayed by UV and the total formamidine content was determined, 15—16 g., 75% yield from the column. The rich cuts were concentrated on the reverse osmosis unit at <10°C as far as possible, then the concentration to 33 g./l. was completed on the circulatory evaporator at less than 28°C. A total volume of about 500 ml. concentrate was obtained.

Step D. Crystallization of N-Formimidoyl Thienamycin

The concentrate from the previous step is adjusted to 7.3, if necessary, and N-formimidoyl thienamycin content assayed by UV, was about 85—90%. The concentrate was filtered through a sintered glass funnel (medium porosity) into a large Erlenmeyer flask. Five volumes (~2200 mL.) of 3A ethanol was filtered into the concentrate and the solution was stirred at room temperature for 10 minutes and at 0°C for 12—24 hrs.

The crystals were filtered by suction filtration and washed with 0.1 volume (~250 mL.) of 0°C 80% 3A ethanol followed by 1/25 volume (100 mL.) of 3A ethanol at room temperature. The crystals were dried in vacuo for 12—24 hrs. to give approximately a 40% overall yield of N-formimidoyl thienamycin (10—12 g.).

Analytical results on a 50 g. blend of N-formimidoyl thienamycin, prepared as above, are as follows:

C, theory 45.42%; found, 45.82%
H, theory 6.03%; found, 5.72%
N, theory 13.24%; found, 13.10%
S, theory 10.10%; found, 10.14%
residue on ignition, predicted 0.5, found 0.47%; [α]₂₅° = 89.4°, T.G. = 6.8%, UV λ max 300 MM, E₉ = 328.

METHODS OF USING THE INVENTION

As mentioned above, the thienamycin-type compound is used in combination with the dipeptidase inhibitor. The combination product is not part of this invention, but is claimed in a copending application, Case 161747Y, filed concurrently herewith.

The combination of the novel chemical inhibitors of this invention and the thienamycin class compound can be in the form of a pharmaceutical composition containing the two compounds in a pharmaceutically acceptable carrier. The two can be employed in amounts so that the weight ratio of the thienamycin class compound to inhibitor is 1:3 to 30:1, and preferably 1:1 to 5:1.

The components can also be separately administered. For instance, the thienamycin class compound can be administered intramuscularly or intravenously in amounts of 1—100 mg/kg/day, preferably 1—20 mg/kg/day, or 1—5 mg/kg/day, in divided dosage forms, e.g., three or four times a day. The inhibitor can be separately administered, orally, intramuscularly, or IV, in amounts of 1—100 mg/kg/day, or preferably 1—30 mg/kg/day, or 1—5 mg/kg/day. The amounts of the two components administered during one day ideally are within the ratio limits denoted above.

The most preferred dosage levels presently known to applicants is as a single dose, of two crystalline compounds, one being N-formimidoyl thienamycin and the other being (+) Z-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoc acid, coadministered in a sterile aqueous IV injection form (sodium salt), at a level of 150 mg. of the thienamycin and either 75 or 150 mg of the octenoc acid. This dose is given to humans (each assumed to weigh about 80 kg.) from 1 to 4 times a day, or 2—8 mg/kg/day of the thienamycin class compound and 1—8 mg/kg/day of the inhibitor.

The components, whether administered separately or together are employed in pharmaceutically acceptable carriers such as conventional vehicles adapted for oral administration such as capsules,
METHODS OF TESTING THE COMBINATION ANTIBACTERIAL AGENT

In order to demonstrate the ability of the compounds of Formula I to suppress the action of the renal dipeptidase enzyme, an in vitro screen procedure was followed. This measured the ability of compounds to inhibit hydrolysis of glycyldehydrophenylalanine (GDP) by a solubilized preparation of dipeptidase isolated from hog kidneys. The procedure is as follows: to a 1 ml. system containing 50 mM "MOPS" (3-(N-morpholino)propanesulfonic acid) buffer, pH 7.1, is added 5 µg of lyophilized enzyme, and the test compound at a final concentration of 0.1 mM. After a five minute incubation at 37°C, GDP is added to a final concentration of 0.05 mM. Incubation is continued for 10 minutes, at 37°C and hydrolysis of GDP is measured by the change in optical density with time at 275 nm. Inhibition of the enzyme is gauged by comparison to a standard run containing no inhibitor and is expressed as the inhibitor binding constant, K_i. This is the concentration of the inhibitor which achieves 50% inhibition of enzyme.

The substrate GDP is employed in preference to thienamycin in this screen because it has a much higher maximal velocity of hydrolysis by renal dipeptidase, thereby reducing the amount of enzyme required. Both GDP and thienamycin have a similar affinity for renal dipeptidase; furthermore, K_i's of inhibitors tested have been identical for the two substrates.

In addition to this in vitro screen procedure, an in vivo screen was followed to measure the test compound's ability to inhibit metabolism as reflected by increase in urinary recovery of thienamycin from the mouse. The procedure involves co-administration of the test compound by the intravenous or subcutaneous route at a dose-rate of 10—100 mg/kg, with 10 mg/kg thienamycin. Thienamycin recovery in the urine over a 4 hour period is then compared with its recovery in a control group to which test compound was not co-administered.

Urinary recovery of thienamycin was measured in all cases with the use of a cylinder or disc diffusion assay, conducted in a manner described in U.S. Patent 3,950,357. This bioassay, with Staphylococcus aureus ATCC 6538 as the test organism, has a useful response range from 0.04 µg/ml to 3.0 µg/ml.

Examples which illustrate this invention follow.

SECTION 1.
EXAMPLES ILLUSTRATING ACTIVITY

Example 1

In Vitro Test Data

A 1 ml. system of 50 mM "MOPS" buffer, pH 7.1, is used. To this is added 5 µg of the pig renal enzyme and an amount of the test compound to bring its final concentration to 0.1 mM. After a five minute incubation at 37°C, an amount of GDP is added to bring its final concentration to 0.05 mM. The system is again incubated for 10 minutes, at 37°C. Hydrolysis of GDP is measured by its change in optical density with time at 275 nm. Inhibition of the enzyme is gauged by comparison to a standard run containing no inhibitor and its presented as percent inhibition. The K_i is a constant indicating the concentration of inhibitor necessary to produce 50% inhibition of enzyme. It is a calculated value obtained from running multiple in vitro assays, as above, at concentrations resulting in inhibition below and above the 50% inhibition point. The results are presented in Table 1.
TABLE I

<table>
<thead>
<tr>
<th>Dipeptidase inhibitor</th>
<th>(R^3)</th>
<th>(R^2)</th>
<th>(%) Inhibition at (10^{-4})M</th>
<th>(K_i) (µM)</th>
</tr>
</thead>
</table>
| 1 | \(\text{CH}_2\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
 \node at (0.5,0.866) {CH$_3$};
 \node at (-0.5,0.866) {CH$_3$};
\end{tikzpicture} \) | 98 | 0.18 |
| 2* | \(\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
 \node at (0.5,0.866) {CH$_3$};
 \node at (-0.5,0.866) {CH$_3$};
\end{tikzpicture} \) | 98 | 0.39 |
| 2a* | \(\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
 \node at (0.5,0.866) {CH$_3$};
 \node at (-0.5,0.866) {CH$_3$};
\end{tikzpicture} \) | 100 | 0.12 |
| 2b* | \(\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
 \node at (0.5,0.866) {CH$_3$};
 \node at (-0.5,0.866) {CH$_3$};
\end{tikzpicture} \) | 19.8 | |
| 3 | \(\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
\end{tikzpicture} \) | 92 | 1.7 |
| 4 | \(\text{CH}_2\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
\end{tikzpicture} \) | 87 | 3.2 |
| 5 | \(\text{CH}_3 \) | \(-\text{CH}_2\text{CH}-\text{CH}_2\text{C} (\text{CH}_3)_3 \) | 81 | 4.4 |
| 6 | \(\text{CH}_3 \) | \(\begin{tikzpicture}
 \draw (0,0) -- (0.5,0.866) -- (-0.5,0.866) -- cycle;
 \draw (0,0) -- (-0.5,-0.866) -- (0.5,-0.866) -- cycle;
 \draw (0,0) -- (0,1.732);
 \node at (0,1.732) {CH$_3$};
\end{tikzpicture} \) | 83 | 4.6 |
| 7 | \(\text{CH}_3 \) | \(-\text{CH}_2\text{CH} \) | 91 | 6 |

* Compounds 2, 2a, and 2b are the racemic, dextrorotatory and levorotatory forms respectively.
<table>
<thead>
<tr>
<th>Dipetidase Inhibitor</th>
<th>R³</th>
<th>R²</th>
<th>% Inhibition at 10⁻⁴M</th>
<th>Kᵢ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>CH₃</td>
<td></td>
<td>80</td>
<td>6.2</td>
</tr>
<tr>
<td>9</td>
<td>CH₃</td>
<td>−CH₂</td>
<td>83</td>
<td>6.6</td>
</tr>
<tr>
<td>10</td>
<td>CH₃</td>
<td>△</td>
<td>97</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>CH₃</td>
<td>−CH₂−CH−CH₂CH₃</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>−(CH₂)₄CH₂</td>
<td>△</td>
<td></td>
<td>.03</td>
</tr>
<tr>
<td>13</td>
<td>−(CH₂)₅N⁺(CH₃)₃</td>
<td>△</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>−(CH₂)₅N⁺(CH₃)₃</td>
<td>△</td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>15</td>
<td>−(CH₂)₅−NH−C=NH</td>
<td>△</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>−(CH₂)₅−NH−C=N(CH₃)₂</td>
<td>△</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>−(CH₂)₄−S−CH₂−C−COO⁻</td>
<td>△</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>18</td>
<td>CH₃</td>
<td>−CH₂Cl(CH₃)₃</td>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>Di-peptidase Inhibitor</td>
<td>(R^3)</td>
<td>(R^2)</td>
<td>% Inhibition at (10^{-4} \text{M})</td>
<td>(K_i) ((\mu \text{M}))</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>19</td>
<td>(\text{CH}_3)</td>
<td>(-\text{(CH}_2\text{)}_6\text{CH}_3)</td>
<td>72</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>(\text{CH}_3)</td>
<td>(-\text{(CH}_2\text{)}_2\text{CH}_3)</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>(\text{CH}_3)</td>
<td>(-\text{(CH}_2\text{)}_3)</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}_2)</td>
<td>64</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>(\text{CH}_3)</td>
<td>((\text{CH}_2\text{)}_3\text{CH}_3)</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>24</td>
<td>(\text{CH}_3)</td>
<td>(-)</td>
<td>59</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>(\text{CH}_3)</td>
<td>(-\text{(CH}_2\text{)}_4\text{CH}(\text{CH}_3)_2)</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>26</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}_2\text{CH}_2)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}_2\text{CH}_2)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}_2-(\text{CH}_2\text{)}_3\text{CH}_3)</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>29</td>
<td>(\text{CH}_3)</td>
<td>(-\text{(CH}_2\text{)}_5\text{CH}_3)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}(\text{CH}_2\text{CH}_3)\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}(\text{CH}_2\text{CH}_2\text{CH}_3)_2)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>(\text{CH}_3)</td>
<td>(-\text{CH}(\text{CH}_3)_2)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>(\text{HOO-CH}_2\text{CH}_2)</td>
<td>(-)</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>Di-peptidase inhibitor</td>
<td>R^3</td>
<td>R^2</td>
<td>% Inhibition at 10^{-4}M</td>
<td>K_i (μM)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>34</td>
<td>CH$_3$</td>
<td>$\text{-CH}_2\text{-CH-CH}_2\text{CH}_2\text{OCH}_3$</td>
<td>88</td>
<td>9</td>
</tr>
<tr>
<td>35</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$Br</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>36</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_2$CH$_2$CH$_2$Cl</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>37</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_2$CH$_2$</td>
<td>72</td>
<td>11</td>
</tr>
<tr>
<td>38</td>
<td>CH$_3$</td>
<td>C(CH$_3$)$_3$</td>
<td>90</td>
<td>6.5</td>
</tr>
<tr>
<td>39</td>
<td>CH$_3$(CH$_2$)$_4$</td>
<td>CH$_2$-CHCH(CH$_3$)$_2$</td>
<td>95</td>
<td>2.6</td>
</tr>
<tr>
<td>40</td>
<td>CH$_3$</td>
<td>CH$_3$CH$_3$</td>
<td>100</td>
<td>0.45</td>
</tr>
<tr>
<td>41</td>
<td>(CH$_3$)$_2$CH</td>
<td>CH$_3$</td>
<td>98</td>
<td>0.54</td>
</tr>
<tr>
<td>42</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>98</td>
<td>0.86</td>
</tr>
<tr>
<td>43</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>96</td>
<td>1.6</td>
</tr>
<tr>
<td>44</td>
<td>CH$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>CH$_3$CH$_2$</td>
<td>CH$_3$</td>
<td>98</td>
<td>0.16</td>
</tr>
<tr>
<td>46</td>
<td>Ph</td>
<td>CH$_3$</td>
<td>100</td>
<td>0.62</td>
</tr>
<tr>
<td>Di-peptidase Inhibitor</td>
<td>R²</td>
<td>% Inhibition at 10⁻⁷M</td>
<td>Kᵢ (µM)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>47 CH₃CH₂CH₂</td>
<td></td>
<td>98</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>48 CH₃CH₂CH₂</td>
<td></td>
<td>97</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>49 CH₃(CH₂)₃</td>
<td></td>
<td>97</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>50 CH₃(CH₂)₄</td>
<td></td>
<td>100</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>51 HOOCCH₂CH₂</td>
<td></td>
<td>98</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>52 CH₃H₂CH₂</td>
<td></td>
<td>100</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>53 PhCH₂CH₂</td>
<td></td>
<td>96</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>54 CH₃SCH₂CH₂</td>
<td></td>
<td>99</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>55 CH₃SO₂CH₂CH₂</td>
<td></td>
<td>96</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>56 CH₃(CH₂)₅</td>
<td></td>
<td>98</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td>Di-peptidase Inhibitor</td>
<td>R<sup>3</sup></td>
<td>R<sup>2</sup></td>
<td>% Inhibition at 10<sup>-6</sup>M</td>
<td>K<sub>i</sub> (µM)</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>57 CH<sub>3</sub>(CH<sub>2</sub>)<sub>6</sub></td>
<td>99</td>
<td>0.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 CH<sub>3</sub>(CH<sub>2</sub>)<sub>9</sub></td>
<td>96</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 PhCH<sub>2</sub></td>
<td>98</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 CH<sub>3</sub>O(CH<sub>2</sub>)<sub>3</sub></td>
<td>98</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub></td>
<td>98</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub></td>
<td>98</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CH<sub>2</sub></td>
<td>99</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 H<sub>2</sub>OCH(CH<sub>2</sub>)<sub>3</sub></td>
<td>99</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Vivo Test Data

