hereby apply for the grant of a "SUSTAINED RELEASE" which is described in the account.

Details of basic application(s):

Number

319,183

The address for service:
Collins Street, Melbourne, in
Dated this

To: THE COMMISSIONER OF PATENTS

Dated
ELI LILLY AND COMPANY
307 East McCarty Street,
Indianapolis, Indiana 46285,
United States of America.

hereby apply for the grant of a Standard Patent for an invention entitled:

"SUSTAINED RELEASE CAPSULE FOR RUMINANT ANIMALS"

which is described in the accompanying specification.

Details of basic application(s):

<table>
<thead>
<tr>
<th>Number</th>
<th>Convention Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>319,183</td>
<td>United States of America</td>
<td>9 November, 1981</td>
</tr>
</tbody>
</table>

The address for service is care of DAVIES & COLLISON, Patent Attorneys, of 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this 3rd day of November 1982

H. W. Rimington

To: THE COMMISSIONER OF PATENTS

(a member of the firm of DAVIES & COLLISON for and on behalf of the Applicant).

Davies & Collison, Melbourne and Canberra.
COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1952
DECLARATION IN SUPPORT OF CONVENTION OR NON-CONVENTION APPLICATION FOR A PATENT

90108/82

In support of the Application made for a patent for an invention entitled: "SUSTAINED RELEASE CAPSULE FOR RUMINANT ANIMALS"

I, Arthur Richard Whale of 307 East McCarty Street, Indianapolis, Indiana, United States of America, do solemnly and sincerely declare as follows:—

1(a) I am the applicant for the patent.

or (b) I am authorized by Eli Lilly and Company, a corporation of the State of Indiana, United States of America, the applicant, for the patent to make this declaration on its behalf.

2. (a) I am the actual inventor of the invention.

or (b) Barbara Ellen Simpson, 7401 East 71st Street, Indianapolis, Indiana 46256; Norman Alexandre Gervais, Box 16, Pagan Isle, Hardy, Virginia 24018, both of the United States of America, are the actual inventors of the invention.

3. The basic application as defined by Section 41 of the Act was made in United States of America on November 9, 1981, by Barbara Ellen Simpson and Norman Alexandre Gervais in the name of Eli Lilly and Company, the applicant, by assignment dated: October 13, 1981 - Simpson; October 20, 1981 - Gervais.

4. The basic application referred to in paragraph 3 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application.

Declared at Indianapolis this 30th day of September, 1982.

ELI LILLY AND COMPANY

By Arthur Richard Whale, Assistant Secretary
1. A sustained release capsule adapted to be inserted into the rumen of a ruminant animal through its esophagus and retained within the rumen over a prolonged period to continuously deliver a biologically active composition carried in the capsule, comprising an elongated tubular body for substantially enclosing the biologically active composition, one end of the capsule being a delivery end, the body having an opening at the delivery end of the capsule for delivery of the composition to the rumen, and a plurality of retention arms attached to the body, the arms normally extending outwardly from the body for retaining the capsule in the rumen, the arms being resilient to enable them to bend from their normal positions toward the body so that they lie alongside the body and the capsule can be inserted through the animal's esophagus, the resilient arms being adapted to return to their normal outwardly extending positions when the capsule reaches the rumen, characterized in that
the arms normally extend from the body at an angle between 75 and 90° with respect to the axis of the tubular body, and for each arm said body has an external curved surface disposed with respect to the arm so that when the arm is bent toward the body, the arm contacts the curved surface and the curved surface controls the bending of the arm so that the arm does not bend abruptly.
Complete specification for the invention entitled:

"SUSTAINED RELEASE CAPSULE FOR RUMINANT ANIMALS"

The following statement is a full description of this invention, including the best method of performing it known to us:

- 1 -
SUSTAINED RELEASE CAPSULE
FOR RUMINANT ANIMALS

This invention relates to a sustained release capsule adapted to be inserted into the rumen of a ruminant animal through the animals's esophagus and to be retained in the rumen over a prolonged period to continuously deliver a biologically active agent or composition carried in the capsule.

