AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be granted a patent for the invention disclosed in the accompanying standard complete specification.

[70,71] Applicant(s)/Nominated Person(s):
American Cyanamid Company, of One Cyanamid Plaza, Wayne, New Jersey, 07470, UNITED STATES OF AMERICA

[54] Invention Title:
Herbicide Resistant Ahas Deletion Mutants

[72] Inventor(s):
John Mark Hand, Bijay Kumar Singh, Roy Scott Chaleff

[74] Address for service in Australia:
Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia (Code SF)

[31] Appl'n No(s): [33] Country: [32] Application Date:
633,210 US 27 December 1990

In accordance with Regulation 3.25, samples of materials deposited in accordance with the Budapest Treaty in relation to this Patent Request are only to be provided before: the patent is granted on the application; or the application has lapsed or been withdrawn or refused; to a person who is: a skilled addressee without an interest in the invention; and nominated by a person who makes a request for the furnishing of those samples.

DATED this ELEVENTH day of DECEMBER 1991

American Cyanamid Company

By:

Registered Patent Attorney

INSTR CODE: 50380
This invention provides novel nucleic acid sequences encoding herbicide-resistant AHAS enzymes. These sequences contain deletions of one or more amino acids in "conserved" regions of the AHAS molecule. Also disclosed are vectors containing novel sequences, as well as herbicide-resistant plants and plant cells transformed thereby.
Name and Address of Applicant: American Cyanamid Company
One Cyanamid Plaza
Wayne New Jersey 07470
UNITED STATES OF AMERICA

Actual Inventor(s): John Mark Hand, Bijay Kumar Singh, Roy Scott Chaleff

Address for Service: Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower, 31 Market Street
Sydney, New South Wales, 2000, Australia

Invention Title: Herbicide Resistant AHAS Deletion Mutants

The following statement is a full description of this invention, including the best method of performing it known to me/us:

plant cell. For example, in the present case, the mutant AHAS sequence is inserted into a plasmid vector
This invention relates to novel DNA sequences that encode novel variant forms of acetohydroxy acid synthase enzyme (hereinafter AHAS). The AHAS enzyme is a critical enzyme routinely produced in a variety of plants and a broad range of microorganisms. Normal AHAS function is inhibited by a number of different types of herbicides; however, new AHAS enzymes encoded by the mutant DNA sequences function normally catalytically even in the presence of such herbicides and, therefore, confer herbicide resistance upon the plant or microorganism containing them.

The novel DNA sequences are based on the unexpected observation that deletion of one or more specific amino acids in certain regions of the normal AHAS gene sequence results in a fully functional enzyme, but renders the enzyme resistant to inhibition by a variety of different types of herbicides, including imidazolinones, triazolopyrimidines, and sulfonylureas. The availability of these variant sequences provides a tool for transformation of a variety of different crop plants to herbicide resistance, as well as providing novel selectable markers for use in other types of genetic transformation experiments.
BACKGROUND OF THE INVENTION

The use of herbicides in agriculture is now widespread. Although there are a large number of available compounds which effectively destroy weeds, not all herbicides are capable of selectively targeting the undesirable plants over crop plants, as well as being non-toxic to animals. Often, it is necessary to settle for compounds which are simply less toxic to crop plants than to weeds. In order to overcome this problem, development of herbicide resistant crop plants has become a major focus of agricultural research.

An important aspect of development of herbicide-resistance is an understanding of how the herbicide works in inhibiting plant growth, and then manipulating the affected biochemical pathway in the crop plant so that the inhibitory effect is avoided while the plant retains normal biological function. One of the first discoveries of the biochemical mechanism of herbicides related to a series of structurally unrelated herbicide compounds, the imidazolinones, the sulfonylureas and the triazolopyrimidines. It is now known (Shaner et al. Plant Physiol. 76: 545-546, 1984. U.S. Patent No. 4,761,373) that each of these herbicides inhibits plant growth by interference with an integral cellular enzyme, acetohydroxyacid synthase (AHAS; also referred to as acetolacetate synthase, or ALS). AHAS is required for the synthesis of the amino acids isoleucine, leucine and valine.

The AHAS enzyme is known to be present throughout higher plants, as well as being found in a variety of microorganisms, such as the yeast Saccharomyces cerevisiae, and the enteric bacteria, Escherichia coli and Salmonella typhimurium. The genetic basis for the production of normal AHAS in a number of these species has also been well characterized. For example,
in both *E. coli* and *S. typhimurium* three isozymes of AHAS exist; two of these are sensitive to herbicides while a third is not. Each of these isozymes possesses one large and one small protein subunit; and map to the IlvIH, IlvGM and IlvBN operons. In yeast, the single AHAS isozyme has been mapped to the ILV2 locus. In each case, sensitive and resistant forms have been identified and sequences of the various alleles have been determined (Friden et al., *Nucl. Acid Res.* 13: 3979-3993, 1985; Lawther et al., *PNAS USA* 78: 922-928, 1982; Squires et al., *Nucl. Acids Res* 811: 5299-5313, 1983; Wek et al; *Nucl. Acids Res* 13: 4011-4027, 1985; Falco and Dumas, *Genetics* 109, 21-35, 985; Falco et al, *Nucl. Acids Res* 13: 4011-4027, 1985).

In tobacco, AHAS function is encoded by two unlinked genes, *SuRA* and *SuRB*. There is substantial identity between the two genes, both at the nucleotide level and amino acid level in the mature protein, although the N-terminal, putative transit region differs more substantially (Lee et al, *EMBO J.* 7: 1241-1248, 1988). *Arabidopsis*, on the other hand, has a single AHAS gene, which has also been completely sequenced. Comparisons among sequences of the AHAS genes in higher plants indicates a high level of conservation of certain regions of the sequence; specifically, there are at least 10 regions of sequence conservation. It has previously been assumed that these conserved regions are critical to the function of the enzyme, and that retention of that function is dependent upon substantial sequence conservation.

It has been recently reported (EP 0257993) that mutants exhibiting herbicide resistance possess mutations in at least one amino acid in one or more of these conserved regions. In particular, substitution of certain amino acids for the wild type amino acid at these specific sites in the AHAS sequence have been
shown to be tolerated, and indeed result in herbicide resistance of the plant possessing this mutation, while retaining catalytic function. These mutations have been shown to occur at both the SuRA and SuRB loci in tobacco; similar mutations have been isolated in Arabidopsis and yeast.

It has now been unexpectedly discovered that deletions of one or more amino acids within one or more of these "conserved" regions result not only in a functional AHAS enzyme, but also result in herbicide resistance. Sequence conservation normally implies that any change in these regions would not be tolerated and would therefore result in a nonfunctional protein. However, in the present case, it is particularly surprising that enzyme function is retained, in view of the fact that the deletions not only eliminate an amino acid residue that is a structural component of the enzyme, but also necessarily result in residue shifting, thereby destroying the apparent conservation of the sequence containing the mutation. Thus, novel nucleic acid sequences are provided which are useful in transforming herbicide sensitive plants to herbicide resistant ones. The plants transformed therefore provide the basis for development of novel herbicide resistant plant varieties.

SUMMARY OF THE INVENTION

The present invention provides novel nucleic acid sequences encoding functional AHAS enzymes insensitive to a variety of herbicides. The sequences in question comprise the deletion of one or more codons encoding a specific amino acid within one or more designated so-called conserved regions in the wild type AHAS molecule. The identity of these sites, and the deletable codons will be discussed in greater detail.
below. The altered DNA sequences are useful in methods for producing herbicide resistant plant cells, said methods comprising transforming a target plant cell with one or more of the altered sequences provided herein. Alternatively, mutagenesis is utilized to create deletion mutants in plant cells or seeds containing a nucleic acid sequence encoding a herbicide sensitive AHAS. Such plant cells are then passed through tissue culture in order to regenerate plants which possess the herbicide resistant or insensitive trait. The invention thus also encompasses plant cells, plant tissue cultures, adult plants, and plant seeds that possess the deletion mutant nucleic acid sequences and which express functional, herbicide-resistant AHAS enzymes.

The availability of these novel herbicide resistant plants enables new methods of growing crop plants in the presence of herbicides. Instead of growing non-resistant plants, fields may be planted with the resistant plants of the present invention and the field routinely treated with herbicide, with no resulting damage to crop plants. Preferred herbicides for this purpose are imidazolinones, sulfonylureas, and triazolopyrimidines.

The mutant nucleic acids of the present invention also provide novel selectable markers for use in transformation experiments. The nucleic acid sequence encoding a resistant AHAS is linked to a second gene prior to transfer to a host cell, and the entire construct transformed into the host. Putative transformed cells are then grown in culture in the presence of inhibitory amounts of herbicide; surviving cells will have successfully acquired the second gene of interest.