An in vivo assay on the mouse was conducted as follows: 20 g Charles River CD, female mice were injected subcutaneously with the chosen dose of the chemical inhibitor. About two minutes later, the dose of thienamycin was given intravenously. A control of thienamycin above was also conducted. The level of thienamycin in the urine as a % of dose was measured using a bioassay technique. Results are found in Table II. The two test compound numbers are those from Table I. Compound 7 is 2-isovaleramido-2-butenoic acid; compound 10 is Z-2-cyclopropylcarboxamido-2-butenoic acid.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

Example 3

The compounds Z-2-isovaleramido-2-butenoic acid, Compound 7, and Z-2-(2,2-dimethylcyclopropanecarboxamido)-2-butenoic acid, Compound 2 were studied, in more detail in vivo in combination with thienamycin (THM), in the mouse. The general test procedure was similar to that of Example 2. Results are summarized in Table III and Table IV.

<table>
<thead>
<tr>
<th>TABLE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route((\text{a}))</td>
</tr>
<tr>
<td>Compound 7</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>SC</td>
</tr>
</tbody>
</table>

(\(\text{a})\) 20 g Charles River, CD, female mice
(\(\text{b})\) Co-administered
TABLE IV
Effect of Co-administered Z-2-(2,2-Dimethylcyclopropanecarboxamido)butanoic acid (Compound 2) on Urinary Recovery of Thienamycin in the Mouse[a]

<table>
<thead>
<tr>
<th>Route [b]</th>
<th>Compound 2</th>
<th>THM</th>
<th>mg/kg Dose</th>
<th>Compound 2</th>
<th>THM</th>
<th>Urinary Recovery THM, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>SC</td>
<td>—</td>
<td>1 10</td>
<td>—</td>
<td>10</td>
<td>30 ± 5</td>
</tr>
<tr>
<td>SC</td>
<td>SC</td>
<td>0.1</td>
<td>1 10</td>
<td>0.3</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>SC</td>
<td>SC</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>SC</td>
<td>SC</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>73</td>
</tr>
</tbody>
</table>

[a] 20 g Charles River, CD\textsubscript{1}, female mice

[b] Co-administered

Example 4
In another mouse study, the systemic antibacterial activity of thienamycin was enhanced approximately three-fold by coadministering 2-isovaleramido-2-butenoic acid, see Table V.

TABLE V
Effect of Co-administered Z-2-Isovaleramido-2-butenoic acid on the Systemic Efficacy of Thienamycin on the Treatment of \textit{Staphylococcus aureus} Infections

<table>
<thead>
<tr>
<th>THM</th>
<th>ED\textsubscript{50}, mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alone</td>
<td>0.2</td>
</tr>
<tr>
<td>+100 mg/kg inhibitor</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Example 5
A male beagle was used for a study of the effect of dipeptidase inhibitors on the urinary recovery of N-formimidoyl thienamycin. In a control study, the dog was given 5 mg/kg IV of the N-formimidoyl thienamycin without inhibitor. A second experiment used the same amount of N-formimidoylthienamycin, but also administered Z-2-isovaleramido-2-butenoic acid in 3 doses, each providing 20 mg/kg of the compound. The first dose was administered just after injection of the N-formimidoylthienamycin, the second at 40 min. and the third at 60 min. The third study employed a single dose (2 mg/kg) of Z-2-(2,2-dimethylcyclopropanecarboxamido)-2-butenoic acid, administered just before injection of the N-formimidoyl thienamycin. The results are in Table VI.

TABLE VI
Urinary Recovery 3 Hours Following the Administration of N-formimidoylthienamycin (5 mg/kg IV) in a Male Beagle

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>% Urinary Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-formimidoyl thienamycin</td>
<td>7.8</td>
</tr>
<tr>
<td>plus Z-2-isovaleramido-2-butenoic acid</td>
<td>46</td>
</tr>
<tr>
<td>plus Z-2-(2,2-dimethylcyclopropane carboxamido)-2-butenoic acid</td>
<td>53</td>
</tr>
</tbody>
</table>
EXAMPLES ILLUSTRATING CHEMICAL PREPARATIONS

The inhibitor compounds are made by condensing directly the appropriate 2-keto acid or ester and an amide:

\[\text{R}^2\text{CH}_2\text{CCO}_2\text{R} + \text{R}^3\text{CNH}_2 \rightarrow \]

wherein

\[\text{R}^2 \text{ and } \text{R}^3 \text{ are as defined, and } \text{R} \text{ is hydrogen or alkyl. The general reaction conditions involve mixing approximately 1—4:1 parts of the acid to the amide in an inert solvent such as toluene or methyl isovalerate and heating at reflux with azeotropic removal of water for from 3—48 hours, preferably 5—24 hours. The solution when cooled normally yields the product in crystalline form, but the product can also be isolated using a base extraction process. The product can be recrystallized by using generally known techniques. Condensations of keto esters require use of small amount of p-toluenesulfonic acid as catalyst. The catalyst also is helpful in some condensations with keto acids. It was known from U.S. Patent 2,622,074 to use a 2-keto acid (or ester thereof) and an amide to make \(\alpha \)-acylamidoacrylic acids (or esters or salts thereof) as well as \(\alpha \)-(alkoxycarbonamido)-acrylic acid (or esters or salts thereof). However, the conditions used are different from those of the above process.

Another route to the novel inhibitor compounds uses an \(\alpha \)-amino acid, t-butyl ester in reaction with an acid chloride:

This reaction takes place in the presence of base, such as triethylamine, in a solvent such as methylene chloride. The remaining N-acylated product (VII) is then oxidized by treatment with t-butyl hypochlorite followed by addition of sodium methoxide. This yields the 2-methoxy derivative (VIII) and/or its elimination product, the \(\alpha,\beta \)-unsaturated ester (IX). Further treatment with anhydrous hydrochloric acid converts either VIII or IX (or the mixture of both) to the desired \(\alpha,\beta \)-unsaturated free acid (I).

Some compounds wherein \(\text{R}^3 \) has a terminal substituent which is an amino, quaternary nitrogen, thio derivative, alkoxy, guanidino, acyloxy or cyano can be made most conveniently from an intermediate having a terminal bromine. Derivatized amino, such as formamidino, ureido, and acylamido (acetamido) can be made from the compounds having an amino group by reacting with benzyl formimidate HCl, potassium cyanate and the appropriate acyl anhydride (acetic dehydride), respectively.

More detail about preparation of the compounds is found in the following examples.

Example 6

Z-2-Isovaleramido-2-butenioic Acid

A solution of 1.07 g (10.5 mmole) of 2-keto butyric acid and 0.71 g (7.0 mmole) of isovaleramide in 15 ml of toluene was stirred under reflux with collection of H₂O in a small Dean-Stark trap. After 5 hrs, the solution was cooled, resulting in fairly heavy crystallization. After standing, the solid was collected on a filter and washed with toluene and then with CH₃Cl₂. Yield of white crystals = 0.47 g, mp 172—174° (slight prelim. softening). The material was recrystallized from diisopropyl ketone. Tlc (4:1 toluene- AcOH) now showed only a faint trace of the other isomer. Yield of white crystals = 0.32 g.
Example 7

Z-2-(2,2-Dimethylcyclopropane-carboxamido)-2-pentenoic acid
A solution of 1.74 g (15 mmole) of 2-ketovaleric acid and 1.13 g (10 mmole) of 2,2-dimethylcyclopropane-carboxamide in 20 ml of toluene was refluxed with stirring with collection of H₂O in a small Dean-Stark trap. After 20 hrs. the solution was cooled and treated with a gentle stream of N₂. Before much of the solvent had evaporated, crystallization was induced by scratching. After standing, the solid was collected on a filter and washed with toluene and some Et₂O. Yield of white crystals = 0.63 g (30%), mp 154.5—155.5° (slight prelim. softening). TLC (4:1 toluene-AcOH) showed only an extremely faint trace of the other isomer. NMR was consistent with the Z-configuration.

Example 8

Z-2-(3-Cyclopentylpropionamido)-2-butenolic acid
A solution of 1.41 g (10 mmole) of 3-cyclopentylpropionamide and 1.53 g (15 mmole) of 2-ketobutyric acid was stirred and refluxed under a small Dean-Stark trap. After 8 hrs. the solution was cooled, resulting in heavy crystallization. The solid was collected on a filter and washed with toluene and CH₂Cl₂. Yield of white crystals = 1.44 g, mp 180.5—182° (prelim. softening). The material was recrystallized from methyl ethyl ketone. Yield of white needles = 0.83 g (28%), mp 184—185° (slight prelim. softening). TLC (4:1 toluene-AcOH) now showed a single spot, and NMR indicated essentially pure Z-isomer.

Example 9

Z-2-(2-Ethylhexanamido)-2-butenolic acid
10 g. of 2-ethylhexanoyl chloride was added dropwise with stirring to 25 ml of cold conc. NH₄OH solution, resulting in immediate precipitation. The mixture was allowed to stir for 2hrs., then filtered, and air dried to give 6.5 g. of amide. 1.4 g (10 mmole) of the above compound and 1.5 g of ketobutyric acid (15 mmole) were refluxed in 25 ml toluene for 15 hrs with removal of water. The reaction mixture was cooled and partly evaporated with a stream of N₂. Crystallization of product occurred after standing for 3 hrs. The crystals were collected, washed 3 x with toluene, and air dried. There was isolated 1.13 g (50%) of product, mp 180—182°. NMR was in accord with the assigned structure and indicated <5% E isomer. TLC (4:1 toluene-AcOH) showed a single spot.

Example 10

Z-2-(2,2-Dimethylcyclopropane-carboxamido)-2-butenolic acid
1.53 g (15 mmole) of 2-ketobutyric acid, 1.13 g (10 mmole) of 2,2-dimethylcyclopropane-carboxamide and 20 ml of toluene stirred at reflux for 10 hours. After cooling the crystalline solid was filtered and washed with toluene (3 x 10 ml) and dried to give 1.06 g of product, mp 140—141°C. TLC (4:1 toluene-AcOH) showed essentially one spot and the NMR spectrum fit the desired structure.
Recrystallization from EtOAc gave after drying 0.533 g of product mp 142—143.5°, homogeneous by tlc.