Sustained release capsules are particularly useful for continuously delivering therapeutic or growth stimulating compositions to range-fed ruminants, such as cattle or sheep. One example of such a capsule is described in U.S. Patent No. 4,251,506, issued February 17, 1981. The capsule therein disclosed comprises a hollow tubular body having an opening at one end, a plunger driven by a spring for urging a solid therapeutic composition contained in the body towards the opening, restricting projections around the opening to prevent the driving means from expelling the solid composition from the body, and two resilient arms attached to the body at one end. The arms project outwardly from the body at an angle of approximately 45°. The arms can be resiliently flexed to a position at which they are substantially parallel to the body, and when they are in this position the capsule can be administered to cattle per os. It stated in this patent that when therapeutic compositions having a matrix of N,N-dihydroxyethyl octadecylamine are used the composition imbibes ruminal fluid and swells, causing the composition to expand diametrically and preventing additional fluid from penetrating the space
between the plug of composition and interior wall of
the body. This is said to insure a steady rate of
disintegration.

A potential problem with capsules of the type
disclosed in U.S. 4,251,506 arises from the fact that
the arms make an abrupt bend where they are attached to
the tubular body when the arms are folded. This sub-
jects the arms to considerable stress, and is a poten-
tial cause of premature failure of the capsule. A fur-
ther potential problem is that the retention arms of
the disclosed capsule may both bend when the capsule is
in the rumen, and thereby allow the capsule to reenter
the esophagus.

For the arms of a capsule to successfully
perform their function, they must have adequate strength
and resilience, first to permit folding of the arms
during insertion through the esophagus, and then en-
sure return of the arms to their outstanding position
when the capsule reaches the rumen. The arms must also
have sufficient fatigue resistance to withstand re-
peated physical stresses in the rumen. If the arms
fail to meet these criteria, the capsule may be re-
gurgitated or pass out of the rumen.

The present invention provides a capsule
having retention arms that are subject to a reduced
amount of stress and that are less likely to allow the
capsule to be regurgitated. More particularly, the
invention provides a sustained release capsule adapted
to be inserted into the rumen of a ruminant animal
through its esophagus and retained within the rumen
over a prolonged period to continuously deliver a
biologically ac
comprising
an el
enclosing the b
opening at the
capsule in the
enable them to
the body so that
the resilient a
normal outward
reaches the rum
the a
the tubular bod
external curved
arm so that whe
controls the be
not bend abrupt

The i
provide sustain
retention arms.
control the ben
invention accor
lasting retenti
biologically active composition carried in the capsule, comprising an elongated tubular body for substantially enclosing the biologically active composition, one end of the capsule being a delivery end, the body having an opening at the delivery end of the capsule for delivery of the composition to the rumen, and a plurality of retention arms attached to the body, the arms normally extending outwardly from the body for retaining the capsule in the rumen, the arms being resilient to enable them to bend from their normal positions toward the body so that they lie alongside the body and the capsule can be inserted through the animal's esophagus, the resilient arms being adapted to return to their normal outwardly extending positions when the capsule reaches the rumen, characterized in that the arms normally extend from the body at an angle between 75° and 90° with respect to the axis of the tubular body, and for each arm said body has an external curved surface disposed with respect to the arm so that when the arm is bent toward the body, the arm contacts the curved surface and the curved surface controls the bending of the arm so that the arm does not bend abruptly.

The invention solves the problem of how to provide sustained release capsules with more dependable retention arms. It does this by providing means to control the bending of the arms. The capsule of the invention accordingly provides more certain and longer lasting retention of the capsule in the rumen.
It would also be desirable to provide an improved means of preventing ruminal fluid from contacting the plug of composition at areas other than the discharge opening. As the composition is delivered, and the remaining plug of composition is urged toward the delivery opening, the space behind the plug within the capsule tends to fill with ruminal fluid, which can swell or erode the plug within the capsule.

Preferred embodiments of the invention solve this problem, and thereby provide better control of administration with more uniform delivery over long periods. More particularly, in certain preferred embodiments of the invention the delivery opening in the tubular body of the capsule is surrounded by a circumferentially continuous frustraconical surface against which the plug of composition within the capsule is urged into sealing relation. In other preferred embodiments of the invention the piston that urges the plug of composition toward the opening moves in sealing relation with respect to the inner walls of the body, and ruminal fluid is allowed to enter the capsule behind the piston as the piston advances.