The following definitions should be understood to apply throughout the specification and claims.
A "functional" or "normal" AHAS enzyme is one which is capable of catalyzing the first step in the pathway for synthesis of the essential amino acids isoleucine, leucine and valine. A "conserved" sequence or region of AHAS is a series of nucleic acids or amino acids within the AHAS nucleic acid or amino acid sequence which is the same in at least two of the species having the AHAS enzyme. A "wild-type" AHAS sequence is a sequence present in a herbicide sensitive member of a given species. A "resistant" plant is one which produces a normal AHAS enzyme, and which is capable of reaching maturity when grown in the presence of normally inhibitory levels of herbicide. The term "resistant", as used herein, is also intended to encompass "tolerant" plants, i.e., those plants which phenotypically evidence adverse, but not lethal, reactions to the herbicide.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1a and 1b (Sequence Listings 1 and 2) show, respectively, the amino acid and nucleotide sequences of Arabidopsis wild-type AHAS. In Figure 1a, boxed regions indicate exemplary subsequences in which deletions may be made to produce herbicide resistance. Circled residues identify specific sites where such deletions may be made. In Figure 1b, an arrow indicates the start of the coding region.

Figure 2(a-c) shows three photographs of progeny (first generation), resulting from a transgenic tobacco plant (10-1) transformed with a construct containing a Trp574 deletion mutation of Arabidopsis AHAS sprayed post-emergence with Pursuit® imidazolinone herbicide at 0, 10, 20, 40, 60, 80 and 160 grams/hectare (g/ha). All three photographs were taken 25 days after spraying. In all photographs, control plants (a
wild-type herbicide sensitive tobacco cultivar, Wisconsin 38 (W38) are in the front row.

(a) W38 Control and 10-1 Self — W38 represents the control and 10-1 the selfed transgenic tobacco progeny. At 0 g/ha Pursuit®, both the W38 and the 10-1 look similar. At 10 g/ha, the W38 plant is slightly inhibited in its growth as compared to 10-1; however, starting at 20 g/ha, W38 growth is almost completely inhibited. At 80 g/ha, 10-1 plant growth appears to be slightly inhibited and at 160 g/ha, 10-1 plant growth is clearly inhibited.

(b) W38 Control and 0 x 10-1 — W38 as previously described. 0 x 10-1 represents W38 as the maternal parent (0) and 10-1 as the paternal parent. The results are very similar to that seen in the 10-1 selfed photograph.

(c) W38 Control and 10-1 x 0 — W38 as previously described. 10-1 x 0 represents 10-1 as the maternal parent and W38 as the paternal parent (0). The results are very similar to that seen in the 10-1 selfed photograph except that in this photo segregation of the herbicide resistance trait can be seen in the 10-1 progeny.

Figure 3 illustrates the effect of Pursuit® postemergent application in tobacco seedling growth, as measured by plant height. C* represents the mean of the control (susceptible parent cultivar) plants, while each subsequent bar represents an individual transgenic progeny.

Figure 4 illustrates the effect of the imidazolinone herbicide Pursuit® on AHAS enzymes derived from an E. coli transformed with a Trp574 deletion [DEL], a Trp574 substitution [SUB] and an E. coli transformed with wild-type [WT] AHAS sequence.

Figure 5 illustrates the effect of the sulfonylurea herbicide Glean® on AHAS enzymes extracted
from *E. coli* transformants. Abbreviations as in Figure 4.

Figure 6 illustrates the effect of the imidazolinone herbicide Pursuit® on AHAS enzymes extracted from *E. coli* transformants. The enzymes are derived from an *E. coli* transformed with a Ser653 deletion [DEL], an *E. coli* transformed with a Ser653 substitution [SUB], and an *E. coli* transformed with a wild-type [WT] AHAS sequence.

Figure 7 illustrates the effect of the sulfonylurea herbicide Glean® on AHAS enzymes extracted from *E. coli* transformants. Abbreviations as in Figure 6.

Figure 8 illustrates the effect of the imidazolimone herbicide Pursuit® on an AHAS enzyme derived from a tobacco plant with an Agrobacterium strain containing a mutant *Arabidopsis* AHAS allele having the Trp574 deletion.

DETAILED DESCRIPTION OF THE INVENTION

The entire nucleotide sequence of the AHAS gene in a number of organisms including yeast, *E. coli*, *Brassica*, *Arabidopsis*, sugar beet and tobacco has been previously disclosed (Mazur et al., supra. Lee et al., *EMBO J.* 7:1241, 1988). Moreover, it has been noted that herbicide resistance is associated with one or more mutations within the AHAS sequence; specifically, resistance has been noted to be associated with certain specific amino acid substitutions within the sequence. (EP 259 793; Yadav et al. *PNAS USA* 83:4418-22, 1986; Sathasivan et al., *Nucl. Acids res.* 18: 2188, 1990).

It has, however, been implied (Hartnett et al., in *Managing Resistance To Agrichemicals*, Ch. 31, pp. 459-473, American Chemical Society, 1990; EP 259 793) that these regions of conservation in which mutations
conferring resistance occur must generally be maintained to conserve enzymatic function.

It has now been unexpectedly discovered that conservation of these sequences is apparently not essential to the catalytic function of the molecule. In the course of development of the present invention, site directed mutagenesis of the Arabidopsis AHAS coding region is utilized to create deletion mutations in which a residue which has previously been shown to be substitutable is then deleted from the sequence. Deletion of a residue clearly destroys the conserved nature of the regions in which they occur. Nonetheless, the deletion mutations thus created all retain AHAS function, while also exhibiting herbicide resistance. Specifically, single deletions of the Trp574, Pro197 and Ser653 residues and double deletions of Pro197 and Ser653 are made to create fully functional, herbicide resistant plants. All the numbering of amino acids herein is based on the Arabidopsis AHAS sequence. However, it will be understood that, throughout the specification and claims, reference to a specific site of deletion in the Arabidopsis sequence is meant to encompass the corresponding sites in the AHAS sequence of any other species having an AHAS gene.

In view of these data, it becomes apparent that conservation of these herbicide-resistance associated regions of the AHAS molecule is not critical for catalytic activity, and that one or more amino acid deletions in one or more "conserved" amino acid sequences can easily be tolerated by the enzyme and further, will confer herbicide resistance to the plant. The present invention encompasses AHAS DNA sequences in which one or more deletions have been made relative to the wild-type sequence, which deletions do not alter the catalytic function of the resulting AHAS enzyme, but which confer herbicide resistance. Such deletion
mutation include, but are not limited to, deletion of one or more codons, encoding the so-called "conserved subsequences" as defined in EP 257 793. These are DNA sequences encoding amino acids 119-122, 194-197, 201-208, 255-257, 348-353, 373-377, and 569-578 in Arabidopsis AHAS. Additionally, a further "conserved sequence" in which substitution has been described and in which deletion is useful in bringing about herbicide resistance, is 650-653. Deletion of one codon, more than one codon, and up to all the codons in the "subsequences" noted above, is considered within the scope of the invention. Preferred are codon deletions encoding mutants having a deletion of at least one residue position selected from the group consisting of amino acid 120, 121, 197, 205, 256, 351, 376, 571, 574, 578 and 653. Particularly preferred are sequences encoding deletions at 197, 574 or 653.

Although the above-identified deletions represent regions in which variation is known to be tolerated, it is likely, in view of the substantial "flexibility" of the molecule that other deletions would also be feasible. For example, other apparently "conserved" regions of the AHAS enzyme also exist in addition to those outlined above. While not wishing to be bound by any particular theory, it now appears likely that, rather than being sites connected with catalytic activity of the molecule, and therefore requiring essential structural conservation, most of these conserved regions represent binding sites for the herbicide. Deletion of one or more amino acids at these sites would then logically prevent herbicide binding, and consequently, prevent herbicide interference with AHAS activity. Using this rationale, the available knowledge regarding "conserved" AHAS sequences (See, e.g., Mazur et al., Plant Physiol. 85: 1110-1117, 1987) and known techniques, such as site-
specific mutagenesis, it would be a routine matter to design additional deletion mutants likely to have herbicide resistance. Putative mutants can then be screened by growth in the presence of inhibitory amounts of the herbicide of interest, to determine whether or not herbicide resistance has been conferred.