<table>
<thead>
<tr>
<th>Anal. (C₁₂H₁₄NO₅)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>60.90</td>
<td>60.92</td>
</tr>
<tr>
<td>H</td>
<td>7.67</td>
<td>7.71</td>
</tr>
<tr>
<td>N</td>
<td>7.10</td>
<td>7.38</td>
</tr>
</tbody>
</table>

Example 11

Z-2-(2,2-Dimethylcyclopropanecarboxamido)-2-hexenoic acid

A mixture of 1.0 g. of 2,2-dimethylcyclopropanecarboxamide, 2.4 g. of 2-ketoadipic acid and 25 ml of ethyl isovalerate was heated under reflux for 16 hrs with removal of H₂O by a modified Dean-Stark trap containing molecular sieves (4A). After standing at room temperature overnight, the crystalline precipitate was filtered, washed with ether and recrystallized from ethyl acetate to give 0.23 g. of product, m.p. 163—165°. The NMR spectrum was consistent with the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C₁₂H₁₄NO₅)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>56.46</td>
<td>56.20</td>
</tr>
<tr>
<td>H</td>
<td>6.71</td>
<td>6.83</td>
</tr>
<tr>
<td>N</td>
<td>5.49</td>
<td>5.32</td>
</tr>
</tbody>
</table>

Example 12

Z-2-(2,2-Diethylcyclopropanecarboxamido)-2-butenoic acid

A mixture of 2.3 g of 2-ketobutyric acid, 2.0 g of 2,2-diethylcyclopropanecarboxamide, and 25 ml of toluene was heated under reflux for 16 hrs with removal of H₂O by a modified Dean-Stark trap containing molecular sieves (4A). No product precipitated upon cooling. Ether (25 ml) was added and the mixture was extracted with saturated NaHCO₃ (3 times). The combined extracts were acidified with concentrated HCl. The gummy precipitate crystallized when triturated with water. Recrystallization from ethyl acetate gave 0.31 g of product, m.p. 129—30°. The NMR spectrum was consistent with the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C₁₂H₁₆NO₅)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>63.98</td>
<td>64.01</td>
</tr>
<tr>
<td>H</td>
<td>8.50</td>
<td>8.62</td>
</tr>
<tr>
<td>N</td>
<td>6.22</td>
<td>6.21</td>
</tr>
</tbody>
</table>

Example 13

2-(2,2-Dimethylcyclopropanecarboxamido)-2-hexenoic acid

Step A: DL-Norleucine t-butyl ester

To a suspension of 9.82 g (75 mmole) of DL-norleucine in 80 ml of dioxane in a 500 ml, pressure bottle cooled in an ice bath was added slowly (with swirling) 8 ml of concentrated H₂SO₄. The resulting mixture was cooled in a dry ice bath as 80 ml of liquid isobutylene was added. The mixture was allowed to warm to room temperature and shaken under autogenous pressure for ~23 hrs. After most of the isobutylene had been vented off, the slightly hazy solution was cooled in ice and then added to a cold mixture of 400 ml of 1N NaOH and 500 ml of Et₂O. After shaking in a separate funnel, the layers were separated, and the aqueous fraction was washed with an additional 100 ml of Et₂O. The Et₂O solution was shaken with 150 ml of 0.5 N HCl. The acidic aqueous fraction was treated with 2.5 N NaOH until strongly basic and then shaken with 250 ml of Et₂O. The Et₂O solution was dried (MgSO₄), filtered, and concentrated on the rotovac. After prolonged pumping on high vacuum over a steam bath, final yield of clear, colorless residual oil = 9.04 g (65%). NMR now showed only a trace of dioxane. TLC (9:1 CHCl₃—MeOH) showed a single spot.

Step B: N-(2,2-Dimethylcyclopropanecarbonyl)-DL-norleucine t-butyl ester

To a solution of 8.98 g (48 mmole) of DL-norleucine t-butyl ester and 5.05 g (50 mmole) of triethylamine in 100 ml of CH₂Cl₂ stirred in an ice bath under a drying tube was added dropwise (over a period of 75 min.) a solution of 6.39 g (48 mmole) of 2,2-dimethylcyclopropanecarbonyl chloride (M. Elliot and N.R. James, British Patent No. 1.260,847 (1372)) in 50 ml of CH₂Cl₂. Precipitation of Et₂N-HCl occurred during the addition, especially toward the end. As the ice gradually melted, the mixture was allowed to warm to room temperature. After 16 hrs, the mixture was shaken with 200 ml of 0.5 N HCl, then with 2 ×
200 mL of 0.5 N NaOH, and finally 200 mL of H₂O. The CH₂Cl₂ fraction was dried with MgSO₄ treated with charcoal, and filtered through Celite. The filtrate was concentrated on the rotovac (finally under high vacuum). Yield of light orange residual oil = 11.93 g (88%). TLC (2:1 hexane-EtOAc) showed a single spot. NMR and IR were in accord with the assigned structure. After standing for several days, the unused portion of this material crystallized: m.p. 82—85°C.

Step C: t-Butyl-2-(2,2-dimethylcyclopropanecarboxamido)-2-methoxyhexanoate

To a solution of 6.37 g (22.5 mmole) of N-(2,2-dimethylcyclopropanecarbonyl)-DL-norleucine t-butyl ester in 35 mL of Et₂O stirred at room temperature under N₂ in the dark was added 2.69 mL (24.5 g, 22.5 mmole) of t-butyl hypochlorite. After 15 min., a solution of sodium methoxide prepared by dissolving 0.52 g (22.6 mmole) of sodium in 35 mL of MeOH was added. Stirring was continued at ambient temperature under N₂ in the dark. After 15 hrs., the precipitated NaCl was filtered off. The filtrate was diluted with Et₂O and washed successively with 3 x 50 mL of 0.5 N HCl, 50 mL of saturated Na₂CO₃, and 2 x 50 mL of H₂O. The Et₂O phase was dried over MgSO₄ and filtered. The filtrate was concentrated on the rotovac. The pale, golden-yellow residual oil (6.45 g) was subjected to preparative high pressure liquid chromatography, resulting in the separation and isolation of 273 mg and 496 mg of the two diastereomers of t-butyl 2-(2,2-dimethylcyclopropanecarboxamido)-2-methoxyhexanoate (respective m.p.'s 114—118°C and 124—125.5°C) as well as 1.97 g of a single isomer (apparently 2) of t-butyl 2-(2,2-dimethylcyclopropanecarboxamido)-2-hexenoate (colorless oil).

Step D: 2-(2,2-Dimethylcyclopropanecarboxamido)-2-hexenoic acid

A solution of 0.84 g (3.0 mmole) of t-butyl 2-(2,2-dimethylcyclopropanecarboxamido)-2-hexenoate in 10 mL of Et₂O saturated with anhydrous HCl was allowed to stand at room temperature under a drying tube. After 17 hrs., the solution was evaporated, and the residual gum was dissolved in 10 mL of saturated NaHCO₃. This solution was washed with an additional 15 mL of 0.5 N HCl, then dried (MgSO₄), filtered, and concentrated to give a viscous oil. The oil was crystallized from toluene. Yield of white crystals = 0.32 g (47%), m.p. 119—122°C. TLC (4:1 toluene-AcOH) showed a single spot. NMR indicated essentially pure Z-isomer. (Note: Treatment of the methanol adduct, t-butyl 2-(2,2-dimethylcyclopropanecarboxamido)-2-methoxyhexanoate, with anhydrous HCl in Et₂O under similar conditions gave the same product).

Example 14

(+)-Z-2-(2,2-Dimethylcyclopropanecarbonylamino)-2-octenoic acid, sodium salt

The reagents, (+)-2,2-dimethylcyclopropanecarboxamide, 7.0 g; 2-keto-octanoic acid ethyl ester, 14.7 g; 50 mg of p-toluenesulfonic acid; and 100 mL of toluene where charged to a 250 mL three-necked flask under a Dean-Stark containing several molecular sieve pellets. The mixture was refluxed vigorously for 27 hours. The resultant light yellow solution was cooled and concentrated in vacuo, at a water bath temperature of 45°C, in the presence of water to help remove toluene. The gummy residue was suspended in 230 mL of 2 N NaOH and stirred at 30°C for 3 hours; then the temperature was raised to 35°C for an additional 2—1/2 hrs. until a clear solution formed. The solution was then cooled, 85 mL of methylene chloride added, and the pH adjusted to 8.5 using 4 N HCl with stirring. The organic layer was separated and discarded. The aqueous layer (366 mL) was assayed by liquid chromatography to contain 37.2 mg/ml; 87% Z isomer. Another 85 mL portion of CH₂Cl₂ was then added and pH adjusted to 4.5 with stirring. The organic layer was separated and the aqueous layer re-extracted with 50 mL of CH₂Cl₂, and pH was again adjusted to 4.5. Combined organic extracts were dried over Na₂SO₄, filtered, and concentrated to a gum. This residue was dissolved in 150 mL isopropanol and 15 mL water and the pH adjusted to 8.2 with 2 N NaOH. The resulting solution was concentrated to an oily residue which was flushed with isopropanol until it turned to a crystalline solid, indicating that most water had been removed. It was crystallized from 120 mL of isopropanol, (cooled in ice for 1 hour) filtered, and washed with 50 mL cold isopropanol followed by copious amounts of acetone. It was dried at 60°C/0.1 mm/2 hours to yield 10.74 g (83.2%) crystalline material, having essentially a single peak in liquid chromatography, m.p. 241—243°C.

The starting material, (+)-2,2-dimethylcyclopropanecarboxamide is most conveniently prepared by resolution of the DL acid, followed by reaction with oxalyl chloride and then ammonia to give the resolved amide. One way of making the starting material is as follows: 23.1 g. of DL-2,2-dimethylcyclopropanecarboxylic acid was suspended in 33 mL H₂O and the pH adjusted to 8.0, using 50% NaOH, about 10 mL. To this was added a solution of 38.4 g quinine in a mixture of 60 mL methanol and 30 mL H₂O to which had been added about 8 mL of concentrated HCl in another 30 mL H₂O to give a pH of 7.1. (This was actually a solution of quinine hydrochloride). These solutions were added all at once, with stirring. The gummy crystalline material which formed was heated to give two clear layers and again stirred vigorously while cooling to give a crystalline product. This product was permitted to stand over two days at room temperature. It was then filtered, washed with 2 x 10 mL water, and 2 x 10 mL 50% methanol, and air dried with suction. The yield of
crude quinoline salt was 44.8 g (48.7% yield) monohydrate, m.p. 113—116°C, having a $\alpha\text{ }^20\text{ }^{\circ}$ of 94.3°, C = 1.0; CHCl$_3$ was recrystallized from acetone to yield 24.35 g, m.p. 127—130°C. This purified quinoline salt was converted to the acid by reaction with aqueous base and chloroform, followed by acid, to yield (96%) 3.9 g having $\alpha\text{ }^20\text{ }^{\circ}$ of +146.0°.

This acid was converted to the amide as follows: A charge of 30.5 g (+)-acid was added over 5—10 minutes through a dropping funnel to chilled (10°C) oxalyl chloride, 54 ml., containing 1 drop dimethylformamide. This was stirred overnight at ambient temperature. A clear solution was observed, which was added to 100 ml. methylene chloride to dilute. Excess oxalyl chloride was removed by concentrating and the mixture flushed twice with methylene chloride.

The resultant solution was diluted with an equal volume of methylene chloride, and added continuously through a dropping funnel to about 100 ml. anhydrous liquid ammonia which was diluted with 100 ml methylene chloride. A dry ice-acetone cooling bath was used during the addition. When all was added, the cooling bath was removed and the mixture stirred at room temperature for about 1/2 hour. The mixture was filtered, to remove precipitated ammonium chloride, and concentrated to dryness. The crude weight was 26.6 g, (88%). It was redissolved in excess hot ethyl acetate and filtered through a preheated sintered glass funnel to separate from trace NH$_2$Cl. Excess ethyl acetate was atmospherically distilled off. When half the volume remained, 130 ml of heptane were added, and ethyl acetate was continued to be distilled off, until the boiling point started to rise (to near 80°C, much of product had already crystallized out). Heat was removed, and the mixture let cool gradually to about 30°C, then cooled with an ice bath to 0—5°C for about 1/2 hour. The product was recovered as nice silvery-white crystalline flakes, washed with 3×ethyl acetate/hexane mixture, 1/1.15 and air dried to constant weight. It weighed 23.3 g (77.1% yield overall, 87.6% recovery from crude), m.p. = 135—138°C (varies with rate of heating). Angle of rotation was determined by dissolving 0.0543 g in 10 ml chloroform, $\alpha\text{ }^20\text{ }^{\circ}$ = +100.9°.