Several ways of carrying out the invention are described in detail hereinafter with reference to the drawings, which illustrate only exemplary specific embodiments, in which:

Fig. 1 is a substantially full-scale longitudinal section of a capsule in accordance with the invention, with the arms of the retention wing shown in full lines in their normal extended positions and shown in dotted lines in their folded administration positions for insertion of the capsule through an esophagus;
Fig. 2 is a section taken on the line 2-2 of Fig. 1;

Fig. 3 is a front elevational view of the wing and forward end of the capsule;

Figs. 4, 5, and 6 are sectional views taken on the lines 4-4, 5-5, and 6-6 of Fig. 3;

Fig. 7 is a longitudinal section like Fig. 1, but on an enlarged scale and with a mid-portion of the barrel omitted and with the parts at the forward end of the capsule in partially exploded relation;

Fig. 8 is a diagrammatic view of an administration tool for inserting a capsule by mouth into the esophagus of a bovine animal;

Fig. 9 is a fragmental sectional view showing a capsule barrel containing a modified form of piston adapted to seal against the inside face of the barrel;

Fig. 10 is a side elevation of a smaller capsule adapted for use in sheep; and

Fig. 11 is a front end elevation of the capsule shown in Fig. 10.

Figures 1-7 show a sustained release capsule comprising a tubular body 10 adapted to enclose a solid core or plug 32 of a biologically active composition. The body 10 has a generally cylindrical barrel 16 joined in a smooth curve to an end wall 18 at the delivery end of the capsule. To permit controlled access of ruminal fluid to the composition carried in the capsule, the end wall 18 has a constricted circular discharge opening 20. To urge the core 32 toward the discharge opening 20 and thereby maintain a supply of composition at the delivery opening over a prolonged
period, a piston 36 is provided in the capsule, which is urged against the core 32 and toward the opening 20 by a biasing means such as a light coil spring 38.

In accordance with one aspect of the invention, to maintain sealing engagement between the core 32 and the end wall 18 and thereby control access of ruminal fluid to the composition, the end wall is preferably formed with a circumferentially continuous and axially symmetrical frustoconical inner face 17 surrounding the delivery opening. As illustrated, the frustoconical inner face defines an included angle of about 120°. The inner face 17 merges at its periphery with a smoothly curved border surface 19 which progressively converges from the inner surface of the side wall to the frustoconical surface 17. The charge or core 32 of administrative composition is adapted to be weakened adjacent its end surface 34 by exposure through the delivery opening 20 to ruminal fluid. The border surface 19 serves to make initial sealing contact with the end edges of a pre-formed core of composition, and during use to maintain that peripheral seal and to guide the edge portions of the charge inward toward the delivery opening. The width of frustoconical surface 17 engaged by the weakened end of the charge and the solubility or flow characteristics of the charge may be varied to control the rate of progression of the administrative charge toward the delivery opening 20 and thereby to control the rate of delivery of the administrative composition from the capsule. The inner end of the charge may be protected from exposure to ruminal fluid, as by sealing the end of the capsule.

Re 16 barrel 16 has an open groove corresponding to the delivery end.
opposite the end having the discharge opening or by using a sealing piston, which will be described herein-after in greater detail.

To retain the capsule in the rumen of an animal to which the capsule has been administered, the capsule is provided with a plurality of retention arms 44. As illustrated and as preferred, the arms 44 are connected to the tubular body at the end opposite the delivery end, which is sometimes referred to herein as the forward end. However, the arms can be attached at the delivery end. In the embodiments shown in the Figures, the two arms provided are substantially continuous; and form a wing 14.

To control the bending of the retention arms where they are attached to the tubular body and to thereby reduce the stress to which the arms are subjected, the body has curved surfaces 26 disposed with respect to the arms so that when an arm is bent toward the body, the arm contacts a curved surface 26, thereby causing the arm to bend over a long arc instead of abruptly at the point of attachment. In the illustrated embodiment, the end of the capsule opposite the delivery end is closed with a hemispherical end cap 12 to which the wing is integrally connected. The hemispherical exterior surface of the cap provides the required curved surfaces.

Referring to Fig. 7, the forward end of the barrel 16 has a conical mouth 22 leading to an inward-open groove 24 adapted to receive and interlock with corresponding parts on the closure cap 12. Such cap has a generally hemispherical wall joined at the rear
to a flange 28 having an external bead 30 adapted to enter through the mouth 22 of the barrel and engage in locked relation with the groove 24 to mechanically secure the cap 12 to the body. The barrel 16 contains an administrative charge in the form of a pre-formed cylindrical core 32 which, as formed and as shown in Fig. 1, has a rounded end face 34 adapted to make initial sealing engagement with the inner face 19 of the barrel. In Fig. 7, the rear or delivery end of the core 32 is shown in a condition it takes during use, in which the core end has been weakened by absorption of ruminal fluid and pressed toward the delivery opening 20 and against the end wall 18. Desirably, the hemispherical end wall of the cap 12 is formed internally with a pair of cross ribs 40 which form a flat seat for the opposite end of the spring 38.