As with all proteins, the functional AHAS enzyme possesses a three-dimensional structure which is the eventual result of the linear arrangement of the component amino acids. Interaction of the side groups of amino acids produces a protein's secondary structure, and further folding results in a protein's tertiary structure. A given protein's specific "architecture" which ultimately results from the amino acid sequence can be critical to the protein's function. Thus, the substitution of an amino acid retains the overall structural integrity of the protein, whereas the deletion of an amino acid effectively destroys this structural integrity and can be expected to significantly alter the protein's three-dimensional structure and, in doing so, alter the function of the molecule. Therefore, in view of the potential damage that can be caused by a deletion, it is particularly surprising that the resultant molecule retains sufficient portions of its three dimensional structure to remain not only catalytically functional, but also to cause herbicide resistance.

Those skilled in the art will recognize that the deletion mutants of the present invention are not limited as to the source of the DNA or enzyme. Although the present experimental design primarily utilizes the Arabidopsis AHAS gene sequence, similar mutations can routinely be made in the AHAS sequence of any organism possessing such a gene, e.g. other higher plants, yeast, E. coli, and other microorganisms. The similarities in the wild-type AHAS gene among all the
known sequences are so great as to render it a matter of routine experimentation to create identical mutants in AHAS sequences other than that of Arabidopsis. Alternately, chimaeric genes can be constructed which contain the deletion mutant portion of the Arabidopsis AHAS gene recombined with unaltered portions of the AHAS gene from other sources.

The novel gene types described herein may confer resistance to one, or more than one, type of herbicide. As has already been well established, AHAS is the site of action of several distinct classes of herbicides, namely, imidazolinones, sulfonylureas, triazolopyrimidines, sulfamoylureas and sulfonylcarboxamides. As with herbicide resistance conferred by amino acid substitution, the herbicide resistance conferred by such mutations may be selective to a particular herbicide, or there may be cross-resistance to more than one herbicide. For example, deletions of Trp574 and Ser653 create cross-resistance to both imidazolinones and sulfonylureas. One skilled in the art can, however, easily determine the specificity of any particular mutant by screening separately in the presence of, e.g., imidazolinones only, or sulfonylureas only, and isolating surviving plants. Cross resistance can be determined by growth in the presence of more than one class of herbicide. Types of herbicides with which the present invention is useful are described, for example, in U.S. Patent No. 4,188,487; 4,201,565; 4,221,586; 4,297,128; 4,554,013; 4,608,079; 4,638,068; 4,647,301; 4,650,514; 4,698,092; 4,701,208; 4,709,036; 4,752,323; 4,772,311; and 4,798,619; U.S. Pat. Nos. 4,127,405; 4,435,206; 4,424,703; 4,417,917; 4,398,939; 4,394,506; 4,391,627; 4,383,113; 4,378,991; 4,372,778; 4,371,391; 4,370,480; 4,370,479; 4,369,320 (sulfonylureas).

At this time, AHAS has been demonstrated to be not only present in a wide variety of plants, but
has also been shown to be a critical site determining herbicide sensitivity in a broad range of essentially unrelated plants, e.g. corn, Brassica, tobacco, flax, Arabidopsis, and sugar beet (Stougaard et al., Mol. Gen. Genet. 219: 413-420, 1989; Jordan & McHughen, J. Plant Physiol. 131: 333-338, 1987; McHughen, Plant Cell Reports 8: 445-449, 1989). As noted above, then, it is possible to create the relevant mutation directly in the plant of interest by known mutagenic techniques. (See, for example, Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, 1982; and Example II, infra). However, it will frequently be more convenient to create transformed plants with a known and isolated DNA sequence comprising the requisite deletions, such as the Arabidopsis deletion mutants described in the present case. Plasmids containing deletion mutants at positions 574 and 653 have been deposited with the American Type Culture Collection, Rockville, MD, on December 6, 1990 as, respectively, accession numbers ATCC 68488 and 68489.

Isolated AHAS DNA sequences of the present invention are useful to transform target crop plants, and thereby confer herbicide resistance without the necessity for mutagenesis. A broad range of techniques currently exist for achieving direct or indirect transformation of higher plants with exogenous DNA, and any method by which the novel sequence can be incorporated into the host genome, and stably inherited by its progeny, is contemplated by the present invention. A detailed description of one such method is provided in the following examples.

Indirect transformation of plant cells can be achieved by the use of vectors. A common method of achieving transformation is the use of Agrobacterium tumefaciens to introduce a foreign gene into the target
plant cell. For example, in the present case, the mutant AHAS sequence is inserted into a plasmid vector containing the flanking sequences in the Ti-plasmid T-DNA. The plasmid is then transformed into E. coli. A triparental mating among this strain, an Agrobacterium strain containing a disarmed Ti-plasmid containing the virulence functions needed to effect transfer of the AHAS containing T-DNA sequences into the target plant chromosome, and a second E. coli strain containing a plasmid having sequences necessary to mobilize transfer of the AHAS construct from E. coli to Agrobacterium is carried out. A recombinant Agrobacterium strain, containing the necessary sequences for plant transformation is used to infect leaf discs. Discs are grown on selection media and successfully transformed regenerants are identified. The recovered plants are resistant to the effects of herbicide when grown in its presence. Other plant vectors, such as plant viruses, also provide a possible means for transfer of exogenous DNA.

Direct transformation of plant cells, instead of the use of vectors, can also be employed. Typically, protoplasts of the target plant are placed in culture in the presence of the DNA to be transferred, and an agent which promotes the uptake of DNA by protoplast is absorbed on their surfaces. Useful agents in this regard are polyethylene glycol or calcium phosphate.

Alternatively, DNA uptake can be stimulated by electroporation. In this method, an electrical pulse is used to open temporary pores in a protoplast cell membrane, and DNA in the surrounding solution is then drawn into the cell through the pores. Similarly, microinjection can be employed to deliver the DNA directly into a cell, and preferably directly into the nucleus of the cell.
In each of the foregoing techniques, transformation occurs in a plant cell in culture. Subsequent to the transformation event, plant cells must be regenerated to whole plants. Techniques for the regeneration of mature plants from callus or protoplast culture are now well known for a large number of different species (see, e.g., Handbook of Plant Cell Culture, Vols. 1-5, 1983-1989 McMillan, N.Y.) Thus, once transformation has been achieved, it is within the knowledge in the art to regenerate mature plants from the transformed plant cells.

Alternate methods are also now available which do not necessarily require the use of isolated cells, and therefore, regenerative techniques, to achieve transformation. These are generally referred to as "ballistic" or "particle acceleration" methods, in which DNA coated metal particles are propelled into plant cells by either a gunpowder charge (Klein et al., Nature 327: 70-73, 1987) or electrical discharge (EPO 270 356). In this manner, plant cells in culture or plant reproductive organs or cells, e.g. pollen, can be stably transformed with the DNA sequence of interest.

The present invention can be applied to transformation of virtually any type of plant, both monocot and dicot. Among the crop plants for which transformation to herbicide resistance is contemplated are corn, wheat, rice, millet, oat, barley, sorghum, alfalfa, sugar beet, Brassica species, tomato, pepper, soybean, tobacco, melon, squash, potato, peanut, pea, cotton, or cacao. The novel sequences may also be used to transform ornamental species, such as rose, and woody species, such as pine.

The novel sequences of the invention also is useful as selectable markers in plant genetics studies. For example, in plant transformation, sequences encoding herbicide resistance could be linked to a gene of
interest which is to be used to transform a target herbicide - sensitive plant cell. The construct comprising both the gene of interest and the herbicide resistant sequence are introduced into the plant cell, and the plant cells are then grown in the presence of an inhibitory amount of the herbicide. Plant cells surviving such treatment presumably have acquired the resistance gene as well as the gene of interest, and therefore, putative transformants are readily identifiable.

The invention is further illustrated by the following non-limiting examples.