Example 15

Z-2-(2,2-Dichlorocyclopropanecarboxamido)-2-butenoic acid

Step A: 2,2-Dichlorocyclopropanecarboxamide

A 7.1 g sample of 2,2-Dichlorocyclopropanecarboxamide (U.S. Patent 3,301,896, issued January 31, 1967) was added dropwise to 75 ml of concentrated ammonium hydroxide with vigorous stirring. The temperature of the reaction mixture was maintained below 10°C with an ice bath. The mixture was stirred in the ice bath for 30 min., then at room temperature for 1 hr. The aqueous ammonia was evaporated under reduced pressure (bath at 50°C). The solid residue was extracted with hot ethyl acetate (3×30 ml). The extracts were boiled down to 40 ml and 20 ml of hexane was added. After cooling in ice, the solid was filtered, washed with ethyl acetate-hexane (1:1) and dried to give 2.7 g of 2,2-Dichlorocyclopropanecarboxamide, m.p. 144—146°C. The NMR spectrum was in accord with the desired structure.

Another 1.3 g of amide, m.p. 143—145°C could be recovered from the mother liquor.

Step B: Z-2-(2,2-Dichlorocyclopropanecarboxamido)-2-butenoic acid

A mixture of 1.53 g (15 mmoles) of 2-ketobutyric acid, 1.54 g (10 mmoles) of 2,2-Dichlorocyclopropanecarboxamide and 10 ml of toluene was heated under reflux for 12 hrs. with removal of H$_2$O by a modified Dean-Stark trap containing molecular sieves (4A). An additional 0.7 g of 2-ketobutyric acid was added and the reaction mixture was heated under reflux for an additional 12 hrs. The mixture was cooled, diluted with 20 ml of toluene and extracted with saturated sodium bicarbonate (3×10 ml). The extracts were combined, washed with ether and acidified to pH 3 (pH meter) with concentrated hydrochloric acid. A gum precipitated which soon solidified. It was filtered, washed with water, dried and recrystallized from nitromethane to give 423 mg of Z-2-(2,2-Dichlorocyclopropanecarboxamido)-2-butenoic acid, m.p. 188—189.5°C. The NMR spectrum was in accord with the desired structure.

Another 1.3 g of amide, m.p. 143—145°C could be recovered from the mother liquor.

<table>
<thead>
<tr>
<th>Anal. (C$_6$H$_5$Cl$_2$NO)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>31.20</td>
<td>31.26</td>
</tr>
<tr>
<td>H</td>
<td>3.27</td>
<td>3.31</td>
</tr>
<tr>
<td>N</td>
<td>9.10</td>
<td>9.11</td>
</tr>
<tr>
<td>Cl</td>
<td>46.04</td>
<td>45.79</td>
</tr>
</tbody>
</table>

Another 1.3 g of amide, m.p. 143—145°C could be recovered from the mother liquor.

<table>
<thead>
<tr>
<th>Anal. (C$_6$H$_5$Cl$_2$NO$_3$)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>40.36</td>
<td>40.48</td>
</tr>
<tr>
<td>H</td>
<td>3.81</td>
<td>3.80</td>
</tr>
<tr>
<td>N</td>
<td>5.88</td>
<td>5.91</td>
</tr>
<tr>
<td>Cl</td>
<td>29.78</td>
<td>29.53</td>
</tr>
</tbody>
</table>

20
Example 16
Z-2-(2,2-Dichlorocyclopropanecarboxamido)-2-octenoic acid
A mixture of 1.19 g (7.5 mmoles) of 2-ketoacanoic acid, 0.77 g (5.0 mmoles) of 2,2-
dichlorocyclopropanecarboxamid, and 5 ml toluene were reacted using the same procedure as in the
previous example. The crude product (537 mg) was purified by conversion to the methyl ester
(BF$_3$/CH$_2$OH), preparative TLC (silica gel G, 4:1 hexane-EtOAc) and saponification of the pure Z-methyl
ester (0.3 M LiOH/CH$_3$OH) to give 88 mg of Z-2-(2,2-dichlorocyclopropanecarboxamido)-2-octenoic
acid as a partially crystalline gum. NMR spectrum (DMSO-d$_6$): δ 9.68 (s, 1H, NH), 6.50 δ (t, 1H, =CH),
2.83 δ

(1H)
H

1.97 δ (d, 2H)
H

0.87 δ (t, 3H, CH$_3$).

Example 17
Z-8-Bromo-2-(2,2-Dimethylcyclopropanecarboxamido)-2-octenoic acid
To a suspension of 14.4 g (0.3 mole) of 50% NaH dispersion in 360 ml of toluene cooled in an ice
bath and in a N$_2$ atmosphere was added over 45 min. a solution of 146 g (0.6 moles) of 1,6-dibromo-
hexane and 57.8 g (0.3 mole) of ethyl 1,3-dithiane-2-carboxylate in 120 ml of DMF. The cooling bath
was removed and the mixture stirred at room temperature for 2 hrs. The reaction mixture was washed
with water (3 x 210 ml), dried over MgSO$_4$ and evaporated under reduced pressure to give 179.5 g of
a yellow oil containing the desired anhydrated dithiane, 1,6-dibromohexane and mineral oil. This crude
material was used in the next reaction without purification.
To a suspension of 426 g (2.4 moles) of N-bromosuccinimide in 800 ml of acetonitrile and 200
ml of H$_2$O was added over 45 min. a solution of the crude dithiane in 100 ml of acetonitrile. The
temperature of the reaction mixture was maintained below 25°C with an ice bath. After stirring at
20°C for 10 min. the dark red reaction mixture was poured into 2 l. of hexane-CH$_2$Cl$_2$ (1:1). The solution
was shaken with saturated Na$_2$CO$_3$ (2 x 400 ml) and water (1 x 500 ml). Then 400 ml of saturated
Na$_2$CO$_3$ solution was added in small portions (vigorous CO$_2$ evolution). After the foaming
subsided the funnel was shaken and the aqueous phase separated. The organic layer was extracted
with saturated Na$_2$CO$_3$ solution (400 ml) and water (500 ml) and dried over MgSO$_4$. Removal of the
solvent under reduced pressure gave 133.8 g of crude bromo ketoester containing 1,6-dibromohexane
and mineral oil. This crude material was used in the next reaction without purification.
A mixture of 133.8 g of crude bromo ketoester, 133 ml of 50% hydrobromic acid and 267 ml of
acetic acid was heated at 90°C (internal temperature) for 75 min. The dark solution was evaporated
under reduced pressure until most of the acetic acid was removed. The residue was dissolved in 500 ml
of ether, washed with water (2 x 100 ml) and extracted with saturated NaHCO$_3$ (3 x 200 ml). The
combined NaHCO$_3$ extracts were extracted with ether (2 x 100 ml) and acidified with concentrated
HCl. The precipitated oil was extracted with ether (3 x 200 ml). The ether extracts were washed with
water (1 x 100 ml) and saturated brine (1 x 100 ml) and dried over MgSO$_4$. Removal of the ether
under reduced pressure gave 46.2 g of pure bromoketo acid. Homogeneous by TLC (silica gel, 4:1
toluene-acetic acid). The NMR spectrum was consistent with the desired product.
A mixture of 46.1 g (0.194 moles) of the bromoketo acid, 17.6 g (0.156 mole) of 2,2-dimethyl-
cyclopropanecarboxamide and 450 ml of toluene was heated under reflux for 13 hrs., with collection of
water in a small Dean-Stark trap. After cooling, the clear reaction mixture was extracted with saturated
NaHCO$_3$ solution (4 x 100 ml). The combined extracts were washed with ether (2 x 100 ml) and then
the pH was adjusted to 3.5 (pH meter) by addition of concentrated HCl. An oil precipitated which soon
crystallized. The solid was filtered, washed well with water and dried. Recrystallization from acetonitrile
gave 22.5 g of Z-8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid, m.p.
151—153°C. Homogeneous by TLC (4:1 toluene-acetic acid). The NMR spectrum was consistent with
the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C${14}$H${22}$BrN(NO$_3$)$_3$)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>50.61</td>
<td>50.66</td>
</tr>
<tr>
<td>H</td>
<td>6.87</td>
<td>6.96</td>
</tr>
<tr>
<td>N</td>
<td>4.22</td>
<td>4.45</td>
</tr>
<tr>
<td>Br</td>
<td>24.05</td>
<td>23.95</td>
</tr>
</tbody>
</table>
The following ω-bromo compounds were prepared using the same procedure:

Z-6-Bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-hexenoic acid;
Z-7-Bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-heptenoic acid;
Z-9-Bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-nonenoic acid;
Z-10-Bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-decenoic acid;
Z-8-Bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid.

Example 18

Z-8-Dimethylamino-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid

A solution of 664 mg (2 mmole) of Z-8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid in 10 ml of 40% aqueous dimethylamino was allowed to stand at room temperature for 4 hrs. The solution was poured onto a 3.5 x 20 cm column of Dowex 50W—x 8 (100—200 mesh, H+ ion exchange resin and column eluted with water until the effluent was no longer acidic (~200 ml). The column was then eluted with 300 ml of 2N ammonium hydroxide. The effluent was evaporated under reduced pressure to give 600 mg of a colorless glass. This material was dissolved in 3 ml of ethanol, filtered, and added dropwise to 200 ml of rapidly stirred acetone. A gummy solid precipitated which crystallized upon stirring for two days. The solid was filtered, washed with acetone, and dried to give 445 mg of Z-8-dimethylamino-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid as a colorless, hygroscopic crystals, m.p. 101—112°C. Homogeneous by TLC (silica gel, in BuOH, HOAc, H2O, 4:1:1). NMR spectrum was consistent with desired structure.

Anal. (C16H28N2O3·H2O) Calcd. Found

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>81.12</th>
<th>61.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>9.62</td>
<td>9.28</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8.91</td>
<td>8.67</td>
<td></td>
</tr>
</tbody>
</table>

The following 8-amino derivatives were prepared using essentially the same procedure, "DCC" means Z-(2,2-dimethylcyclopropanecarboxamido).

Z-10-Dimethylamino-DCC-2-decenoic acid;
Z-8-Amino-DCC-2-octenoic acid;
Z-8-Dimethylamino-DCC-2-octenoic acid;
Z-7-Dimethylamino-DCC-2-heptenoic acid;
Z-DCC-7-(N-methylpiperazinyl)-2-heptenoic acid;
Z-DCC-8-pyrrolidino-2-octenoic acid;
Z-DCC-8-(N-methylpiperazinyl)-2-octenoic acid;
Z-8- Allylalmino-DCC-2-octenoic acid;
Z-DCC-8-piperidino-2-octenoic acid;
Z-DCC-8-propargylamino-2-octenoic acid;
Z-8-NH2[1-Deoxy-(1-methylaminio)-D-glucyl]-DCC-2-octenoic acid;
Z-8-[1-Adamantylamino]-DCC-2-octenoic acid;
Z-8-Diallylalmino-DCC-2-octenoic acid;
Z-1-DCC-8-(2-hydroxyethylamino)-2-octenoic acid;
Z-8-[(Carboxymethyl)methylamino]-1-(1,1-DCC)-2-octenoic acid;
Z-1-[1,1-DCC]-8-diallylalmino-2-octenoic acid;
Z-1-[1,1-DCC]-8-[tris-(hydroxyethyl)methylamino]-2-octenoic acid;
Z-1-[1,1-DCC]-10-(N-methylpiperazinyl)-2-decenoic acid;
Z-1-[1,1-DCC]-8-[1-(phosphonomethyl)ethylamino]-2-octenoic acid.

Example 19

Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-methylthio-2-octenoic acid

A stream of CH3SH gas was bubbled through a solution of 162 mg (3 mmole) of sodium methoxide in 5 ml of methanol for 10 min. with cooling in an ice bath. The solution was allowed to warm to room temperature and 332 mg (1 mmole) of Z-8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid was added. The solution was heated under reflux for 30 min. in a N2 atmosphere. Most of the methanol was evaporated under reduced pressure, the residue was dissolved in 10 ml of water and acidified with 2.5 N HCl. The precipitated oil was extracted with ether (3 x). The ether extracts were washed with water, saturated brine and dried over MgSO4. Removal of the ether under reduced pressure gave a colorless oil that crystallized upon standing. It was recrystallized from ether-hexane to give 178 mg of Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-methylthio-2-octenoic acid.
acid, m.p. 82—84°C. Homogeneous by TLC (toluene-acetic acid, 4:1). The NMR spectrum was in accord with the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C_{15}H_{25}NO_{5}S)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>60.18</td>
<td>60.36</td>
</tr>
<tr>
<td>H</td>
<td>8.42</td>
<td>8.68</td>
</tr>
<tr>
<td>N</td>
<td>4.68</td>
<td>4.59</td>
</tr>
<tr>
<td>S</td>
<td>10.69</td>
<td>10.87</td>
</tr>
</tbody>
</table>

The following compounds were prepared by similar methods, “DCC” means 2-(2,2-dimethyl-cyclopropanecarboxamido).