The retention wing 14 is integrally connected and attached to the cap 12 adjacent the axis of the capsule body at the outermost central portion of the hemispherical wall 26 by a connection 42 over an area which lies on and close to the axis of the capsule. The wing 14 is substantially tangent to the hemispherical cap 12 on that central axis and has arms 44 extending outward in opposite directions from that point of attachment, as shown in Figs. 1 and 4. Thus, in the illustrated embodiment the arms describe an angle of 90° with respect to the axis of the body. In accordance with an important aspect of the invention, to reduce stress on the arms, each arm should lie within an angular space between 75° and 90° with respect to the body. The arms are adapted to be resiliently bent
downward along the curved hemispherical outer surface of the cap 12 and to be brought substantially flat against the wall of the barrel, as shown in dotted lines in Fig. 1, so as to present a cross section of effective diameter not much larger than the barrel itself when the capsule is conditioned for insertion through the esophagus into the rumen of an animal. When the capsule passes from the esophagus into the rumen, the arms 44 of the wing 14 spring outward to their fully extended positions so as to block passage of the capsule back through the esophagus and thus to retain the capsule against regurgitation or passage from the rumen.

The outstanding, substantially right-angular position of the wing arms 44 is considered advantageous both in preventing regurgitation of the capsule and to reduce bending and stress of the arms in the rumen, in that in a right-angular T-shape, the capsule is less likely than would be the case with other configurations to have its arms bent relative to each other or the barrel. More especially, such contractions and working are less likely to bend both arms to a position which would allow the forward end of the capsule to enter the esophagus.

The wing 14 is desirably reinforced and made so that its arms 44 bend more easily back toward and against the sides of the capsule than forward in the opposite direction, away from the capsule, as would be required for the capsule to pass rear or delivery end first back through the esophagus. In some cases, the wing as molded takes a slightly arched shape so that
its arms 44 are arched rearward toward the capsule, and hence so that less bending is required to bring them against the side of the capsule than to swing them in the opposite direction to a corresponding position.

The central portion of the wing is reinforced and desirably made of asymmetric cross section to increase the resistance of the wing to bending of its arms in a forward direction. As shown, an asymmetric configuration is obtained by forming longitudinal ribs on the outer surface of the wing. Thus, as shown in Fig. 3-6, the basic cross section of the wing is that of a leaf spring in the form of a wide flat rectangle as shown in Fig. 4. Inward of Fig. 4, as shown in Fig. the wing is formed with two upstanding side ribs 46 along its edges which extend over a substantial portion of its length along the barrel 16 of the capsule. Still further inward, the wing is formed with a shorter central rib 48 which extends across the area 42 of attachment of the wing to the wall 26 of the cap. The central rib 48 is desirably of a length to extend substantially to the base of the hemispherical wall 26 when the arms are bent to insertion position as shown in Fig. 8. The ribs 46 and 48 reinforce the wing 14 against forward bending, and thus give the wing greater resistance to forward bending than to the rearward bending which is required to carry its arms against the sides of the capsule barrel 16.

In a particular embodiment, a capsule for use in cattle comprised a barrel approximately 6 1/4 inches (156 mm) long and 1 1/4 inches (31 mm) in outside diameter, and a wing 1/2 inch (12.5 mm) wide and 6 1/2 inches (162.5 mm) of the length of the cap over .375 inch (9.5 mm) to contain its protruding rearward entrance, retention of digested food conditions to its prolonged continuing and further subjected conditions which insertions may be subjected to. The barrel 16 of the groove 24 inserted a plastic or other material 36 to seal the joint.
inches (162.5 mm) long with side ribs 46 extending 60% of the length of the wing and a center rib 48 half the length of the side ribs, the wing being attached to the cap over a circular area having a diameter of about .375 inch (9.4 mm).

This configuration and construction of the wing and its interrelation with the curved capsule end formed by the hemispherical wall 26 not only facilitates insertion of the capsule through the esophagus and retention of the capsule in the rumen, but also enhances the ability of the capsule to withstand the conditions to which it is subjected in the rumen during its prolonged stay. In the rumen, the capsule and wing are subjected not only to chemical and biological conditions which it must withstand, but also to continuing and forceful mechanical stresses from the undigested food in the rumen and the movements of the contents of the rumen during the normal course of entrance, regurgitation, and digestion.