EXAMPLE I

Isolation of a Genomic Clone Encoding Arabidopsis AHAS

A 2.1Kb EcoRI fragment encompassing the promoter, transit peptide and a portion of the mature coding region of Arabidopsis AHAS is 32P-labelled by nick translation (Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982) and utilized as a hybridization probe to screen a genomic library prepared from Arabidopsis thaliana genomic DNA (Clontech, Palo Alto, CA). The filters are hybridized for 24 hr. at 42°C in 6xSSC, 5 x Denhardt's solution, 50mM sodium phosphate, pH7.2, 0.1% SDS and 100ug/ml of denatured salmon sperm DNA. Filters are washed several times at 60°C in 1xSSC and 0.1%SDS. Six recombinant bacteriophage (A22, A31, A42, A52, A72, A83) were classified as putative positives. These bacteriophage are plaque purified and infected at low multiplicity with the E. coli strain K802 in liquid NZY broth (NZCYM is 10 g NZ amine, 5 g NaCl, 5 g yeast extract, 1 g casamino acids, 2 g MgSO$_4$-7H$_2$O and 10ml of 1M Tris-HCl, pH7.2) as described
by Maniatis, et al, supra. Liquid cultures are incubated overnight with constant shaking (300 rpm) at 37°C. The 50ml suspension is brought to 1M NaCl and 8% PEG by the addition of solid NaCl and solid polyethylene glycol. The suspension is incubated overnight at 4°C to precipitate the bacteriophage. The bacteriophage are pelleted via centrifugation at 18,000 x g for 20min. The pellet is resuspended in 2ml of TM buffer (10mM tris-HCl, pH 7.5; 10mM MgCl₂), layered upon a CsCl step gradient (4.8M CsCl, 4.0M CsCl and 3.2M CsCl) and centrifuged at 50,000 x g for 1 hr in a SW60 swinging bucket rotor. The phage band is removed from the 4.0/3.2M CsCl interface to a 1.5ml Eppendorf tube and the bacteriophage lysed by adding 1 volume of formamide and incubating at room temperature for 30 minutes. DNA is recovered by bringing the solution to 10m MTris-HCl, pH 8.0 and 1mM Na₂-EDTA and precipitating the DNA via the addition of 2 volumes of 100% ethanol. Bacteriophage DNA is recovered via centrifugation, washed with 70% ethanol and resuspended in TE buffer (TE buffer is 10mM Tris-HCl, pH 7.5; 1mM Na₂-EDTA). The purified DNA is routinely extracted one to several times with phenol:chloroform:isoamyl alcohol (24:24:1), ethanol precipitated, and resuspended in 50-100ul of TE buffer prior to digestion with various restriction enzymes.

DNA preparations from the six recombinant phage are digested with various restriction enzymes and resolved by electrophoresis through a 1% agarose gel. The DNA is transferred to nitrocellulose (Southern) and hybridized (24 hr. at 60°C in 2xSSC, 5 x Denhardt's solution, 50mM sodium phosphate, pH7.2, 0.1% SDS and 100ug/ml of denatured salmon sperm DNA) against a radiolabeled 900 bp Nco1/EcoRI fragment representing the 3' region of the 2.1Kb EcoRI fragment (the transit
peptide and the 5' portion of the mature coding region). The filter is washed twice at 65°C in 0.5xSSC and 0.1%SDS. The 900 bp NcoI/EcoRI fragment hybridizes to a 5.5Kb Xbal and 2.1 EcoRI fragment of both A42 and A52. These data are in agreement with published information concerning the cloning and characterization of the genomic sequence encoding Arabidopsis AHAS (Mazur et al., Plant Physiol, 85: 1110-1117, 1987).

The bacteriophage A52 is chosen for further analysis. The 5.5 Kb Xbal fragment of A52 is isolated from a 1% agarose gel and purified through an IBI electroelution device as suggested by the manufacturer. The 5.5Kb Xbal fragment is ethanol precipitated and resuspended in ddH₂O. These fragments are ligated to Xbal digested-pSK(-) plasmid DNA (purchased from Stratagene, La Jolla, CA). The fragments are ligated for 16-24 hours at 14°C in a 20ul volume as described by Maniatis, et. al., supra. Following incubation, the 20ul reaction volume is diluted to 100ul with 100mM Tris-HCl, pH7.2. Twenty five ul of this sample is diluted further to 100 ul with 100mM Tris-HCl, pH7.2 and incubated with 100ul of competent HB101 cells [prepared exactly as described by Morrison (Meth. Enzymol. 68: 326 - 331, 1979)]. The plasmid/E. coli transformation mix is incubated on ice for 20 minutes; transferred to 42°C for 2 minutes; room temperature for 10 minute; followed immediately by the addition of 1 ml of LB broth (LB broth is 10 g bacto-tryptone; 5 g yeast extract; 5 g NaCl and 10 ml 1 M Tris-HCl, pH 7.2 per liter) and further incubation at 37°C for 20 minutes. DNA plasmid cloning vehicles used in this work carry either the gene conferring resistance to ampicillin or kanamycin. Therefore, 200 ul of each transformation mix is plated directly onto either LB amp or LB kan plates (100 ug/ul of either respective antibiotic) and incubated at 37°C for 12-20 hr, depending on colony size.
Colonies are transferred to 3ml of LB_{amp} or LB_{kan} and incubated overnight at 37°C with constant shaking. Small scale plasmid DNA preparations are prepared by minor modifications of the alkaline lysis method described by Maniatis, et al. supra. Routinely, 400 ul of the 3ml overnight culture is pelleted in a 1.5ml Eppendorf tube and resuspended in 150 ul of GTE solution (GTE solution is 50mM glucose; 25mM Tris-HCl, pH 8.0 and 10mM Na₂-EDTA) and incubated on ice for 20 minutes, followed by the addition of 300 ul alkaline-SDS solution and 200 ul of 5M K^{+3M} OAc at the prescribed time intervals. The final DNA pellet is resuspended in 40ul of 50ug/ul RNAse A in TE buffer. Fifteen ul of plasmid DNA is removed for restriction digestion. Two plasmids, pAC301 (5'→3') and pAC302 (3'→5'), represent constructions containing the 5.5Kb Xbal fragment ligated to the Xbal site of pSK(-). Further restriction analysis of pAC301 and pAC302 confirm the presence of the promoter region, transit peptide, mature coding region and 3'non-translated regions of the genomic sequence encoding Arabidopsis AHAS (Mazur et al., Supra).

EXAMPLE II

Oligonucleotide site directed mutagenesis of the Arabidopsis AHAS coding region

(a) Preparation of single stranded template of pAC301 - The plasmid pAC301 is transformed into the E. coli strain, XL-1 (Stratagene). Single stranded template of pAC301 is generated from this pSK(-) "phagemid" based construction by following the manufacturers protocol. Routinely, a 3ml SB_{amp} overnight culture is added to a sterile flask containing 50ml of SB_{amp} (SB is 35 g bacto-tryptone, 20 g yeast extract, 5 g NaCl and 10 ml of 1M Tris-HCl, pH 7.5 per liter) and incubated at 37°C with constant shaking (300 rpm) until
the culture reached an OD600 of 0.3. At this point the
culture is inoculated with the helper phage, R408 (1 x
10^{10} phage) and vigorous 10^\circ shaking at 300 rpm at 37^\circ C
was continued overnight. The bacteria are pelleted via
centrifugation at 10,000 x g for 10 minutes. The
bacterial pellet is discarded and the supernatant
(approximately 45 ml) containing the single stranded
pAC301 template is stored at 4^\circ C until use. The
supernatant is routinely used for up to one month for
single stranded phagemid preparations. Small scale
preparations (1.2ml) of single stranded pAC301 phagemid
DNA are prepared essentially as described by the
manufacturer (Stratagene). The phage are precipitated
by adding 300 ul of a 3.5M NH_4 Ac, pH 7.5; 20% PEG
solution. The solution is mixed well in a 1.5 ml
Eppendorf tube and incubated at room temperature for 20
minutes. The single stranded phage are pelleted by
centrifugation for 20 minutes in an Eppendorf micro-
centrifuge. The supernatant is decanted, the pellet
dried and eventually resuspended in 300 ul of TE
buffer. The phage are lysed by adding 200 ul of
phenol:chloroform:isoamyl alcohol (24:24:1) and
vortexing for 1 minute. This step is repeated once
more and followed by two more extractions with
chloroform:isoamyl alcohol (24:1). The final aqueous
phase is ethanol precipitated (one-tenth volume
5M K^+ /3MOAc and two volumes of 100% ethanol), washed
with 70% ethanol, resuspended in 20ul of TE buffer and
transferred to a fresh 1.5ml Eppendorf tube.