Z-DCC-8-ethoxythiocarbonylthio-2-octenolic acid;
Z-DCC-8-(1-methyl-5-tetrazolylthio)-2-octenolic acid;
Z-DCC-7-([(methoxycarbonyl)methylthio]-2-heptenoic acid;
Z-Bromoacetylthio-DCC-2-octenolic acid;
Z-7-(2-Amino-2-oxoethylthio)DCC-2-heptenoic acid;
6-(2-Methoxy-2-carboxyethylthio)-1-(1,1-DCC)-2-hexenoic acid;
Z-8-(Carboxethoxymethyl)-1-(1,1-DCC)-2-octenolic acid;
Z-6-(Carboxethoxymethylthio)1-(1,1-DCC)-2-hexenoic acid;
Z-1-(1,1-DCC)-6-(phosphonomethyldithiolo)-2-hexenoic acid.

The compound 7-(2-Amino-2-carboxyethylthio)-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid is prepared in a similar fashion as the above example, except that Z-7-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-heptenoic acid is dissolved (185 mg, 1.05 mmoles) in 2.02 ml NaOH solution (2.0 N), and deoxygenated by bubbling a stream of nitrogen gas through it for a minute. Then cysteine, HCl (185 mg, 1.05 mmoles) is added at once and the reaction stirred at room temperature in a N₂ atmosphere for 3 hours. The mixture is eluted with 300 ml H₂O, then 200 ml of 2N NH₃ solution. Ammonia evaporated under reduced pressure to give 284 mg of a yellowish glass. This product is dissolved in 4 ml ethanol, and the insoluble material filtered. The filtrate is added dropwise to rapidly stirred diethyl ether (150 ml). The solid which precipitates is filtered, washed with ether and dried to yield 171 mg product, having one spot (ninhydrin positive) in TLC (μBuOH, HOAc, H₂O; 4:1:1) r.f. about 6; NMR is good; C_{18}H_{25}N_{5}O_{5}S: calcd: C, 53.61; H, 7.31; N, 7.81; S, 8.94; found: C, 52.55; H, 7.40; N, 7.89; S, 9.63.

Example 20
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt
A solution of 996 mg (3 mmoles) of Z-8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid in 15 ml of 25% aqueous trimethylamine was allowed to stand at room temperature for 3 hrs. The reaction mixture was poured onto a 2 x 25 cm column of IRA—410 (50—100 mesh, OH⁻) ion exchange resin and eluted with water until the effluent was no longer basic. The effluent was evaporated under reduced pressure to give 800 mg of a colorless glass. This material was dissolved in 20 ml of ethanol, filtered and diluted with 600 ml of acetone. After standing at room temperature overnight the crystalline solid which deposited was filtered, washed with acetone and dried to give 720 mg of Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt as hygroscopic crystals, m.p. 220—222°C. Homogeneous by TLC (silica gel, in BuOH, HOAc, H₂O, 4:1:1). NMR spectrum was consistent with desired structure.

<table>
<thead>
<tr>
<th>Anal. (C_{17}H_{25}N_{3}O_{2})</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>65.77</td>
<td>65.78</td>
</tr>
<tr>
<td>H</td>
<td>9.74</td>
<td>9.98</td>
</tr>
<tr>
<td>N</td>
<td>9.02</td>
<td>8.92</td>
</tr>
</tbody>
</table>

Other quaternary derivatives were prepared using essentially the same procedure; these are
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-pyridinium hydroxide-2-octenoic acid inner salt;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-[2-hydroxyethyl(dimethylammonium) hydroxide]-2-octenoic acid inner salt;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-10-trimethylammonium hydroxide-2-decenoic acid inner salt;
Z-8-(Benzyldimethylammonium hydroxide)-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid inner salt;
Z-10-(Benzyldimethylammonium hydroxide)-2-(2,2-dimethylcyclopropanecarboxamido)-2-decenoic acid inner salt;
5 Z-2-(2,2-Dimethylcyclopropanecarboxamido)-9-trimethylammonium hydroxide-2-nonenenoic acid inner salt;
Z-8-(2-Dimethylaminooethyldimethylammonium hydroxide)-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid inner salt;
Z-2-(2,2-Dichlorocyclopropanecarboxamido)-8-trimethylammonium hydroxide-2-octenoic acid inner salt.

Example 21
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-formamidino-2-octenoic acid
A 350 mg sample of Z-8-amino-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid was dissolved in 10 ml of water and the pH adjusted to 8.5 with 2.5N NaOH. A total of 947 mg of benzyl formimidate hydrochloride was added at room temperature in small portions over 20 min. while the pH was maintained between 8—9 by addition of 2.5 N NaOH. After stirring at room temperature for 30 min., the cloudy reaction mixture was extracted with ether (3X) and applied to a 2 x 2.5 cm column of a AG 50 W—X 4 (Na+, 200—400 mesh) resin. After elution with water, the fractions containing the product were pooled and evaporated under reduced pressure. This material was dissolved in water and applied to a 2 x 25 cm column of a G1X8 (HCOO−, 200—400 mesh) resin. After elution with water, the fractions containing pure product were pooled and evaporated under reduced pressure. The residue was dissolved in a few ml of warm ethanol, filtered, and added dropwise to 200 ml of ether with rapid stirring. Filtration and washing with ether gave 243 mg of Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-formamidino-2-octenoic acid as an amorphous solid. Homogeneous by TLC (n-BuOH, HOAc, H2O; 4:1:1). The NMR spectrum was in accord with the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C15H33N3O3·1/3H2O)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>59.69</td>
<td>60.04</td>
</tr>
<tr>
<td>H</td>
<td>8.59</td>
<td>8.64</td>
</tr>
<tr>
<td>N</td>
<td>13.92</td>
<td>13.67</td>
</tr>
</tbody>
</table>

The following amidino compounds were prepared using the similar procedures:

Z-8-Acetamidino-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid;
Z-8-Benzylamidino-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-10-formamidino-2-decenoic acid;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-(2-imidazolin-2-yl-amino)-2-octenoic acid.

Example 22
Z-2-(2,2-Dimethylcyclopropanecarboxamidino)-8-guanidino-2-octenoic acid
To a solution of 2-mmoles of guanidine (prepared from 432 mg of guanidine sulfate and 630 mg of barium hydroxide octahydrate) in 7 ml of water was added 332 mg (1 mmole) of 8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid, and the solution was heated at 70°C in a nitrogen atmosphere for 1 hr. The reaction mixture was applied to a 2 x 25 cm column of Dowex 50W—X8 (H+, 100—200 mesh). After elution with water the fractions containing the product were pooled and evaporated under reduced pressure. The residue was dissolved in several ml of warm ethanol and added dropwise to 100 ml of ether with rapid stirring. Filtration and washing with ether gave 107 mg of Z-2-(2,2-dimethylcyclopropanecarboxamidino)-8-guanidino-2-octenoic acid as an amorphous electrostatic powder. Homogeneous by TLC (n-BuOH, HOAc, H2O; 4:1:1). NMR (D2O, NaOD): 6.48 δ (t, 1H, =CH2); 3.10 δ (m, 2H, CH, NH), 2.10 δ (m, 2H, =CH2), 1.17 δ.

The following guanidino compound was prepared using the same procedure:
Z-2-(2,2-Dimethylcyclopropanecarboxamidino)-8-(N,N-dimethylguanidino)-2-octenoic acid.
Example 23

Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-methoxy-2-octenoic acid

To a solution of 2.43 mmole of sodium methoxide in 5 ml of methanol was added 332 mg (1 mmole) of 8-bromo-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid. The solution was heated under reflux in a nitrogen atmosphere for 1 hr. The reaction mixture was evaporated under reduced pressure, the residue dissolved in water and acidified with 2.5 N hydrochloric acid. The oil which precipitated was extracted with ether (3X). The ether extracts were washed with water, and saturated brine and dried over MgSO₄. Removal of the ether under reduced pressure gave a colorless oil that crystallized upon standing. It was recrystallized from ether-hexane to give 140 mg of Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-methoxy-2-octenoic acid, m.p. 71—72°C. Homogeneous by TLC (toluene-HOAc, 4:1). The NMR spectrum was in accord with the desired structure.

<table>
<thead>
<tr>
<th>Anal. (C₁₅H₂₅NO₄)</th>
<th>Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>63.58</td>
<td>63.54</td>
</tr>
<tr>
<td>H</td>
<td>8.89</td>
<td>9.12</td>
</tr>
<tr>
<td>N</td>
<td>4.94</td>
<td>5.16</td>
</tr>
</tbody>
</table>

Using similar procedures, the following compounds were prepared:

Z-8-Cyano-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid;
Z-7-Cyano-2-(2,2-dimethylcyclopropanecarboxamido)-2-heptenoic acid;
Z-9-Cyano-2-(2,2-dimethylcyclopropanecarboxamido)-2-nonenoic acid;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-7-sulfo-2-heptenoic acid sodium salt;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-sulfo-2-octenoic acid sodium salt;
Z-2-(2,2-Dimethylcyclopropanecarboxamido)-8-hydroxy-2-octenoic acid;
Z-8-Acetoxy-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid.

Example 24

Z-2-(2,2-dimethylcyclopropane carboxamido)-8-[1-(phosphonomethylamino)-2-octenoic acid

335.1 mg Z-8-bromo-2-(2,2-dimethylcyclopropane carboxamido)-2-octenoic acid is reacted with 138.2 mg (1-aminoethane phosphoric acid and 435 mg Na₂CO₃ in 5 ml water, heated to 60°C for 10 hours under nitrogen, cooled, then purified through a Dowex 50 X 8 H⁺ column, eluting with water. NMR confirmed presence of product, Kᵢ = 0.14.

Claims for the Contracting States: BE CH DE FR GB IT LU NL SE

1. The compound of the following formula:

\[
\begin{align*}
\text{R}^3 & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{R}^2\text{CONH} & \quad \text{COOR}^1
\end{align*}
\]

wherein

\(\text{R}^2\) and \(\text{R}^3\) are hydrocarbon radicals in the range respectively of 3—10 and 1—15 carbon atoms;

in either one of these \(\text{R}^2\) or \(\text{R}^3\) hydrocarbon chains 1—6 hydrogens may be replaced by halogens or a non-terminal methylene may be replaced by oxygen or sulfur, including oxidized forms of the latter; additionally, a terminal hydrogen in \(\text{R}^3\) can also be replaced by a hydroxyl or thiol group, which may be acylated or carbamoylated; or the hydrogen can be replaced by an amino group, which may be derivatized as in an acylamino, ureido, amidino, guanidino, or alkyl or substituted alkyl amino group, including quaternary nitrogen groupings, or, alternatively, there may be replacement by acid groups such as carboxylic, phosphonic or sulfonic acid groups or esters or amides thereof, as well as cyano; or combinations thereof, such as a terminal amino acid grouping; and \(\text{R}^1\) is hydrogen or lower alkyl (C₁₋₄) or dialkylaminoalkyl, or a pharmaceutically acceptable cation; with the proviso that \(\text{R}^2\) is not phenyl or straight chain lower alkyl of 1—4 carbon atoms where \(\text{R}^3\) is straight chain lower alkyl of 1—4 carbon atoms.

2. The compound of Claim 1 in which \(\text{R}^2\) can be \(\text{R}^4\), wherein \(\text{R}^4\) is branched or cyclic hydrocarbon of 3—10 carbon atoms; \(\text{R}^2\text{R}^4\), wherein \(\text{R}^2\) is cycloalkyl of 3—6 carbon atoms and \(\text{R}^4\) is either 1 or 2 alkyl substituents which may be joined to form another ring on the cycloalkyl group or \(\text{R}^4\) is 1 or 2 chloro substituents; or —\(\text{R}^2\text{R}^4\), wherein \(\text{R}^2\) is alkylene of 1—3 carbon atoms and \(\text{R}^4\) is cycloalkyl of 3—6 carbon atoms.
0010573

3. The compound of Claim 1 in which \(R^2 \) is a straight, branched or cycloalkyl group of 3—10 carbon atoms including alkycycloalkyl and dialkycycloalkyl, providing the carbon adjacent to the carbonyl cannot be tertiary.

4. The compound of Claim 2 in which \(R^2 \) is

\[\text{---R}^2\text{R}^6 \]

wherein

\(R^6 \) is cycloalkyl of 3—6 carbon atoms and \(R^6 \) is either 1 or 2 alkyl substituents which may be joined to form another ring on the cycloalkyl group.

5. The compound of Claim 2 in which \(R^2 \) is

\[\text{---R}^7\text{R}^8 \]

wherein

\(R^7 \) is an alkylene group of 1—3 carbon atoms and \(R^8 \) is cycloalkyl of 3—6 carbon atoms.