The capsule shown is readily assembled by inserting a pre-formed cylindrical core 32 into the barrel 16 of the body portion 10, inserting a piston 36 and spring 38 behind the capsule, and compressing the spring and pressing a cap 12 into the open end of the barrel 16 so that the rib 30 of the cap interlocks with the groove 24 of the barrel. Various other means may be used to secure the cap to the barrel and, if desired, to seal the joint between them, including, for example, sonic or other welding procedures.

Before such assembly, a lubricant such as a light silicone lubricant is desirably applied either to
the inner surface of the barrel 16 or to the outer surface of the core 32. Such lubricant provides an initial seal gives some waterproofing for the pre-formed core, and forms a barrier film to prevent adhesion of the core to the barrel. This will help to ensure that the core 32 will slide in the barrel and will be initially pressed by the light spring 38 into sealing engagement with the end wall 18 and maintained in engagement therewith throughout the long period of sustained release of the capsule composition at the delivery opening 20 of the capsule.

The body 10 and cap 12 of the capsule are both adapted to be readily and inexpensively molded from plastic material. Such material must, of course, be acceptable in the rumen of the living animal, and must be capable of resisting the chemical, biological, and physical conditions encountered in the rumen. Polymers of polyethylene and polypropylene, or preferably, of polypropylene itself, are suitable materials.

The capsule is conveniently molded of two parts, preferably with one part including the barrel and the delivery opening and defining an inside surface of uniform cross section to receive a capsule with predetermined clearance and to slidably receive the piston, and with the other part formed as a cap or closure for the forward end of the capsule and carrying the wing as an integral part of the molding.

In some instances, capsules may need to remain in the rumen for extended periods of time, since in some parts of the world cattle remain on the range for such periods, and capsules may be administered
periodically over that period. Cattle to which capsules are administered may have weights of upward from 300 pounds, and in such cattle the rumen may have a volume on the order of twelve gallons or more, so that the presence of capsules of the size here contemplated can be tolerated in plural numbers and over long periods.

Insertion of a capsule into the rumen in cattle is conveniently done with an administration tool as shown in Fig. 8. Such tool comprises a tubular barrel 60 having an open end adapted to receive a capsule 8 with its wing arms 44 folded against the sides of its barrel 16. The barrel 60 is mounted on a tube 62 having a handle portion 64 by which the barrel can be manipulated through the mouth of the animal to place the end of the capsule 8 in the esophagus. The tube 64 contains a thrust rod or cable 66 having a plunger 68 at its forward end and a thrust knob 70 at its outer end by which the plunger head 68 can be advanced to discharge the capsule 10 from the barrel 60 into the esophagus. When the capsule with its folded arms 44 is thus discharged partway into the esophagus, the capsule will then move on through the esophagus into the rumen, and the esophagus will hold the arms 44 in folded position until the capsule reaches the rumen. The arms will then spring outward to their normal outstanding position shown in full lines in Fig. 1 so as to retain the capsule in the rumen.

When the arms 44 of the wing 16 are bent to folded positions, as indicated in dotted lines in Fig. 1, such arms bend in an arc on a long radius, in the clearance provided by and following the curved
outer surface of the hemispherical wall 12 of the capsule so as not to be stressed to a point of strain, and when the arms are released from their folded position in the rumen, they tend strongly to return to their outstanding positions in diametrically opposite directions from the axis of the capsule, preferably with a slight arch as shown in Fig. 1. In such position, the wing presents a substantially flat outer face which tends to prevent the forward end of the capsule from entering the esophagus to be regurgitated from the rumen. If the opposite end of the capsule should enter the rumen, the outspread wing and its high resistance to bending in the opposite direction will prevent the capsule from passing through the esophagus and will thus prevent its regurgitation in that position.

Further, the outspread arms 44 of the wing are so widely spaced angularly from each other and from the capsule that the working of the rumen has little tendency to bend the arms toward the capsule, and they are not so readily squeezed toward the capsule as arms at an acute angle to each other and to the barrel.