(c) Preparation of the oligonucleotide - All
oligonucleotides are purchased from New England Bio-
labs. Oligonucleotides are utilized to introduce (1) an
amino acid substitution at the Trp574 residue of the
Arabidopsis AHAS coding region (Trp -> Leu) and (2) an
amino acid deletion at the Trp574 amino acid residue.
Trp574 --> Leu substitutions

V M Q W E D R
wild type 5'-'GTT ATG CAA TGG GAA GAT CGG-3'
V M Q L E D R
mutant 5'-'GTT ATG CAA TTG GAA GAT CGG-3'(21-mer)

Trp574 deletion

V M Q W E D R
wild type 5'-'GTT ATG CAA TGG GAA GAT CGG-3'
V M Q E D R
mutant 5'-'GTT ATG CAA --- GAA GAT CGG-3'
(21-mer)

Two hundred nanograms of each oligonucleotide is subjected to a kinase exchange reaction prior to hybridization to pAC301 single stranded template. A 40 ul reaction volume included 50mM Tris-HCl, pH7.5; 10mM MgCl2, 50mM DTT, 0.1mM spermidine and 0.1mM Na2-EDTA. The reaction is initiated via the addition of 10 units of T4 polynucleotide kinase (Pharmacia) and is incubated at 37°C for 30 minutes. The reaction is terminated by bringing the reaction mixture to 90°C for 3 minutes. One-half of the kinase reaction is added to the entire 20 ul pAC301 single stranded prep and is incubated at 65°C for 10 minutes to promote hybridization. To this 40 ul kinase/oligonucleotide mix is added 6 ul of 1mM dNTP's, 6 ul of 10 x ligase buffer (500mM Tris-HCl, pH7.5; 70 mM MgCl2 and 10mM DTT), 2 ul 10mM rATP, 5 units of Klenow DNA polymerase (Pharmacia), 8 units of DNA ligase (Stratagene) and 4ul ddH2O. The polymerase/ligation reaction is incubated at room temperature for 3 hr. One-half of the mix is used to transform competent E. coli XL-1 cells. The transformation mix is spread to LBamp plates and incubated overnight at 37°C. Transformants are restreaked to fresh LBamp plates in a grid fashion.
Colony screening by hybridization was performed exactly as described by Stratagene Technical Service (June 1988/Primer Exo/Mung Bean DNA Sequencing System). Both oligonucleotides are 32P-labeled by a kinase exchange reaction (300 ng of oligonucleotide in the presence of 40 uCi of 32P-ATP utilizing kinase conditions described previously). Unincorporated 32P-ATP is removed by electrophoresis of the kinase reaction through a 20% acrylamide/7M urea gel. The radioactive band corresponding to the 21-mer oligonucleotide is cut out of the gel with a razor blade and eluted either by (1) the crush and soak method of Maxam and Gilbert (PNAS USA 74: 560-566, 1977) or (2) electroelution through an IBI electroelution device. The purified, radiolabeled oligonucleotides are hybridized to the nitrocellulose colony lifts under non-stringent hybridization conditions (37°C for 24 hrs. in 6xSSC, 5 x Denhardt's, 50mM Na-P, pH 7.2 and 500 ug/ul of calf thymus DNA). Filters are washed once at room temperature in 6xSSC and 50 mM Na-P, pH 7.2 and again at 37°C in 6xSSC and 50mM Na-P, pH 7.2. Finally, the filters are washed twice at 60°C for 15 minute intervals in 3M tetramethylammonium chloride, 50mM Tris-HCl, pH 7.5, 2mM Na_2-EDTA and 1 mg/ml of SDS. A 21-mer oligonucleotide with a perfect base to base hybridization match (i.e., mutant oligo to mutant phagemid) is not washed free of the phagemid DNA at 60°C, whereas a slight mismatch (i.e., mutant oligo to wild type phagemid) is washed free. Putative positives are streaked from the original LB amp plate to a fresh LB amp plate. Ten transformants from each restreaked putative positive are then restreaked in a grid pattern and the colony hybridization is repeated. Secondary positives are then confirmed via DNA sequence analysis through the Trp574 coding region. (Sanger et al., PNAS USA 74: 5463-5467, 1977). Two positive mutants, pAC324 (Trp574 -- > Leu substitution)
and pAC325 (Trp574 deletion) were selected for further analysis.

EXAMPLE III

Agrobacterium Mediated Transformation of Tobacco

(a) Construction of vectors - Both vectors and the Agrobacterium strain are purchased from Clontech. The plasmid pBIN19 is an E. coli/Agrobacterium binary shuttle vector that possesses both the left and right border sequences of the Ti-plasmid T-DNA, a polylinker, an RK2 bacterial origin of replication functional in both E. coli and Agrobacterium, and a gene conferring resistance to kanamycin (Bevan, Nucl. Acids Res. 12: 8711-8721, 1984) The plasmids pAC324 and pAC325 are digested with Xbal and electrophoresed through a 1% agarose gel. The 5.5Kb Xbal fragment containing the respective mutation of pAC324 and pAC325 are isolated as previously described. The plasmid pBIN19 is digested with Xbal and incubated in a separate ligation reaction with the 5.5Kb Xbal fragment from pAC324 and pAC325. The entire ligation mix is transformed into E. coli XL-1 cells and positive transformants are chosen via a blue/white color selection on LBaix plates (LB plates with 100 ug/ul ampicillin, 80 ug/ml X-Gal and 20mM IPTG). Small scale plasmid preparations, restriction digestion analysis and agarose gel electrophoresis to confirm positive transformants are performed as described previously. Of the four pBIN19 based plasmid constructions, pAC348-pAC349 (both orientations of the 5.5Kb Xbal fragment containing the Trp574-->Leu substitution in pBIN19) and pAC350-pAC351 (both orientations of the 5.5Kb Xbal fragment containing the Trp574 deletion in pBIN19), one construction from each respective mutation is chosen for transformation of tobacco.
(b) Mobilization of pAC348 - pAC351 into Agrobacterium

The plasmid pRK2013 is a conjugative plasmid that contains trans-acting sequences required to mobilize pBIN19 based constructions from E. coli into the disarmed Agrobacterium strain, LBA4404 (pAL4404). This Agrobacterium strain is resistant to streptomycin and contains the disarmed Ti plasmid pAL4404 (Ooms et al., Plasmid 7: 15-29, 1982). This Ti plasmid contributes the transacting virulence functions necessary to facilitate transfer of the pBIN19 based T-DNA region into the chromosome of tobacco. The triparental mating of the pBIN19 based vectors, the conjugative plasmid (pRK2013), and the Agrobacterium strain (LBA4404), are carried out essentially as described by Bevan (Nucl. Acids Res. 12: 8711-8721, 1984). The plasmids pAC348-351 (Kan') and pRK2013 (Kan') are transformed into competent E. coli HB101 or XL-1 cells as described previously. Transformants containing each plasmid are inoculated into 3ml LB kan broth cultures and incubated at 37°C with constant shaking. The Agrobacterium strain, LBA4404, is inoculated into AB strp media (20 x AB is 20g NH₄Cl, 6g MgSO₄·7H₂O, 3g KCl, 60g K₂HPO₄, 20g NaH₂PO₄, 3g CaCl₂ and 50mg FeSO₄·7H₂O. Glucose is added to a 1x stock to a final concentration of 0.5x) and incubated with constant shaking at 28°C for 36-48 hr. The triparental mating is initiated by combining 1 ml of each of the three cultures (a pBIN19 based construct, pRK2013 and LBA4404) into a sterile tube and continuing incubation at 28°C for 1 hr. The culture is concentrated via vacuum onto a 0.45μM filter and incubated overnight at 28°C on an NB plate (NB is 4g of Difco nutrient broth powder and 10ml of 1M Tris-HCl, pH 7.2). The filter is placed in 2ml of fresh AB media and rotated slowly for 1 hr. A dilution series is spread onto AB strp/kan plates and incubated at 28°C for
3-4 days. Only *Agrobacterium* (strp) carrying the pBIN19 based construct (kan) grow on ABstrp/kan media. Single colonies from ABstrp/kan plates are inoculated into ABstrp/kan broth and incubated at 28°C with constant shaking for 36-48 hr. These cultures are restreaked to ABstrp/kan plates, incubated at 28°C for 3-4 days and stored at 4°C until use.