6. The compound of Claim 2 which is \(Z\)-2-(2,2-dimethylcyclopropane-carboxamido)-2-octenoic acid.

7. The compound of Claim 2 which is \(Z\)-2-(2,2-dimethylcyclopropane-carboxamido)-2-trimethylammonium-2-octenoic acid.

8. The compound of Claim 2 which is \(Z\)-2-(2,2-dichlorocyclopropane-carboxamido)-2-trimethylammonium-2-octenoic acid.

9. The compound of claim 2 which is 6-[[L-2-amino-2-carboxyethylthio]-2-(2,2-dimethylcyclopropane-carboxamido)]-2-hexenoic acid.

10. The compound of any of claims 2—9 which is in the sodium or potassium salt form.

11. The process of making the compounds of Claim 1 which comprises condensing a 2-keto acid or lower alkyl ester thereof with an amide:

\[\text{O} \]

\[\text{R}^2\text{C}H_2\text{CCO}_2\text{H} + \text{R}^2\text{CNH}_2 \]

wherein

\(R^2 \) and \(R^3 \) are as defined, the general conditions including mixing approximately 1—4:1 parts of keto acid or ester to amide in an inert solvent such as toluene or methyl isovalerate during heating at reflux with azeotropic removal of water for 3—48 hours, preferably 5—24 hours.

12. The process of making the compounds of Claim 1 which comprises reacting an acid chloride

\[\text{O} \]

\[\text{R}^2\text{CCl} \text{ with a t-butyl ester of an } \alpha\text{-amino acid} \]

\[\text{R}^3\text{CH}_2\text{C}\text{COO}\text{C(CH}_3)_3\text{NH}_2 \]

in the presence of base, followed by oxidative addition of sodium methoxide, and treatment of the resultant intermediate with anhydrous hydrochloric acid; wherein \(R^2 \) and \(R^3 \) are as defined.

13. The process of making the compound

\[\text{H} \]

\[\text{R}^2\text{C} = \text{C} \text{COOR}^1 \]

\[\text{NH} \]

\[\text{COR}^2 \]

wherein

\(R^2 \) is 2,2-dimethylcyclopropyl or 2,2-dichlorocyclopropyl; \(R^1 \) is hydrogen, loweralkyl of 1—6 carbon atoms, dialkylaminoalkyl, or a pharmaceutically acceptable cation;

\(R^3 \) is a hydrocarbon chain of 3—7 carbon atoms, optionally having a terminal substituent which is trimethylammonium, amidino, guanidino, 2-amino-2-carboxyethylthio or 1-(phosphononomethylamino); which is prepared by reacting a compound

\[\text{O} \]

\[\text{R}^{3\text{II}}\text{CH}_2\text{C} \text{COOR}^1 \text{ with } \text{R}^2\text{CNH}_2 \]

wherein

\(R^{3\text{II}} \) is either a hydrocarbon chain of 3—7 carbon atoms, or a hydrocarbon chain of 3—7 carbon
atoms, having a terminal bromo group; in which case, the bromo intermediate formed is reacted with trimethylamine; ammonia/imidate; guanidine; cysteine.HCl or 1-aminoethane phosphonic acid.

14. The product

\[\begin{align*}
R^3 & \quad \text{H} \\
\text{R}^{2} & \quad \text{C} = \text{C} - \text{COOR}^{1} \\
\text{NH} & \\
\text{COR}^{2}
\end{align*} \]

wherein

\[R^{1}, \ R^{2} \text{ and } R^{3} \text{ are as defined in Claim 13.} \]

15. Z-2-[(2,2-dimethylcyclopropane carboxamido)-8-[1-((phosphono)ethylamino)-2-octenoic acid.

Claims for the Contracting State: AT

1. The process of making the compounds of the following formulas:

\[\begin{align*}
\text{R}^{3} & \quad \text{H} \\
\text{C} & \\
\text{R}^{2} & \quad \text{CONH} \\
\text{COOR}^{1}
\end{align*} \]

wherein

\[R^{2} \text{ and } R^{3} \text{ are hydrocarbon radicals in the range respectively of 3—10 and 1—15 carbon atoms; in either one of these } R^{2} \text{ or } R^{3} \text{ hydrocarbon chains 1—6 hydrogens may be replaced by halogens or a non-terminal methylene may be replaced by oxygen or sulfur, including oxidized forms of the latter; additionally, a terminal hydrogen in } R^{2} \text{ can also be replaced by a hydroxyl or thiol group, which may be acylated or carboxylated; or the hydrogen can be replaced by an amino group, which may be derivatized as in an acylamino, ureido, amidino, guanidino, or alkyl or substituted alkyl amino group, including quaternary nitrogen groupings, or, alternatively, there may be replacement by acid groups such as carboxylic, phosphonic or sulfonic acid groups or esters or amides thereof, as well as cyano; or combinations thereof, such as a terminal amino acid group; and } R^{1} \text{ is hydrogen or lower alkyl (C1—6) or dialkylaminoalkyl, or a pharmaceutically acceptable cation; with the proviso that } R^{2} \text{ is not phenyl or straight chain lower alkyl of } 1—4 \text{ carbon atoms where } R^{3} \text{ is straight chain lower alkyl of 1—4 carbon atoms, which comprises condensing a 2-keto acid or lower alkyl ester thereof with an amide:} \]

\[\begin{align*}
\text{O} & \\
\text{RCH}_{2} & \quad \text{CCO}_{2}H + \text{R}_{2} \text{NH}_{2}
\end{align*} \]

wherein

\[R^{2} \text{ and } R^{3} \text{ are as defined, the general conditions including mixing approximately 1—4:1 parts of keto acid or ester to amide in an inert solvent such as toluene or methyl isovalerate during heating at reflux with azeotropic removal of water for 3—48 hours, preferably 5—24 hours.} \]

2. The process for preparing the compounds as defined in claim 1, which comprises reacting an acid chloride

\[\begin{align*}
\text{O} & \\
R^{2} \quad \text{CCl with a t-butyl ester of an } \alpha \text{-amino acid} \quad \text{R}^{3} \quad \text{CH}_{2} \quad \text{C} \quad \text{COO} \quad \text{C(CH}_{3})_{3} \quad \text{NH}_{2}
\end{align*} \]

in the presence of base, followed by oxidative addition of sodium methoxide, and treatment of the resultant intermediate with anhydrous hydrochloric acid; wherein \(R^{2} \) and \(R^{3} \) are as defined.

3. The process according to Claim 1 or 2 for preparing a compound in which \(R^{2} \) can be \(R^{4} \), wherein \(R^{4} \) is branched or cyclic hydrocarbon of 3—10 carbon atoms; \(R^{6} \), wherein \(R^{6} \) is cycloalkyl of 3—6 carbon atoms and \(R^{6} \) is either 1 or 2 alkyl substituents which may be joined to form another ring on the cycloalkyl group or \(R^{6} \) is 1 or 2 chloro substituents; or

\[R^{2} \text{R}^{6} \] whereby \(R^{7} \) is alkylene of 1—3 carbon atoms and \(R^{6} \) is cycloalkyl of 3—6 carbon atoms.

4. The process according to Claim 1 or 2 for preparing a compound in which \(R^{2} \) is a straight, branched or cycloalkyl group of 3—10 carbon atoms including alkylcycloalkyl and dialkylcycloalkyl, providing the carbon adjacent to the carbonyl cannot be tertiary.
5. The process according to Claim 1 or 2 for preparing a compound of Claim 3 in which R² is

\[\text{--- R}^{\text{R}} \text{R}^6 \]

wherein
R⁶ is cycloalkyl of 3—6 carbon atoms and R⁸ is either 1 or 2 alkyl substituents which may be joined to form another ring on the cycloalkyl group.

6. The process according to Claim 1 or 2 for preparing a compound of Claim 3 in which R² is

\[\text{--- R}^7 \text{R}^8 \]

wherein
R⁷ is an alkylene group of 1—3 carbon atoms and R⁸ is cycloalkyl of 3—6 carbon atoms.

7. The process according to Claim 1 or 2 for preparing a compound of Claims 3 which is Z-2-(2,2-dimethylcyclopropanecarboxamido)-2-octenoic acid.

8. The process according to Claim 1 or 2 for preparing a compound of Claim 3 which is Z-2-(2,2-dimethylcyclopropanecarboxamido)-8-trimethyl-ammonium-2-octenoic acid.

9. The process according to Claim 1 or 2 for preparing a compound of Claim 3 which is Z-2-(2,2-dichlorocyclopropanecarboxamido)-8-trimethyl-ammonium-2-octenoic acid.

10. The process according to Claim 1 or 2 for preparing a compound of Claim 3 which is 6-(L-2-amino-2-carboxethylthio)-2-(2,2-dimethylcyclopropane carboxamido)-2-hexenoic acid.

11. The process according to any of Claims 1 to 10 which further comprises converting the compound obtained into the sodium or potassium salt form.

12. The process of making the compound

\[
\text{H} \quad \text{R}^3 \quad \text{C} \quad \text{C} \quad \text{COOR}^1
\]

\[
\text{NH} \quad \text{COR}^2
\]

wherein
\(\text{R}^3 \) is 2,2-dimethylcyclopropyl or 2,2-dichlorocyclopropyl;
\(\text{R}^1 \) is hydrogen, loweralkyl of 1—6 carbon atoms, dialkylaminoalkyl, or a pharmaceutically acceptable cation;
\(\text{R}^3 \) is a hydrocarbon chain of 3—7 carbon atoms, optionally having a terminal substituent which is trimethylammonium, amidino, guanidino, 2-amino-2-carboxethylthio, or 1-(phosphono)-ethylamino;
which is prepared by reacting a compound

\[
\text{O} \quad \text{O}
\]

\[
\text{R}^{\text{R}} \text{CH}_2 \quad \text{C} \quad \text{COOR}^1 \quad \text{with} \quad \text{R}^2 \text{CNH}_2
\]

wherein
\(\text{R}^{\text{R}} \) is either a hydrocarbon chain of 3—7 carbon atoms, or a hydrocarbon chain of 3—7 carbon atoms, having a terminal bromo group; in which case, the bromo intermediate formed is reacted with trimethylamine; ammonia/imidate; guanidine; cysteine HCl or 1-aminoethanephosphoric acid.

13. The process according to Claim 12 for preparing Z-2-(2,2-dimethylcyclopropane carboxamido)-8-[1-(phosphono)-ethylamino]-2-octenoic acid.

Patentansprüche für die Vertragsstaaten: BE CH DE FR GB IT LU NL SE

1. Die Verbindung der folgenden Formel

\[
\text{R}^2 \quad \text{R}^2 \quad \text{CONH} \quad \text{COOR}^1
\]

worin \(\text{R}^2 \) und \(\text{R}^2 \) Kohlenwasserstoffreste im Bereich von 3 bis 10 bzw. 1 bis 15 Kohlenstoffatom sind; wobei in jeder dieser \(\text{R}^2 \)- oder \(\text{R}^2 \)-Kohlenwasserstoffketten 1 bis 6 Wasserstoffe ersetzt sein können durch Halogene oder ein nicht endständiges Methylen ersetzt sein kann durch Sauerstoff oder Schwefel, einschließlich der oxydierten Formen des letzteren; wobei ferner ein endständiger Wasser-
stoff in R³ auch ersetzt sein kann durch eine Hydroxyl- oder Thiolgruppe, die acyliert oder carbamoyliert sein kann; oder der Wasserstoff ersetzt sein kann durch eine Aminogruppe, die ein Derivat sein kann, wie in einer Acylamin-, Ureido-, Amidino-, Guanidino- oder Alkyl- oder substituierten Alkylaminogruppe, einschließlich quaternärer Stickstoffgruppen; oder alternativ ein Ersatz durch saure Gruppen vorliegen kann, wie Carbonsäure-, Phosphonsäure- oder Sulfonsäuregruppen oder Ester oder Amide davon, sowie Cyan- oder Kombinationen davon, wie eine endständige Aminosäuregruppe; und R¹ Wasserstoff oder Niedrigalkyl (C₁₋₃) oder Dialkylaminalkyl oder ein pharmazeutisch brauchbares Kation ist; mit der Maßgabe, daß R² nicht Phenyl oder geradkettiges Niedrigalkyl mit 1 bis 4 Kohlenstoffatomen ist, wenn R³ geradkettiges Niedrigalkyl mit 1 bis 4 Kohlenstoffatomen darstellt.

2. Verbindung nach Anspruch 1, worin R² sein kann

R⁴, worin R⁴ verzweigter oder cyclischer Kohlenwasserstoff mit 3 bis 10 Kohlenstoffatomen ist; R⁸R⁹, worin R⁸ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist und R⁹ entweder einen oder zwei Alkylsubstituenten darstellt, die miteinander verbunden sein können unter Bildung eines weiteren Ringes an der Cycloalkylgruppe, oder R⁹ 1 oder 2 Chlorsubstituenten darstellt; oder

—R⁸R⁹, worin R⁸ Alkyle mit 1 bis 3 Kohlenstoffatomen ist und R⁹ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist.