When a pre-formed core 32 is first inserted in the barrel 16, the spring 38 presses its end edge into sealing engagement with the end wall 18 of the barrel so as to limit contact of the ruminal fluid to the end face 34 of the core. In normal operation, such ruminal fluid migrates into the end of the core 32 and tends to soften and weaken it, and the core is then urged by the spring 38 toward the opening 20 in the end wall of the capsule. The capsule is thus held in sealed relation with the end wall 18 over a wide area
as shown in Fig. 7, and the area of access to ruminal fluid to the end of the capsule 32 is limited by the size of the opening 20. Over that access area, the composition of the capsule 32 will be discharged to the ruminal fluid, as by washing, erosion, and dissolution. Meanwhile, the migration of ruminal fluid, or components thereof, into the end portion of the core will progress to maintain an equilibrium of softened material at the end of the core, which will be maintained by progressive movement of the core toward the discharge opening by the spring 38. This will produce a sustained administration of medicaments contained in the core to the rumen over a prolonged period. The rate of such administration will depend in part on the composition of the core 32, but it will also be controlled in an important respect by the configuration of the end wall 18 of the capsule, as here shown and described, and especially by the outward-converging conical portion 17 thereof. The size of the opening 20 and the width of the conical face 17 may be changed to vary the rate of administration.

It is desirable to protect the sides and rear end of the core 32 in the capsule from contact with ruminal fluid which might tend to cause it to swell excessively against the sides of the barrel and prevent forward movement of the core 32 toward the end wall 18 to maintain sealing contact at that point. Either of two methods may be used to accomplish this purpose. In the capsules of Figs. 1-7, the piston 36 is formed with a flat end 35 and a cylindrical side wall 37 which fits loosely within the barrel 16 so that it will slide
freely along the inside of the barrel as the material of the core 32 is consumed and so as to maintain the core in continuing sealing engagement with the end wall 18 of the barrel. With the use of such a loose-fitting and non-sealing piston 36, the displacement or spring chamber behind the piston will not be sealed by the piston, and hence is desirably sealed against entrance of ruminal fluid. Such sealing may be obtained by sealing the joint between the open end of the barrel 16 and the hemispherical wall 26 of the cap 12, as by sonic sealing, by running a hot iron around a joint, or by applying a sealing material to the joint.

With a sealed capsule, there are indications that the active agent contained in the core or charge of composition may be delivered to the animal in an initial surge or pulse and that the rate of administration then decreases and remains substantially constant over a prolonged period. It is not known why this initial pulse occurs, but it is believed that it may in part result from an initial increase in pressure in the spring chamber. Such increase could be caused by the change in temperature from an ambient temperature to a ruminal temperature of about 39°C. A pressure increase could also be caused by a higher rate of diffusion through the walls of the capsule of gases such as carbon dioxide from the rumen into the capsule than the rate of diffusion of nitrogen outward from the air contained in the spring chamber.

In the modification shown in Fig. 9, the capsule comprises a body barrel 116 which is formed with a reasonably true and accurate internal cylindrical surface. Piston 136 having a cylindrical side rearward in space provided with a sealing contact with the barrel. When the joint between left unsealed, a joint as shown 136, joint as shown sealed. Such un sealed. Such insufficient rumi of the spring c an increase or i to add to or of piston 136.

The modification shown in Fig. 9, in the rear end wall 2 The forward end spherical cap 21 interlocking joint is adapted for sheep. This is a composition c taches to the c a composition c analogous to th
trical surface. The core is pressed forward by a piston 136 having a flat front end 135 and a generally cylindrical side wall 137. Such side wall has a portion with a sliding fit in the barrel 116, and extends rearward in spaced relation with such side walls and is provided with a rear skirt 139 formed to make resilient sealing contact with the cylindrical inner surface of the barrel. With the piston thus sealed to the barrel, the joint between the barrel and the rear cap can be left unsealed, as by using a mechanically interfitting joint as shown in Fig. 7 which is not hermetically sealed. Such unsealed joint will permit entrance of sufficient ruminal fluid, especially gas, into or out of the spring chamber to avoid the occurrence of either an increase or a decrease in pressure which would tend to add to or offset the force of the spring 138 on the piston 136.