(c) *Agrobacterium*-Mediated Transformation of Tobacco

pAC348 and pAC351 are inoculated into 50ml of ABkan and incubated with constant shaking at 28°C for 36-48 hr. Bacteria are pelleted by centrifugation at 2500 rpm for 10 minutes in a Damon/IEC table top centrifuge. The bacterial pellet is resuspended in 5ml of BAT media (BAT media is 1x MS salts (Murashige and Skoog, *Plant Physiol.* 15: 473-497, 1962) 1x B5 vitamins [100x B5 is 10mg myo-inositol, 100mg nicotinic acid, 100mg of pyridoxine-HCl and 1000mg Thiamine-HCl per 1 liter], 3% sucrose, 5μM 6-benzylaminopurine at pH 5.7). Young greenhouse grown Wisconsin 38 tobacco leaves are cut into 2 longitudinal sections and soaked in warm water containing Ivory hand soap. The leaf sections are washed in sterile distilled water, soaked in a 10% Clorox + Tween 20 solution for 10 minutes with stirring and rinsed 3x with ddH2O. Discs are cut from the leaf sections using either a cork borer or hole-punch. These discs are placed in a 50ml tube containing the resuspended *Agrobacterium* culture. The suspension is mixed gently for 5' minutes and blotted onto a sterile paper towel and cultured onto BAT media plates (100 x 20mm plates with approximately 10 discs per plate). The plates are incubated at 25°C under fluorescent lighting for 48hr. The discs are then transferred to selection media (BATCK; BAT media plus carbenicillin and kanamycin) and returned to the initial incubation conditions until the formation of shoots. Kanamycin
resistant shoots are transferred to OTCK (rooting) selection media (OTCK media is BATCK media minus 6-benzylaminopurine) in (GA7) Magenta boxes and the previously described incubation conditions were continued. When kanamycin resistant shoots form an appreciable root system (at least 3 roots with lengths longer than 1cm), the plants are transferred to soil. Briefly, the agar based shoot is removed from the GA7 box, the agar is carefully washed away with warm tap water and the shoots are transferred to metromix in peat pots in GA7 vessels. The plants are placed in the greenhouse and allowed to harden off. A total of 5 kanamycin resistant shoots containing pAC348 and 9 kanamycin resistant shoots containing pAC350 are transferred to soil. Approximately 10-14 days later, the peat pots are transplanted to larger pots.

pAC348 pAC351

Transformant #:Transformant #:
1) 19-1 1) 10-1
2) 33-1 2) 20-1
3) 33-2 3) 20-2
4) 46-1 4) 20-3
5) 46-2 5) 27-1
6) 27-2
7) 27-3
8) 30-1
9) 42-4

EXAMPLE IV
Determination and Characterization of Mutants Conferring Herbicide Resistance

AHAS enzyme assay (leaf tissue) - Shortly after transfer to the greenhouse, extracts each of the kanamycin resistant transformants are prepared and assayed for insensitivity to the imidazolinone Pursuit® herbicide. Acetohydroxyacid synthase is extracted and
assayed as described in the previous section. Two kanamycin resistant transformants (33-1 and 46-2) which contain the Trp574--->Leu substitution mutant allele of the Arabidopsis AHAS allele exhibit AHAS activity in the presence of Pursuit® herbicide. In addition, AHAS activity of one kanamycin resistant deletion transformant (10-1) exhibits insensitivity to the addition of Pursuit® herbicide (Figure 7). This Trp574 deletion transformant is selfed and backcrossed to Wisconsin 38. Progeny from 10-1 exhibit tolerance to post-emergence applications of Pursuit® herbicide 4-8x greater than the concentration lethal to control tobacco plants.

Figures 2(a)-(c) show photographic comparisons of the phenotypes of the crosses and controls discussed above. These observations indicate inheritance of resistance observed in the initial AHAS assay from transformed leaf tissue, and expression of this trait at the whole plant level.

In a more quantitative assay, seed of selfed progeny of the transgenic tobacco plant (10-1) containing the Trp574 deletion mutation of Arabidopsis AHAS as well as seeds of the susceptible parental cultivar "Wisconsin 38" are planted in Metro Mix 350™ in 5" Azalea pots. The seedlings are thinned to the single most vigorous seedling after 2 days. Eleven days later, these plants are sprayed postemergence with Pursuit® at 0, 10, 20, 40, 80 and 160 g/ha. Five plants of each tobacco type (transgenic and control) are sprayed per herbicide rate. Tween 20™ is added at 0.25 v/v to the herbicide solutions prior to spraying. The herbicide is applied with a laboratory belt sprayer at a rate of 400 L/ha at a distance 18" above the plants with a belt speed of 8.2 sec/rev and sprayer nozzle #65015E. Plant heights are measured 1, 2, 3, and 4 weeks after treatment, plant fresh weight data is collected at four and one-half weeks.
The results of these sprayings are depicted in Figure 4. The progeny data in the graph are presented with the most tolerant individual first and the most susceptible individual last for each herbicide rate. As can be seen from this graph and as would be expected from a selfed progeny of the original transgenic plant, the progeny are segregating for herbicide tolerance. Both susceptible progeny and individuals with varying degrees of herbicide tolerance can be observed.

The plant fresh weights (g) and means for each herbicide rate are presented in Table 2 with the mean fresh weights (g) summarized below (Table 1):

<table>
<thead>
<tr>
<th>Herbicide Rate</th>
<th>Control</th>
<th>Transgenic Progeny</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g/ha</td>
<td>52.1</td>
<td>53.7</td>
</tr>
<tr>
<td>10 g/ha</td>
<td>8.1</td>
<td>36.4</td>
</tr>
<tr>
<td>20 g/ha</td>
<td>2.0</td>
<td>28.8</td>
</tr>
<tr>
<td>40 g/ha</td>
<td>0.8</td>
<td>20.9</td>
</tr>
<tr>
<td>80 g/ha</td>
<td>0.6</td>
<td>26.5</td>
</tr>
<tr>
<td>160 g/ha</td>
<td>0.2</td>
<td>21.4</td>
</tr>
</tbody>
</table>

As can been seen in this table, the selfed progeny of the transgenic tobacco plant (10-1) exhibit a high degree of tolerance to Pursuit® applied postemergence. The susceptible parental cultivar does not display herbicide tolerance at any of the rates tested.

Seeds resulting from transgenic plant 10-1 are also assayed for resistance to the imidazolinone Pursuit®. Seeds are plated onto medium containing Pursuit® at 0, 1.25, 2.5, 3.75, and 5.0 μM. Twenty seeds are plated per petri dish, with two dishes per
Herbicide tolerance of seedlings is evaluated after three weeks. The results of the 5.0 μM treatment is presented in Table 2. Even at the lowest concentration (1.25 μM treatment), control plants exhibited herbicide sensitivity. These results illustrate inheritance of the herbicide resistant trait from parental plant 10-1 to its progeny.

Table 2
Results of tobacco seed assay.

<table>
<thead>
<tr>
<th>Pursuit®</th>
<th>Conc. (μM): 5</th>
<th>S*</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progeny:</td>
<td>W38 (wild-type)</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-1</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Selfed</td>
<td>3</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10-1 x 0</td>
<td>11</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-1 x 0</td>
<td>11</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 x 10-1</td>
<td>10</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* S = Susceptible; D = Damaged; R = Resistant

EXAMPLE V
AHAS enzyme assay in E. coli

AHAS enzyme assay (expression in E. coli) - The site directed mutants, pAC224 and pAC225, are utilized as templates for the generation of an E. coli based expression system. The insensitivity to herbicide is tested when the higher plant gene of interest is
expressed in a bacterial strain devoid of any endogenous AHAS activity. To this end, the NcoI/PstI fragment of wild type Arabidopsis AHAS (pAC301), the Trp574-Leu substitution (pAC224) and the Trp574 deletion (pAC225) are subcloned into the NcoI/PstI site of the E. coli expression vector, pKK233-2 (purchased from Pharmacia). This expression plasmid contains an IPTG inducible promoter as well as a transcription termination sequence. Both regions surround an NcoI, HindIII and PstI linker sequence that allows proper orientation of the gene of interest in relation to the bacterial promoter. Subcloning and ligation of the respective NcoI/PstI fragments into NcoI/PstI digested pKK233-2 DNA (ampicillin resistance) is as previously described. The ligation reaction is transformed into the E. coli strain, MF2000 [ilvB800:mu-1, BgI32, ilvI15, thi-1, argE3, RPSL31, (ara-leu, ilvHI) 863, mtl-1, xyl-5 galK2, lacY1, recA1]. This bacterial strain is devoid of endogenous AHAS activity. Therefore, growth on a minimal media lacking isoleucine and valine (the end products of amino acid biosynthetic pathway of which the AHAS enzyme is involved) in an MF2000 strain transformed with either pAC224 (Trp574-Leu) or pAC225 (Trp del) requires the expression and function of the Arabidopsis gene in E. coli. Each of the three constructions complements MF2000 on agar media as well as in broth cultures.

Single colonies of MF2000 containing either the plasmid construction pAC210, pAC224 or pAC225 are inoculated into 3ml broth cultures of M63 minimal media (amp) containing the amino acids arginine, leucine, isoleucine and valine. [M63 is 30g KH2PO4, 70g K2HPO4, 20g (NH4)2SO4, 5mg FeSO4, 100ul of 1M MgSO4, 200ul thiamine. The glucose concentration is raised to 1.2%). The cultures are incubated overnight at 37°C with constant shaking. The bacterial cells are
pelleted, resuspended in several mls of M63 (amp) supplemented with arginine and leucine, but lacking isoleucine and valine (minus ilv media). The cells are transferred to 10-50 ml of minus ilv media and constant shaking at 37°C was continued overnight. The cells are pelleted and either used directly in AHAS enzyme assays or frozen at -20°C until use.