3. Verbindung nach Anspruch 1, worin R¹ eine gerade, verzweigte oder Cycloalkylgruppe mit 3 bis 10 Kohlenstoffatomen einschließlich Alkylcycloalkyl und Diallylcycloalkyl ist, vorausgesetzt, daß das Kohlenstoffatom in Nachbarstellung zu dem Carboxyl nicht tertär sein kann.

4. Verbindung nach Anspruch 2, worin R² die Bedeutung hat von

—R⁸R⁹,

worin R⁸ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist und R⁹ entweder 1 oder 2 Alkylsubstituenten darstellt, die verbunden sein können unter Bildung eines weiteren Ringes an der Cycloalkylgruppe.

5. Verbindung nach Anspruch 2, worin R² die Bedeutung hat von

—R⁸R⁹,

worin R² eine Alkyengruppe mit 1 bis 3 Kohlenstoffatomen ist und R⁸ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist.

6. Verbindung nach Anspruch 2, nämlich Z-2-[(2,2-Dimethylcyclopropan)carboxamido]-2-octensäure.

7. Verbindung nach Anspruch 2, nämlich Z-2-[(2,2-Dimethylcyclopropan)carboxamido]-8-trimethylammonium-2-octensäure.

8. Verbindung nach Anspruch 2, nämlich Z-2-[(2,2-Dichlorcyclopropan)carboxamido]-8-trimethylammonium-2-octensäure.

10. Verbindung nach einem der Ansprüche 2 bis 9 in der Form des Natrium- oder Kaliumsalzes.

11. Verfahren zur Herstellung der Verbindung nach Anspruch 1, umfassend die Kondensation einer 2-Ketosäure oder eines Niedrigalkylesters davon mit einem Amid:

\[
\text{O} \quad \text{O} \\
\text{R⁴ CH₂-COOH} + \text{R² CNH₂},
\]

wobei R² und R³ wie zuvor definitiert sind und wobei die allgemeinen Bedingungen das Vermischen von etwa 1-4:1 Teilen Ketosäure oder Ester zu Amid in einem inerten Lösungsmittel, wie Tolusol oder Methylolester, während des Erhitzens unter Rückfluß unter azeotropen Entfernung von Wasser während 3 bis 48 Stunden, vorzugsweise 5 bis 24 Stunden, umfassen.

12. Verfahren zur Herstellung der Verbindung nach Anspruch 1, umfassend die Reaktion eines Säurechlorids

\[
\text{O} \\
\text{R²-CCl₃ mit einem t-Butylester einer α-Aminosäure} \quad \text{R³-CH₂-C-COO-C(CH₃)₃} \\
\text{NH₂}
\]

in Anwesenheit einer Base, gefolgt von der oxidativen Addition von Natriummethoxid, und Behandeln des resultierenden Zwischenprodukts mit wasserfreier Chlorwasserstoffäsüre; worin R² und R³ wie zuvor definitiert sind.
13. Verfahren zur Herstellung der Verbindung

\[\text{H} \]
\[R^2 - \text{C}=\text{C} - \text{COOR}^1 \]
\[\text{NH} \]
\[\text{COR}^2, \]

worin \(R^2 \) 2,2-Dimethylcyclopropyl oder 2,2-Dichlorcyclopropyl ist;
\(R^1 \) Wasserstoff, Niedrigalkyl mit 1—6 Kohlenstoffatomen, Dialkylaminealkyl oder ein pharmazeutisch annehmbares Kation ist;
\(R^2 \) eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen ist, die gegebenenfalls einen endständigen Substituenten aufweist, welcher Trimethylammonium, Amidino, Guanidino, 2-Amino-2-carboxyethylthio oder 1-(Phosphonooethylamino) ist; welche hergestellt wird durch die Reaktion einer Verbindung

\[\text{O} \]
\[R^{\text{NH}} - \text{CH}_2 - \text{C} - \text{COOR}^1 \text{ mit } R^{\text{CNH}_2} \]

worin \(R^{\text{NH}} \) entweder eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen oder eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen ist, die eine endständige Bromgruppe aufweist; in welchem Falle das gebildete Brom-Zwischenprodukt mit Trimethylamin; Ammoniak/Imidat; Guanidin; Cystein.HCl oder 1-Aminoethanphosphorsäure umgesetzt wird.

14. Das Produkt

\[\text{H} \]
\[R^3 - \text{C}=\text{C} - \text{COOR}^1 \]
\[\text{NH} \]
\[\text{COR}^2, \]

worin \(R^1, R^2 \) und \(R^3 \) wie in Anspruch 13 definiert sind.

15. Z-2-(2,2-Dimethylcyclopropancarbamido)-8-[1-(Phosphonoethylamino)-2-octensäure.

Patentansprüche für den Vertragsstaat: AT

1. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel

\[\text{C} \]
\[\text{H} \]
\[R^3 \text{CONH} \]
\[\text{C} \]
\[\text{COOR}^1 \]

worin \(R^2 \) und \(R^3 \) Kohlenwasserstoffreste im Bereich von 3 bis 10 bzw. 1 bis 15 Kohlenstoffatomen sind; wobei in jeder dieser \(R^2 \)- oder \(R^3 \)-Kohlenwasserstoffketten 1 bis 6 Wasserstoffe ersetzt sein können durch Halogene oder ein nicht endständiges Methylen ersetzt sein kann durch Sauerstoff oder Schwefel, einschließlich der oxydierten Formen les letzteren; wobei ferner ein endständiger Wasserstoff in \(R^2 \) auch ersetzt sein kann durch eine Hydroxy- oder Thiogruppe, die acyliert oder carboxyliert sein kann; oder der Wasserstoff ersetzt sein kann durch eine Amino- oder Ureido-, Amidino-, Guanidino- oder Alkyl- oder substituierten Alkylaminogruppe, einschließlich quaternärer Stickstoffgruppen; oder alternativ ein Ersatz durch saure Gruppen vorliegen kann, wie Carbonsäure-, Phosphonsäure- oder Sulfonsäuregruppen oder Ester oder Amide davon, sowie Cyan- oder Kombinationen davon, wie eine endständige Aminosäuregruppe; und \(R^1 \) Wasserstoff oder Niedrigalkyl (C1-4) oder Dialkylaminolithalkyl oder ein pharmazeutisch brauchbares Kation ist; mit der Maßgabe, daß \(R^2 \) nicht Phenyl oder geradkettiges Niedrigalkyl mit 1 bis 4 Kohlenstoffatomen ist, wenn
R³ geradkettiges Niedrigalkyl mit 1 bis 4 Kohlenstoffatomen ist, umfassend die Kondensation einer 2-Ketosäure oder eines Niedrigalkylesters davon mit einem Amid:

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{R}^3\text{CH}_2-\text{CCO}_2\text{H} + \text{R}^3\text{CNH}_2,
\end{align*}
\]

worin R³ wie zuvor definiert sind und wobei die allgemeinen Bedingungen das Vermischen von etwa 1—4:1 Teilen Ketosäure oder Ester zu Amid in einem inerten Lösungsmittel, wie Toluol oder Methylisovalerat, während das Erwärmen unter Rückfluß unter azeotroper Entfernung von Wasser während 3 bis 48 Stunden, vorzugsweise 5 bis 24 Stunden, umfasst.

2. Verfahren zur Herstellung der Verbindungen gemäß Definition in Anspruch 1, umfassend die Reaktion eines Säurechlorids

\[
\begin{align*}
\text{O} \\
\text{R}^2-\text{CCl} \quad \text{mit einem t-Butylester einer } \alpha\text{-Aminosäure} \\
\text{H} \\
\text{R}^3-\text{CH}_2-\text{C}-\text{COO}-\text{C(CH}_3)_3
\end{align*}
\]

in Anwesenheit einer Base, gefolgt von der oxidativen Addition von Natriummethoxid, und Behandlung des resultierenden Zwischenprodukts mit wasserfreier Chlorwasserstoffsäure; worin R² und R³ wie zuvor definiert sind.

3. Verfahren nach Anspruch 1 oder 2 zur Herstellung einer Verbindung, worin R² sein kann R⁴, worin R⁴ verzweigter oder cyclischer Kohlenwasserstoff mit 3 bis 10 Kohlenstoffatomen ist; R⁵R⁶, worin R⁵ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist und R⁶ entweder einen oder zwei Alkylsubstituenten darstellt, die miteinander verbunden sein können unter Bildung eines weiteren Ringes an der Cycloalkylgruppe, oder R⁶ 1 oder 2 Chloralsubstituenten darstellt; oder

—R⁷R⁸, worin R⁷ Alkyleen mit 1 bis 3 Kohlenstoffatomen ist und R⁸ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist.

4. Verfahren nach Anspruch 1 oder 2 zur Herstellung einer Verbindung, worin R² eine gerade, verzweigte oder Cycloalkylgruppe mit 3 bis 10 Kohlenstoffatomen einschließlich Alkylcycloalkyl und Dialkylcycloalkyl ist, vorausgesetzt, daß das Kohlenstoffatom in Nachbarstellung zu dem Carbonyl nicht tertiär sein kann.

5. Verfahren nach Anspruch 1 oder 2 zur Herstellung einer Verbindung nach Anspruch 3, worin R² die Bedeutung hat von

—R⁹R⁸,

worin R⁹ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist und R⁹ entweder 1 oder 2 Alkylsubstituenten darstellt, die verbunden sein können unter Bildung eines weiteren Ringes an der Cycloalkylgruppe.

6. Verfahren nach Anspruch 1 oder 2 zur Herstellung einer Verbindung nach Anspruch 3, worin R² die Bedeutung hat von

—R⁹R⁸,

worin R⁹ eine Alkylengruppe mit 1 bis 3 Kohlenstoffatomen ist und R⁹ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen ist.

11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem man ferner die erhaltene Verbindung in die Form des Natrium- oder Kaliumsalzes umwandelt.

12. Verfahren zur Herstellung der Verbindung

\[
\begin{align*}
\text{H} \\
\text{R}^3-\text{C}=\text{C}-\text{COOR}^1 \\
\text{NH} \\
\text{COR}^2,
\end{align*}
\]

worin R³ 2,2-Dimethylcyclopropyl oder 2,2-Dichlorcyclopropyl ist;
O010 573

R¹ Wasserstoff, Niedrigalkyl mit 1—6 Kohlenstoffatomen, Dialkylaminoalkyl oder ein pharmazeutisch annehmbares Kation ist;
R² eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen ist, die gegebenenfalls einen endständigen Substituenten aufweist, welcher Trimethylammonium, Amidino, Guanidino, 2-Amino-2-carboxyethylthio oder 1-(Phosphono)ethylamino ist; welche hergestellt wird durch die Reaktion einer Verbindung

\[
\text{R}^{1}\text{CH}_{2}\text{COOR}^{1} \text{ mit } \text{R}^{2}\text{CONH}_{2},
\]

worin R³ entweder eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen oder eine Kohlenwasserstoffkette mit 3—7 Kohlenstoffatomen ist, die eine endständige Bromgruppe aufweist; in welchem Falle das gebildete Brom-Zwischenprodukt mit Trimethylamin; Ammoniak/Imidat; Guanidin;
Cystein HCl oder 1-Aminoethanphosphorsäure umgesetzt wird.

Revendications pour les Etats contractants: BE CH DE FR GB IT LU NL SE

1. Composé de formule

\[
\text{R}^{2} \text{R}^{3} \text{CONH} \text{COOR}^{1}
\]

où R² et R³ sont des radicaux hydrocarbonés dans un intervalle, respectivement, de 3 à 10 et de 1 à 15 atomes de carbone; dans l’un quelconque de ces chaînes hydrocarbonées R² ou R³ de 1 à 6 hydrogènes peuvent être remplacés par des halogènes, ou un méthyllène non terminal peut être remplacé par un oxygène ou un soufre, y compris les formes oxydées de ce dernier; en outre, un hydrogène terminal dans R² peut également être remplacé par un groupe hydroxyle ou thiol, qui peut être acylé ou carbamoylé; ou l’hydrogène peut être remplacé par un groupe amino, qui peut être sous forme dérivée comme dans un groupe acylaminod, uréido, amidino, guanidino, ou un groupe acylaminod, ou (acyl substitué) amino, y compris les groupements azote quaternaire; ou encore, il peut y avoir remplacement par des groupes acides comme des groupes acide carboxylique, phosphonylique ou sulfonique ou leurs esters ou amides, ainsi que cyano, ou leurs combinaisons, comme un groupement acide aminé terminal; et R¹ est un hydrogène ou un acyle inférieur (en C₁ à C₃) ou un dialcoylaminocyalement, ou un cation pharmaceutiquement acceptable; avec la précision que R² n’est pas un phényle ou un acyle inférieur à chaîne droite en C₃ à C₄ lorsque R¹ est un acyle inférieur à chaîne droite en C₁ à C₄.