The modified capsule shown in Figs. 10 and 11 is adapted for use in smaller animals, particularly in sheep. This is similar in construction to the capsule of Fig. 1, in that it comprises a barrel 216 having a rear end wall 218 formed with a discharge opening 220. The forward end of the barrel 216 is closed by a hemispherical cap 212 which is attached to the barrel by an interlocking joint as in Fig. 7. A wing 214 is attached to the center of the hemispherical cap 212 and comprises arms 244 extending in opposite directions substantially at right angles to the axis of the capsule. The capsule is adapted to contain a core 232 of a composition containing the desired active agent or agents and to contain a piston and spring, not shown, analogous to those of the modification of Figs. 1-7.
In a particular embodiment of a capsule for use in sheep, the capsule had an overall length of 3.753 inches (95.35 mm) and a diameter of .708 inch (18 mm), and carried a wing having a length of approximately 4.2 inches (105 mm) with a cross section of .236 inch (6 mm) by .040 inch (1 mm). The end opening in the barrel had a diameter of .236 inch (6 mm). The wing was attached to the cap over a central circular area having a diameter slightly greater than the width of the wing.

The smaller sheep capsule shown in Figs. 10 and 11 is administered to sheep in a manner analogous to the administration of the cattle capsule, and acts in an analogous manner. While the wing of the smaller sheep capsule is of uniform cross section throughout its length and not reinforced with ribs nor bowed as in the cattle capsule, the sheep capsule has been used successfully and has been found to be retained in the sheep rumen for prolonged periods.
THE CLAIMS DE

1. inserted into its esophagus prolonged per active compos an enclosing the of the capsul opening at the of the compo retention arm extending out capsule in the body so capsule can the resilient normal outward reaches the th angle between the tubular external cur arm so that arm contacts controls the not bend abr 2. wherein the the capsule
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A sustained release capsule adapted to be inserted into the rumen of a ruminant animal through its esophagus and retained within the rumen over a prolonged period to continuously deliver a biologically active composition carried in the capsule, comprising an elongated tubular body for substantially enclosing the biologically active composition, one end of the capsule being a delivery end, the body having an opening at the delivery end of the capsule for delivery of the composition to the rumen, and a plurality of retention arms attached to the body, the arms normally extending outwardly from the body for retaining the capsule in the rumen, the arms being resilient to enable them to bend from their normal positions toward the body so that they lie alongside the body and the capsule can be inserted through the animal's esophagus, the resilient arms being adapted to return to their normal outwardly extending positions when the capsule reaches the rumen, characterized in that the arms normally extend from the body at an angle between 75 and 90° with respect to the axis of the tubular body, and for each arm said body has an external curved surface disposed with respect to the arm so that when the arm is bent toward the body, the arm contacts the curved surface and the curved surface controls the bending of the arm so that the arm does not bend abruptly.

2. A capsule in accordance with claim 1 wherein the arms are attached to the body at the end of the capsule opposite the delivery end.
3. A capsule in accordance with claim 2 wherein the arms are formed to have relatively less resistance to bending from their normal positions toward the delivery end of the capsule to positions in which they lie against the body of the capsule, and relatively more resistance to bending away from the delivery end.

4. A capsule in accordance with claim 3 wherein the arms are of asymmetric cross section to control their resistance to bending.

5. A capsule in accordance with claim 3 wherein resistance of the arms to bending away from the delivery is increased by providing the arms with one or more longitudinal reinforcing ribs on each arm, the ribs being disposed on each arm facing away from the delivery end of the capsule.

6. A capsule in accordance with claim 2 wherein the capsule has at least one pair of arms that are substantially continuous so as to form a wing extending across the end of the capsule.

7. A capsule in accordance with any one of claims 1-6 wherein the tubular body contains a piston and means for biasing the piston toward the delivery end for moving a supply of active composition toward the delivery opening when the capsule is in use.

8. A capsule in accordance with claim 7 wherein the piston is adapted to move in slideable relation in the body to restrict access of ruminal fluid to the supply of active composition other than at the delivery opening.
9. A capsule in accordance with claim 7 wherein the body is substantially sealed except for the delivery opening, and the delivery opening is surrounded by a circumferentially continuous frustoconical surface for forming a sealing relation with the plug of active composition as it is urged toward the opening so as to restrict access of ruminal fluid to the active composition other than at the delivery opening.

10. A capsule in accordance with any one of claims 1-9 containing a solid core of the biologically active composition.
11. A sustained release capsule substantially as hereinbefore described with particular reference to the figures.

12. The steps or features disclosed herein or any combination thereof.

Dated this 3 day of November 1982.

DAVIES & COLLISON
PATENT ATTORNEYS FOR
ELI LILLY AND COMPANY.
DRAWINGS