The extraction and assay for Arabidopsis AHAS in bacterial cells is essentially as described by Singh, et. al. (J. Chromatography 444: 251-261, 1988). The bacterial pellet is powered in liquid nitrogen and homogenized in 100mM potassium phosphate buffer (pH 7.5) containing 10mM pyruvate, 5mM magnesium chloride, 5mM Na₂-EDTA, 100um flavin adenine dinucleotide (FAD), 1mM valine, 1mM leucine, 10%(v/v) glycerol and 10mM cysteine. The homogenate is filtered through a nylon cloth (53μM mesh) and centrifuged at 25,000 x g for 20 minutes. The supernatant fraction is brought to 50% saturation with respect to ammonium sulfate and allowed to stand for 20-30 minutes on ice. The precipitate is pelleted via centrifugation at 25,000 x g for 20 minutes. The supernatant is discarded and the ammonium sulfate pellet is used immediately or frozen with liquid nitrogen and stored at -20°C until use.

AHAS activity in the presence or absence of herbicide is measured by estimation of the product, acetolactate, after conversion by acid decarboxylation to acetoin. Standard reaction mixtures contain the enzyme (and herbicide) in 50mM potassium phosphate buffer (pH 7.0) containing 100mM sodium pyruvate, 10mM magnesium chloride, 1mM thiamine pyrophosphate (TPP) and 10μM FAD. This mixture is incubated at 37°C for 1 hr. The reaction is stopped with the addition of sulfuric acid to make a final concentration of 0.85%. The reaction product is allowed to decarboxylate at 60°C for 15 minutes. The acetoin formed is determined
by incubating with creatine (0.17%) and 1-naphthol (1.7%) by the method of Westerfeld (J. Biol. Chem. 161: 495-502, 1945). Appropriate checks of direct acetoin formation during the enzyme assays are made.

Wild type Arabidopsis AHAS (pAC201) is sensitive to the imidazolinone herbicide Pursuit® and the sulfonylurea herbicide Glean® whereas both the Trp574-Leu substitution (pAC224) and the Trp574 deletion (pAC225) are insensitive to increasing concentrations of Pursuit® herbicide (Figure 4) and Glean® herbicide (Figure 5). Surprisingly, the deletion confers a level of insensitivity to these herbicides which is equivalent or greater than that of the corresponding substitution. Therefore, deletion of the Trp574 residue of the Arabidopsis AHAS coding region results in a functional form of the enzyme that is insensitive to the addition of either of two unrelated herbicides capable of inhibiting the wild type form of the enzyme.

The procedures noted above are also used to create substitution of an asparagine for a serine at position 653, as well as a deletion at this position. Plasmids containing the substitution (pAC229) or the deletion (pAC230) are transformed into E. coli MF2000 and AHAS activity of deletion and substitution mutants in the presence of herbicides Pursuit® and Glean® is determined for each as described above. The AHAS produced by substitution of asparagine for serine is insensitive to inhibition by Pursuit® (Figure 6) as previously reported (Sathasivan et. al, supra), but sensitivity to Glean® was only slightly reduced (about 10%) as compared with the wild-type enzyme (Figure 7). In contrast, the AHAS produced by the Ser653 deletion is highly resistant to inhibition by both Pursuit® and Glean® (Figures 6 and 7).
DEPOSIT OF BIOLOGICAL MATERIALS

The following microorganisms were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20857, on December 6, 1990, and given accession numbers as follows:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium strain LBA4404 harboring pAC351 (Agro/351) [Trp574 deletion]</td>
<td>68488</td>
</tr>
<tr>
<td>Agrobacterium strain LBA4404 harboring plasmid pAC324 [Ser653 deletion]</td>
<td>68489</td>
</tr>
</tbody>
</table>
WHAT WE CLAIM IS:
The claims defining the invention are as follows:

1. A nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme.

2. The sequence of Claim 1 in which a deletion is present in a conserved region of the AHAS sequence.

3. The sequence of Claims 1-2 in which a deletion has occurred in a region of the wild type AHAS sequence Arabidopsis selected from the group consisting of amino acids 119-122, 194-197, 201-208, 255-257, 348-353, 373-377, 569-578, and 650-653, or the homologous regions in a different species.

4. The sequence of Claims 1-3 in which the deletion occurs at at least one position selected from the group consisting of amino acids 121, 122, 197, 205, 256, 351, 376, 571, 574, 578 and 653.

5. The sequence of Claims 1-4 in which resistance is to at least one herbicide selected from the group consisting of an imidazolinone, a sulfonylurea and a triazolopyrimidine.

6. A functional AHAS enzyme which has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance.
7. The enzyme of Claim 6 in which a deletion has occurred in a conserved region of the AHAS sequence.

8. The enzyme of Claims 6-7 in which a deletion has occurred in a region of the wild-type AHAS sequence of Arabidopsis selected from the group consisting of amino acids 119-122, 194-197, 201-208, 255-257, 348-353, 373-377, 569-578, and 650-653, or the homologous region in a different species.

9. The enzyme of Claims 6-8 in which the deletion has occurred at at least one position selected from the group consisting of amino acid 120, 121, 197, 205, 256, 358, 571, 574, 578 and 653.

10. A vector comprising a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild type AHAS in having at least one amino acid deletion that confers herbicide resistance to the enzyme.

11. A host cell comprising the nucleic acid sequence of any of Claims 1-5.

12. A host cell comprising the vector of Claim 10.

13. A plant cell comprising a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme.
14. A herbicide-resistant mature plant comprising a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme.

15. A seed of the plant of Claim 14.

17. A method for conferring herbicide resistance to a plant cell which comprises providing the plant cell with a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme.

18. A method for growing herbicide resistant plants which comprises cultivating a plant which produces a functional AHAS enzyme with an amino acid sequence differing from a wild type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme, in the presence of an inhibitory amount of the herbicide.

19. A method of selecting host cells successfully transformed with a gene of interest which comprises providing to prospective host cells the gene of interest linked to the nucleic acid sequence of any of Claims 1-5, growing the cells in the presence of an inhibitory amount of a herbicide,
and identifying surviving cells as containing the gene of interest.

20. A nucleic acid construct comprising the sequence of any one of Claims 1-5 linked to a gene encoding an agronomically useful trait.

21. A nucleic acid sequence encoding a functional AHAS enzyme substantially as hereinbefore described with reference to any one of the Examples.

22. A functional AHAS enzyme which has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance substantially as hereinbefore described with reference to any one of the Examples.

23. A plant cell comprising a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme substantially as hereinbefore described with reference to any one of the Examples.

24. A herbicide-resistant mature plant comprising a nucleic acid sequence encoding a functional AHAS enzyme, which enzyme has an amino acid sequence differing from a wild-type AHAS sequence in having at least one amino acid deletion that confers herbicide resistance to the enzyme substantially as hereinbefore described with reference to any one of the Examples.

25. A method for conferring herbicide resistance to a plant cell substantially as hereinbefore described with reference to any one of the Examples.
26. A method for growing herbicide resistant plants substantially as hereinbefore described with reference to any one of the Examples.

27. A method of selecting host cells successfully transformed with a gene of interest substantially as hereinbefore described with reference to any one of the Examples.

DATED this NINETEENTH day of NOVEMBER 1991
American Cyanamid Company

Patent Attorneys for the Applicant
SPRUSON & FERGUSON
Met Ala Ala Ala Thr Thr Thr Thr Thr Ser Ser
1 5 10
Ser Ile Ser Phe Ser Thr Lys Pro Ser Pro Ser Ser
15
Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu
25 30 35
Pro Phe Ser Leu Asn Pro Asn Lys Ser Ser Ser Ser
40
Ser Arg Arg Arg Gly Ile Lys Ser Ser Ser Pro Ser
50 55 60
Ser Ile Ser Ala Val Leu Asn Thr Thr Asn Val
65 70
Thr Thr Thr Pro Ser Pro Thr Lys Pro Thr Lys Pro
75 80
Glu Thr Phe Ile Ser Arg Leu Ala Pro Asp Gln Pro
85 90 95
Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu
100
Arg Gln Gly Val Glu Thr Val Phe Ala Tyr Pro Gly
110
Gly Ala Ser Met Glu Ile His Gln Ala Leu Thr Arg
125 130
Ser Ser Ser Ile Arg Asn Val Leu Pro Arg His Glu
135 140
Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg
145 150 155
Ser Ser Gly Lys Pro Gly Ile Cys Ile Ala Thr Ser
160 165
Gly Pro Gly Ala Thr Asn Leu Val Ser Gly Leu Ala
170 175 180
Asp Ala Leu Leu Asp Ser Val Pro Leu Val Ala Ile
185
Thr Gly Gly Val Pro Arg Arg Met Ile Gly Thr Asp
190
195
Thr Gly Gly Val Thr Pro Ile Val Glu Val Thr Arg
205 210 215