2. Composé de la revendication 1 où R² peut être R⁴, où R⁴ est un hydrocarbure ramiifié ou cyclique en C₄ à C₁₀:
 \(\text{R}^{2}\text{R}^{3}, \text{ où } \text{R}^{2} \text{ est un cycloalcool en } \text{C}_₃ \text{ à } \text{C}_₆ \text{ et } \text{R}^{3} \text{ représente 1 ou 2 substituants alcool qui peuvent être réunis pour former un autre noyau sur le groupe cycloalcool ou } \text{R}^{3} \text{ représente 1 ou 2 substituants chloro; ou}
 \text{R}^{3}\text{R}^{4}, \text{ où } \text{R}^{3} \text{ est un acyle en } \text{C}_₁ \text{ à } \text{C}_₂ \text{ et } \text{R}^{4} \text{ est un cycloalcool en } \text{C}_₃ \text{ à } \text{C}_₆.

3. Composé de la revendication 1 où R² est un groupe acyle à chaîne droite ou ramifiée ou cycloalcool en C₆ à C₁₀ y compris alcoolcycloalcool et dialcoylcycloalcool, à condition que l’atome de carbone adjacent au carboneyle ne puisse pas être tertiaire.
4. Composé de la revendication 2 où R² représente
 \(\text{R}^{2}\text{R}^{3},
\)
où R³ est un cycloalcool en C₃ à C₆ et R⁴ représente 1 ou 2 substituants alcool qui peuvent être réunis pour former un autre noyau sur le groupe cycloalcool.
5. Composé de la revendication 2 où R² représente
 \(\text{R}^{3}\text{R}^{4},
\)
où R³ est un groupe acyle en C₁ à C₂ et R⁴ est un cycloalcool en C₃ à C₆.
6. Composé de la revendication 2 qui est l’acide Z-2-(2,2-Dimethylcyclopropan-carboxamido)-2-octénol.
10. Composé de l’une quelconque des revendications 2—9 qui est sous forme de sel de sodium ou de potassium.
11. Procédé de préparation des composés de la revendication 1 dans lequel on condense un 2-cétoacide ou son alcool réactif avec un amide

\[
\begin{align*}
R^3CH_2-CO_2H + R^3CNH_2
\end{align*}
\]

où \(R^2 \) et \(R^3 \) sont tels que définis, les conditions générales impliquant de mélanger environ 1—4:1 partie(s) de céto-acide ou d’ester par rapport à l’amide dans un solvant inerte comme le toluène ou l’isovalérat de méthyle tout en chauffant au reflux en retirant l’eau par distillation azétotrope pendant 3 à 48 heures, de préférence 5 à 24 heures.
12. Procédé de préparation des composés de la revendication 1 dans lequel on fait réagir un chlorure d’acide

\[
\begin{align*}
O
\end{align*}
\]

\[
\begin{align*}
R^2-CCl & \text{ avec un t-butylester d’un acide } \alpha-\text{aminé} \\
R^3-CH_2-C-COO-C(CH_3)_2 & \text{NH}_2
\end{align*}
\]

en présence d’une base, puis on procède à une addition oxydative de méthoxyde de sodium, et au traitement de l’intermédiaire résultant avec de l’acide chlorhydrique anhydre; où \(R^2 \) et \(R^3 \) sont tels que définis.
13. Procédé de préparation d’un composé de formule

\[
\begin{align*}
R^3-C=O
\end{align*}
\]

\[
\begin{align*}
\text{NH} \\
\text{COR}^2
\end{align*}
\]

où \(R^2 \) est un 2,2-diméthylcyclopropyle ou 2,2-dichlorocyclopropyle; \(R^1 \) est un hydrogène, un alcool réactif en \(C_3 \) à \(C_8 \) dialcoylaminolacyle, ou un cation pharmaceutiquement acceptable;
\(R_3 \) est une chaîne hydrocarbonée en \(C_2 \) à \(C_7 \), ayant éventuellement un substituant terminal qui est un triméthylammonium, un amidine, un guanidine, un 2-amino-2-carboxyéthylthio ou un 1-(phosphono)-éthylamine; que l’on prépare en faisant réagir un composé

\[
\begin{align*}
R^{(a)}CH_2-C-COOR^1
\end{align*}
\]

\[
\begin{align*}
R^3CNH_2
\end{align*}
\]

où \(R^{(a)} \) est soit une chaîne hydrocarbonée en \(C_2 \) à \(C_7 \), soit une chaîne hydrocarbonée en \(C_3 \) à \(C_7 \), ayant un groupe bromotéternaire; auquel cas on fait réagir l’intermédiaire bromo formé avec de la triméthylamine; de l’ammoniac/imide; de la guanidine; du chlorhydrate de cystéine ou de l’acide 1-aminoéthane phosphorique.
14. Le produit

\[
\begin{align*}
H
\end{align*}
\]

\[
\begin{align*}
\text{NH} \\
\text{COR}^2
\end{align*}
\]

où \(R^1, R^2 \) et \(R^3 \) sont tels que définis dans la revendication 13.
O010573

15. Acide Z-2-(2,2-diméthylcyclopropane carboxamido)-8-[1-(phosphonooxy)éthylamino]-2-octénioïque.

Revisions pour l'Etat contractant: AT

1. Procédé de préparation des composés de formule:

\[
\begin{align*}
R^3 & \quad C \quad H \\
C & \quad CO & \quad COOR^1
\end{align*}
\]

où \(R^2\) et \(R^3\) sont des radicaux hydrocarbonés dans un intervalle, respectivement, de 3 à 10 et de 1 à 15 atomes de carbone; dans l’un quelconque de ces chaînes hydrocarbonées \(R^2\) ou \(R^3\) de 1 à 6 hydrogènes peuvent être remplacés par des halogènes, ou un méthyle non terminal peut être remplacé par un oxygène ou un soufre, y compris les formes oxydées de ce dernier; en outre, un hydrogène terminal dans \(R^3\) peut également être remplacé par un groupe hydroxy ou thiols, qui peut être acylé ou carbamoyl; ou l’hydrogène peut être remplacé par un groupe amino, qui peut être sous forme dérivée comme dans un groupe acylamino, uréide, amidino, guanidino, ou un groupe alcool amino ou (alcool substitué) amino, y compris les groupements azote quaternaire; ou encore, il peut y avoir remplacement par des groupes acides comme des groupes acide carboxylique, phosphonique ou sulfonique ou leurs esters ou amides, ainsi que cyanuro, ou leurs combinaisons, comme un groupement acide aminé terminal; et \(R^1\) est un hydrogène ou un alcool inférieur (en \(C_1\) à \(C_5\)) ou un dialcoolamino- alcool, ou un cation pharmaceutiquement acceptable; avec la précision que \(R^2\) n’est pas un phényle ou un alcool inférieur à chaîne droite en \(C_1\) à \(C_4\) lorsque \(R^2\) est un alcool inférieur à chaîne droite en \(C_1\) à \(C_4\), dans lequel un condense un 2-cétone acide ou son alcool inférieur ester avec un amide.

\[
\begin{align*}
R^3 & \quad CH_2-CCO_2H + \quad R^3CNH_2
\end{align*}
\]

où \(R^2\) et \(R^3\) sont tels que définis, les conditions générales impliquant de mélanger environ 1—4:1 partie(s) de céto-acide ou d’ester par rapport à l’amide dans un solvant inerte comme le toluène ou l’isovalérate de méthyle tout en chauffant au reflux en retirant l’eau par distillation azéotropique pendant 3 à 48 heures, de préférence 5 à 24 heures.

2. Procédé de préparation des composés tels que définis dans la revendication 1, dans lequel on fait réagir un chlorure d’acide

\[
R^3-CCl \quad \text{avec un t-butylester d’un acide \(\alpha\)-aminé}
\]

en présence d’une base, puis on procède à une addition oxydative de méthoxyde de sodium, et au traitement de l’intermédiaire résultant avec de l’acide chlorhydrique anhydre; où \(R^2\) et \(R^3\) sont tels que définis.

3. Procédé selon l’une des revendications 1 ou 2 de préparation d’un composé où \(R^2\) peut être \(R^4\), où \(R^4\) est un hydrocarbure ramifié ou cyclique en \(C_3\) à \(C_{10}\):

\[
RR^6, \quad \text{où} \quad R^6 \quad \text{est un cycloalcool en} \quad C_3 \quad \text{à} \quad C_4 \quad \text{et} \quad R^6 \quad \text{repréente 1 ou 2 substituants alcool qui peuvent être réunis pour former un autre noyau sur le groupe cycloalcool ou} \quad R^6 \quad \text{repréente 1 ou 2 substituants chloro; ou}
\]

\[
---RR^6, \quad \text{où} \quad R^7 \quad \text{est un alcoolène en} \quad C_3 \quad \text{à} \quad C_4 \quad \text{et} \quad R^8 \quad \text{est un cycloalcool en} \quad C_3 \quad \text{à} \quad C_{10}.
\]

4. Procédé selon l’une des revendications 1 ou 2 de préparation d’un composé où \(R^2\) est un groupe alcool à chaîne droite ou ramifiée ou cycloalcool en \(C_3\) à \(C_{10}\), y compris alcocloxyalcool et dialcoolcycloalcool, à condition que l’atome de carbone adjacent au carboney ne puisse être tertiaire.

5. Procédé selon l’une des revendications 1 ou 2 de préparation d’un composé de la revendication 3 où \(R^2\) est

---R^RR^6

34
où R⁶ est un cycloalcyle en C₃ à C₆ et R⁶ représente 1 ou 2 substituants alcoyle qui peuvent être réunis pour former un autre noyau sur le groupe cycloalcyle.
6. Procédé selon l'une des revendications 1 ou 2 de préparation d'un composé de la revendication 3 où R² est

\[\text{---R⁷R⁸} \]

où R² est un groupe alcoyiène en C₁ à C₃ et R₈ est un cycloalcyle en C₃ à C₆.
7. Procédé selon l'une des revendications 1 ou 2 de préparation d'un composé de la revendication 3 qui est l'acide Z-2-(2,2-diméthyl-cyclopropane-carboxamido)-2-octénoïque.
8. Procédé selon l'une des revendications 1 ou 2 de préparation d'un composé de la revendication 3 qui est l'acide Z-2-(2,2-diméthylcyclopropane-carboxamido)-8-triméthyl-ammonium-2-octénoïque.
10. Procédé selon l'une des revendications 1 ou 2 de préparation d'un composé de la revendication 3 qui est l'acide 6-(L-2-amino-2-carboxyéthylthio)-2-(2,2-diméthylcyclopropane-carboxamido)-2-hexénoïque.
11. Procédé selon l'une quelconque des revendications 1 à 10 dans lequel on transforme le composé obtenu pour donner la forme sel de sodium ou de potassium.
12. Procédé de préparation d'un composé de formule

\[\text{H} \]
\[\text{R⁴} \]
\[\text{C} \]
\[\text{C} \]
\[\text{---COOR}¹ \]
\[\text{NH} \]
\[\text{COR²} \]

où R² est un 2,2-diméthylcyclopropyle ou 2,2-dichlorocyclopropyle;
R¹ est un hydrogène, un alcoyle inférieur en C₁ à C₅, un dialcoylaminocalcoyle, ou un cation pharmaceutiquement acceptable;
R⁴ est une chaîne hydrocarbonée en C₃ à C₇, ayant éventuellement un substituant terminal qui est un triméthylammonium, un amidino, un guanidine, un 2-amino-2-carboxyéthylthio, ou un 1-(phosphono)-éthylamino; que l'on prépare en faisant réagir un composé

\[\text{R⁴} \]
\[\text{---CH₂} \]
\[\text{---COOR}¹ \]
\[\text{avec} \]
\[\text{R⁴CNH₂} \]

où R⁴ est soit une chaîne hydrocarbonée en C₃ à C₇, soit une chaîne hydrocarbonée en C₃ à C₇, ayant un groupe bromo-terminal; auquel cas l'intermédiaire bromo formé est mis à réagir avec de la triméthylamine; de l'ammoniac/imidate; de la guanidine; du chlorhydrate de cystéine ou de l'acide 1-aminoéthanesulfonphosphorique.
13. Composé selon la revendication 12 pour préparer l'acide Z-2-(2,2-diméthylcyclopropane-carboxamido)-8-[1-(phosphono)-éthylamino]-2-octénoïque.