FIG. la(i)
FIG. 1a(ii)
Leu Lys Leu Asp Phe Gly Val Trp Arg Asn Glu Leu
435
440
Asn Val Glu Lys Gln Lys Phe Pro Leu Ser Phe Lys
445
450
455
Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr Ala Ile
460
465
Lys Val Leu Asp Glu Leu Thr Asp Gly Lys Ala Ile
470
475
480
Ile Ser Thr Gly Val Gly Gln His Gln Met Trp Ala
485
490
Ala Gln Phe Tyr Asn Tyr Lys Pro Arg Gln Trp
495
500
Leu Ser Ser Gly Gly Leu Gly Ala Met Gly Phe Gly
505
510
515
Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro
520
525
Asp Ala Ile Val Val Asp Ile Asp Gly Asp Gly Ser
530
535
540
Phe Ile Met Asn Val Gln Glu Leu Ala Thr Ile Arg
545
550
Val Glu Asn Leu Pro Val Lys Val Leu Leu Leu Asn
555
560
Asn Gln His Leu Gly Met (Val) Met Gln Trp Glu Asp
565
570
575
Arg Phe Tyr Lys Ala Asn Arg Ala His Thr Phe Leu
580
585
Gly Asp Pro Ala Gin Glu Asp Glu Ile Phe Pro Asn
590
595
600
Met Leu Leu Phe Ala Ala Ala Cys Gly Ile Pro Ala
605
610
Ala Arg Val Thr Lys Lys Ala Asp Leu Arg Glu Ala
615
620
Ile Gln Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu
625
630
635
Leu Asp Val Ile Cys Pro His Gln Glu His Val Leu
640
645

FIG. 1a(iii)
Pro Met Ile Pro Ser Gly Gly Thr Phe Asn Asp Val
650 655 660

Ile Thr Glu Gly Asp Gly Arg Ile Lys Tyr
665 670

FIG. la (iii)
FIG. Ib(i)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTAATTGGGA ACAGGGCTATG AGATTACCTG GTTATATGTC</td>
<td>1120</td>
</tr>
<tr>
<td>TAGGATGCCT AAACCTCCGG AAGATPCTCA TTTGGAGCAG</td>
<td>1160</td>
</tr>
<tr>
<td>ATTGTAGGTT AGATTTCTGA GTCTAAGAAG CCTGTTTGGT</td>
<td>1200</td>
</tr>
<tr>
<td>ATGTTGGTGG TGGTTGTTTG AATTCTAGG ATGAATTGGG</td>
<td>1240</td>
</tr>
<tr>
<td>TAGGTTGTTT GAGCTTACGG GGATCCCTGT TGCCGACTCG</td>
<td>1280</td>
</tr>
<tr>
<td>TGGATGGGGC TGGGATCTTA TCCTTGATG GATGAGTGT</td>
<td>1320</td>
</tr>
<tr>
<td>CGTTACATAT GCCTGGGAATG CATGGGACTG TGATAGCAA</td>
<td>1360</td>
</tr>
<tr>
<td>TTACGCTCTG GAGCATAGTG ATTTGTGGTT GGGGTGGGG</td>
<td>1400</td>
</tr>
<tr>
<td>GTAAGGTTTG ATGTGCCTG TACAGGTAAG CTGGAGCCTT</td>
<td>1440</td>
</tr>
<tr>
<td>TTGCTAGTAG GCTAAGATT GTTCTATTG ATATGACTC</td>
<td>1480</td>
</tr>
<tr>
<td>GGCTGAGATT GGAAGAAATA AGACTCCCTCA TGTTGCTCTG</td>
<td>1520</td>
</tr>
<tr>
<td>TGTGATGATG TTAAGCTGCG TTTGCAAGGG ATGAATAAGG</td>
<td>1560</td>
</tr>
<tr>
<td>TTCTTGAGAA CCAGGCAGGA GACCTAAGC TTGATTTGG</td>
<td>1600</td>
</tr>
<tr>
<td>AGTGGAGGG AATGAGTTGA ACATAGCAAG AAACAGTGT</td>
<td>1640</td>
</tr>
<tr>
<td>CCGTTGACCT TTAAAGCTT GGGGAAGCT ATTCCTCCAC</td>
<td>1680</td>
</tr>
<tr>
<td>AGTATGCGAT TAAAGCTTT GATGAGTTGA CTGATGGAAA</td>
<td>1720</td>
</tr>
<tr>
<td>AGCCATAATA AGTACTGTTG TCGGGCAACA TCAAATGTGG</td>
<td>1760</td>
</tr>
<tr>
<td>GGGGCCAGTT TCTACAATTA CAAGAAACA AGCCAGTGGC</td>
<td>1800</td>
</tr>
<tr>
<td>TATCATCAGG AGGCCTTTGGA GCTATGGGAT TTTGACTTCC</td>
<td>1840</td>
</tr>
<tr>
<td>TGCTGCGATT GGACGGTCTG TTGCTAACCC TGATGGATA</td>
<td>1880</td>
</tr>
<tr>
<td>GTTGTGGATA TTGACGGAGA TGGGAAGCTTT ATAATGAATG</td>
<td>1920</td>
</tr>
<tr>
<td>TGCAAGAGCT AGCCACTATT CGTGAGAGA ATCTTCCAGT</td>
<td>1960</td>
</tr>
<tr>
<td>GAAGGTACCT TTATTAACA ACCAGCATCT TGCCATGGTT</td>
<td>2000</td>
</tr>
<tr>
<td>ATGCAATGAG AAGATCGTT CTACAAGCT AACCAGGCTC</td>
<td>2040</td>
</tr>
<tr>
<td>ACACATTTCT CGGGAGTTCC GCTCAGGAGG ACGAGATAAT</td>
<td>2080</td>
</tr>
<tr>
<td>CCCGAACATG TTGCTGTTTG CAGCAGCTTG CGGGATCCA</td>
<td>2120</td>
</tr>
<tr>
<td>GCGGCGAGGG TGACAAAGAA AGCGAGCTTC CGAGAAGCTA</td>
<td>2160</td>
</tr>
</tbody>
</table>

FIG.1b(ii)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Start Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTCAGACAAAT GCTGGATAA CCAAG ACCCTT A CTGTGTTGGA</td>
<td>2200</td>
</tr>
<tr>
<td>TGTGATTGTT CCGACCAAAG AACATGTTT GCGGATGATC</td>
<td>2240</td>
</tr>
<tr>
<td>CCGAGTGGTG GCACCTTCAA CGATGCATA ACGAGGAG</td>
<td>2280</td>
</tr>
<tr>
<td>ATGGCCGGAT TAAATACTGA GAGATGAAAC CGGTGATTAT</td>
<td>2320</td>
</tr>
<tr>
<td>CAGAACCTTT TATGGCTTTT GTATGCATAT GGTAAAAAA</td>
<td>2360</td>
</tr>
<tr>
<td>CTTAGTCTTC AATTTCTGTG TGTGTTTGTT AATTTGAGTT</td>
<td>2400</td>
</tr>
<tr>
<td>TCTTTTACGT TGTGATCTGC GTGCTTTTTG GTTACGTCA</td>
<td>2440</td>
</tr>
<tr>
<td>GACTACTACT GCTGTTGTTT TTTGGTTTCC TTCTTTCAT</td>
<td>2480</td>
</tr>
<tr>
<td>TTTATAATA AATAATCCGG TCGGTTTAC TCCTTGAC</td>
<td>2520</td>
</tr>
<tr>
<td>TGGCTC</td>
<td>2526</td>
</tr>
</tbody>
</table>

FIG.1b(iii)
FIG. 2a

W38 CONTROL AND 10-1 SELF 25 DAS 7-31-90 PURSUIT G PER HA 10 20 40 80 160
FIG. 2b

W38 CONTROL
AND
0 x 10-1 25 DAS 7 31 90
Pursuit 6 per ha
10 20 40 80 160
FIG. 2c

W38 CONTROL
AND
10-1 x 0 25 DAS 7 31 90
PURSUIT G PER HA
10 20 40 60 180
FIG. 4

AHAS ACTIVITY (% OF CONTROL)

[PURSUIT], µM
FIG. 5
FIG. 6

AHAS ACTIVITY (% OF CONTROL)

[PURSUIT], μM

DEL, pAC230
SUB, pAC229
WT, PRO
AHAS ACTIVITY (% OF CONTROL)

FIG. 7
AHAS ACTIVITY
(% OF CONTROL)

FIG. 8